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Abstract

Recently, while large language models (LLMs)
have demonstrated impressive results, they still
suffer from hallucination, i.e., the generation of
false information. Model editing is the task of
fixing factual mistakes in LLMs; yet, most pre-
vious works treat it as a one-time task, paying
little attention to ever-emerging mistakes gener-
ated by LLMs. We address the task of sequen-
tial model editing (SME) that aims to rectify
mistakes continuously. A Dynamic Auxiliary
Fusion Network (DAFNet) is designed to en-
hance the semantic interaction among the fac-
tual knowledge within the entire sequence,
preventing catastrophic forgetting during the
editing process of multiple knowledge triples.
Specifically, (1) for semantic fusion within a
relation triple, we aggregate the intra-editing at-
tention flow into auto-regressive self-attention
with token-level granularity in LLMs. We fur-
ther leverage multi-layer diagonal inter-editing
attention flow to update the weighted repre-
sentations of the entire sequence-level granu-
larity. (2) Considering that auxiliary param-
eters are required to store the knowledge for
sequential editing, we construct a new dataset
named DAFSet, fulfilling recent, popular, long-
tail and robust properties to enhance the gener-
ality of sequential editing. Experiments show
DAFNet significantly outperforms strong base-
lines in single-turn and sequential editing. The
usage of DAFSet also consistently improves the
performance of other auxiliary network-based
methods in various scenarios 1.

1 Introduction

Transformer-based models, particularly LLMs (De-
vlin et al., 2019; Brown et al., 2020; Touvron et al.,

* T. Zhang, Q. Chen and D. Li contribute equally to this
work.

† C. Wang and X. He are co-corresponding authors.
1The code and pre-trained models will be available at

https://github.com/qizhou000/DAFNet

2023; Roumeliotis and Tselikas, 2023) have be-
come backbones of modern NLP and delivered
promising results in various downstream tasks (Li
et al., 2022; Zheng et al., 2022; Blevins et al., 2023;
Blinova et al., 2023). However, LLMs still pro-
duce undesirable outputs occasionally (Basta et al.,
2021; An et al., 2023). The cost of such mistakes
is non-negligible and exhibits an inclination to gen-
erate hallucinations (Shi et al., 2023; Tam et al.,
2023), resulting in seemingly plausible yet factu-
ally unsupported contents. To alleviate these prob-
lems, there has been growing interest in integrating
knowledge into LLMs through model editing (Cao
et al., 2021; Madaan et al., 2022; Meng et al., 2023).
It updates the knowledge stored in relevant parame-
ters in LLMs without fine-tuning the whole model.

In the literature, previous model editing meth-
ods2 can be divided into two categories, in-
cluding Single-turn Editing and Sequential
Editing. (1) Single-turn Editing edits one or
a batch of knowledge triples at a time via modifying
the original parameters of LLMs based on meta-
learning (Cao et al., 2021; Mitchell et al., 2022a)
and locate-then-edit methods (Hartvigsen et al.,
2022; Meng et al., 2022, 2023). These works strug-
gle to handle factual knowledge that is continuously
updated in real-world scenarios. (2) Sequential
Model Editing (SME) based approaches learn
the updated knowledge via adding extra modules
(Dong et al., 2022; Mitchell et al., 2022b; Huang
et al., 2023). The editing process of parameters is
not achieved through back-propagation, but instead
through weights independently calculated by extra
modules associated with each fact. However, these
methods do not take into account the effects of mu-
tual semantic influence between these sequentially
input facts. Another overlooked problem is that ex-
tra parameters are randomly initialized and can not

2“Model editing” and “knowledge editing” of LLMs share
the same meaning. Thus, we use both terms interchangeably.
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Figure 1: The comparison between different model editing scenarios for LLMs including single-turn and sequential
editing with T steps. The single-turn editing model only edits one fact into the LLM at a time. In the sequential
editing scenario, it requires to edit a series of facts continually (Best viewed in color).

provide a good starting point to cover the editing
properties (Yao et al., 2023) of the testing data.3 As
shown in Figure 1, previous model editing methods
edit the sequential facts independently similar to
single-turn editing in SME scenario. Thus, subse-
quent LLMs need to wait for previous LLMs to
finish editing before they can be edited.

In this paper, we propose a dynamic auxiliary
fusion network named DAFNet to explicitly cap-
ture the correlation among the input sequential
triples for the update of knowledgeable parame-
ters in LLMs. In addition, an auxiliary dataset
named DAFSet for learning the meta-edit weights
is constructed to compensate for the learning gap
between extra cold-start parameters and testing
properties in the training stage. To our knowledge,
this is currently the first comprehensive training set
in model editing4. Specifically, we introduce the
above two main contributions as follows:
DAFNet: Unlike previous methods that update
parameters independently, we aggregate the rep-
resentations of facts into intra- and inter-editing
auto-regressive flows. The intra-editing attention
flow gathers each token-level fact representation
auto-repressively via assigning different seman-
tic weights to tokens, decomposing the LLMs’
high-dimensional outputs to two low-rank rep-
resentations as editing signal. The inter-editing
attention flow obtains interactive representations
of sentence-level sequential inputs through multi-
layer auto-regressive iterative diagonal attention
between facts. Finally, our designed loss based on
the desired editing properties is leveraged to train
the auxiliary network.
DAFSet: In previous works (Cao et al., 2021;

3The post-edit model should satisfy the following proper-
ties: reliability, generality and locality (Yao et al., 2023).

