@inproceedings{hwang-etal-2024-textless,
title = "Textless Acoustic Model with Self-Supervised Distillation for Noise-Robust Expressive Speech-to-Speech Translation",
author = "Hwang, Min-Jae and
Kulikov, Ilia and
Peloquin, Benjamin and
Gong, Hongyu and
Chen, Peng-Jen and
Lee, Ann",
editor = "Ku, Lun-Wei and
Martins, Andre and
Srikumar, Vivek",
booktitle = "Findings of the Association for Computational Linguistics: ACL 2024",
month = aug,
year = "2024",
address = "Bangkok, Thailand",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.findings-acl.917",
doi = "10.18653/v1/2024.findings-acl.917",
pages = "15524--15541",
abstract = "In this paper, we propose a textless acoustic model with a self-supervised distillation strategy for noise-robust expressive speech-to-speech translation (S2ST).Recently proposed expressive S2ST systems have achieved impressive expressivity preservation performances by cascading unit-to-speech (U2S) generator to the speech-to-unit translation model. However, these systems are vulnerable to the presence of noise in input speech, which is an assumption in real-world translation scenarios. To address this limitation, we propose a U2S generator that incorporates a distillation with no label (DINO) self-supervised training strategy into it{'}s pretraining process.Because the proposed method captures noise-agnostic expressivity representation, it can generate qualified speech even in noisy environment.Objective and subjective evaluation results verified that the proposed method significantly improved the performance of the expressive S2ST system in noisy environments while maintaining competitive performance in clean environments.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="hwang-etal-2024-textless">
<titleInfo>
<title>Textless Acoustic Model with Self-Supervised Distillation for Noise-Robust Expressive Speech-to-Speech Translation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Min-Jae</namePart>
<namePart type="family">Hwang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ilia</namePart>
<namePart type="family">Kulikov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Benjamin</namePart>
<namePart type="family">Peloquin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hongyu</namePart>
<namePart type="family">Gong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Peng-Jen</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ann</namePart>
<namePart type="family">Lee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: ACL 2024</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lun-Wei</namePart>
<namePart type="family">Ku</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andre</namePart>
<namePart type="family">Martins</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vivek</namePart>
<namePart type="family">Srikumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Bangkok, Thailand</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper, we propose a textless acoustic model with a self-supervised distillation strategy for noise-robust expressive speech-to-speech translation (S2ST).Recently proposed expressive S2ST systems have achieved impressive expressivity preservation performances by cascading unit-to-speech (U2S) generator to the speech-to-unit translation model. However, these systems are vulnerable to the presence of noise in input speech, which is an assumption in real-world translation scenarios. To address this limitation, we propose a U2S generator that incorporates a distillation with no label (DINO) self-supervised training strategy into it’s pretraining process.Because the proposed method captures noise-agnostic expressivity representation, it can generate qualified speech even in noisy environment.Objective and subjective evaluation results verified that the proposed method significantly improved the performance of the expressive S2ST system in noisy environments while maintaining competitive performance in clean environments.</abstract>
<identifier type="citekey">hwang-etal-2024-textless</identifier>
<identifier type="doi">10.18653/v1/2024.findings-acl.917</identifier>
<location>
<url>https://aclanthology.org/2024.findings-acl.917</url>
</location>
<part>
<date>2024-08</date>
<extent unit="page">
<start>15524</start>
<end>15541</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Textless Acoustic Model with Self-Supervised Distillation for Noise-Robust Expressive Speech-to-Speech Translation
%A Hwang, Min-Jae
%A Kulikov, Ilia
%A Peloquin, Benjamin
%A Gong, Hongyu
%A Chen, Peng-Jen
%A Lee, Ann
%Y Ku, Lun-Wei
%Y Martins, Andre
%Y Srikumar, Vivek
%S Findings of the Association for Computational Linguistics: ACL 2024
%D 2024
%8 August
%I Association for Computational Linguistics
%C Bangkok, Thailand
%F hwang-etal-2024-textless
%X In this paper, we propose a textless acoustic model with a self-supervised distillation strategy for noise-robust expressive speech-to-speech translation (S2ST).Recently proposed expressive S2ST systems have achieved impressive expressivity preservation performances by cascading unit-to-speech (U2S) generator to the speech-to-unit translation model. However, these systems are vulnerable to the presence of noise in input speech, which is an assumption in real-world translation scenarios. To address this limitation, we propose a U2S generator that incorporates a distillation with no label (DINO) self-supervised training strategy into it’s pretraining process.Because the proposed method captures noise-agnostic expressivity representation, it can generate qualified speech even in noisy environment.Objective and subjective evaluation results verified that the proposed method significantly improved the performance of the expressive S2ST system in noisy environments while maintaining competitive performance in clean environments.
%R 10.18653/v1/2024.findings-acl.917
%U https://aclanthology.org/2024.findings-acl.917
%U https://doi.org/10.18653/v1/2024.findings-acl.917
%P 15524-15541
Markdown (Informal)
[Textless Acoustic Model with Self-Supervised Distillation for Noise-Robust Expressive Speech-to-Speech Translation](https://aclanthology.org/2024.findings-acl.917) (Hwang et al., Findings 2024)
ACL