CriticBench: Benchmarking LLMs for Critique-Correct Reasoning

Zicheng Lin, Zhibin Gou, Tian Liang, Ruilin Luo, Haowei Liu, Yujiu Yang


Abstract
The ability of Large Language Models (LLMs) to critique and refine their reasoning is crucial for their application in evaluation, feedback provision, and self-improvement. This paper introduces CriticBench, a comprehensive benchmark designed to assess LLMs’ abilities to critique and rectify their reasoning across a variety of tasks. CriticBench encompasses five reasoning domains: mathematical, commonsense, symbolic, coding, and algorithmic. It compiles 15 datasets and incorporates responses from three LLM families. Utilizing CriticBench, we evaluate and dissect the performance of 17 LLMs in generation, critique, and correction reasoning, i.e., GQC reasoning. Our findings reveal: (1) a linear relationship in GQC capabilities, with critique-focused training markedly enhancing performance; (2) a task-dependent variation in correction effectiveness, with logic-oriented tasks being more amenable to correction; (3) GQC knowledge inconsistencies that decrease as model size increases; and (4) an intriguing inter-model critiquing dynamic, where stronger models are better at critiquing weaker ones, while weaker models can surprisingly surpass stronger ones in their self-critique. We hope these insights into the nuanced critique-correct reasoning of LLMs will foster further research in LLM critique and self-improvement.
Anthology ID:
2024.findings-acl.91
Volume:
Findings of the Association for Computational Linguistics ACL 2024
Month:
August
Year:
2024
Address:
Bangkok, Thailand and virtual meeting
Editors:
Lun-Wei Ku, Andre Martins, Vivek Srikumar
Venue:
Findings
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
1552–1587
Language:
URL:
https://aclanthology.org/2024.findings-acl.91
DOI:
Bibkey:
Cite (ACL):
Zicheng Lin, Zhibin Gou, Tian Liang, Ruilin Luo, Haowei Liu, and Yujiu Yang. 2024. CriticBench: Benchmarking LLMs for Critique-Correct Reasoning. In Findings of the Association for Computational Linguistics ACL 2024, pages 1552–1587, Bangkok, Thailand and virtual meeting. Association for Computational Linguistics.
Cite (Informal):
CriticBench: Benchmarking LLMs for Critique-Correct Reasoning (Lin et al., Findings 2024)
Copy Citation:
PDF:
https://aclanthology.org/2024.findings-acl.91.pdf