4Previous public datasets are used for testing editing ability
of LLMs directly (Levy et al., 2017; Meng et al., 2022, 2023).

Mitchell et al., 2022a; Tan et al., 2023), weights of
the original auxiliary network are usually randomly
initialized and then combined with LLMs in multi-
task training. Therefore, the lack of training set for
existing editing methods causes the inconsistency
with the distributional characteristics of the final
editing target solely by editing the facts (Bickel
et al., 2007; Cai et al., 2023). The goal of con-
structing our auxiliary dataset is to learn auxiliary
meta-weights to compensate for the bias caused by
random weight distributions. DAFSet is designed
to include four different properties (i.e., Recency,
Popularity, Long-tailness and Robustness)
based on the test editing properties. We collect
data for these properties via subject frequency and
output likelihood in various domains to make the
learned auxiliary weights equipped with more gen-
eralized editing abilities.

2 Related Work

In this section, we briefly overview the related
works of model editing for LLMs in four aspects.
Adding Extra Modules: This method stores all
edit examples in memory and uses a retriever to
extract the most relevant facts for each new input,
guiding the model in generating the edited fact.
SERAC (Mitchell et al., 2022b) adopts a distinct
counterfactual model while leaving the original
model unchanged. Other methods edit LLMs by
prompting the model with the edited fact and re-
trieved edit demonstrations from the memory such
as MemPrompt (Madaan et al., 2022), IKE (Zheng
et al., 2023) and MeLLo (Zhong et al., 2023).
Additional Parameters: This paradigm introduces
additional trainable parameters in LLMs, which
are trained using a modified knowledge dataset
while keeping the original parameters unchanged.
T-Patcher (Huang et al., 2023) and CaliNET (Dong
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Figure 2: Statistical results of the collected DAFSet.

et al., 2022) integrate a new single neuron (patch)
for each error in the last layer of the FFN. GRACE
(Hartvigsen et al., 2022) maintains a discrete code-
book module for the middle layer of the LLMs.
Locate-Then-Edit: The initial step involves identi-
fying parameters that correspond to specific knowl-
edge and then modifying them through direct up-
dates to the target parameters. The work (Dai
et al., 2022) introduces a method for identifying
the specific “knowledge neuron” (a key-value pair
in the FFN matrix) that represents the knowledge,
and subsequently updating these neurons. ROME
(Meng et al., 2022) applies causal mediation analy-
sis to locate the editing area. MEMIT (Meng et al.,
2023) expands on the setup of ROME, realizing the
situation of synchronous editing for multiple cases.
Meta-learning: It utilizes a hyper-network to ac-
quire the essential updated weights for editing.
Knowledge Editor (KE) (Cao et al., 2021) utilizes
a hyper-network to predict the weight updated for
each data point. MEND (Mitchell et al., 2022a)
learns to edit LLMs fastly improving the perfor-
mance via employing a low-rank decomposition
of gradients as the input. MALMEN (Tan et al.,
2023) accommodates editing multiple facts with
limited memory budgets via separating the com-
putation on the hyper-network and LM enabling
arbitrary batch size on both neural networks. Note
that, all the above editing methods focus on single-
turn edits with one or a batch of facts, not taking
into account semantic connections among the facts
in a sequential order.

3 Preliminaries of SME

In this section, we provide a brief introduction to
SME for LLMs. A model f ∈ F can be defined as
a function f : X 7→ Y that maps an input x to its

prediction f(x). Then, given a model f and an edit
example pair (xe, ye) that f(xe) ̸= ye, a model
editor (ME) outputs a post-edit model f ′.

ME : F× X× Y 7→ F (1)

f ′ = ME(f, xe, ye) (2)

Given a sequence of facts (xe1 , ye1), ..., (xeT , yeT )
and an initial model f , a model editor ME needs to
conduct edits successively when the model makes
undesirable output:

ft = ME(ft−1, xet , yet) , t = 1, ..., T (3)

where assume f0 = f . Every edit in SME should
satisfy the following three properties:

Reliability A reliable edit holds when the post-
edit model ft gives the target answer for the every
cases (xeτ , yeτ ), τ ≤ t to be edited. The reliability
is measured as the average accuracy on the edit
cases:

E(xe,ye)∼{(xeτ ,yeτ )}tτ=1
I
{
argmax

y
ft (y | xe) = ye

}

(4)

Generality The post-edit model ft should also
satisfy the relevant neighbours N(xeτ , yeτ ), τ ≤
t. It is evaluated by the average accuracy of ft
on examples drawn uniformly from the relevant
neighborhood:

E(xe,ye)∼{(xeτ ,yeτ )}tτ=1
E(xg ,yg)∼N(xe,ye)G(xg, yg)

s.t. G(xg, yg) = I
{
argmax

y
ft (y | xg) = yg

}

(5)

Locality Editing should be implemented locally,
which means the post-edit model ft should not
change the output of irrelevant examples in out-
of-scope O(xeτ , yeτ ), τ ≤ t. Hence, the local-
ity is evaluated by the rate at which the post-edit
model ft’s predictions are unchanged as the pre-
edit model f :

E(xe,ye)∼{(xeτ ,yeτ )}tτ=1
E(xl,yl)∼O(xe,ye) L(xl, yl)

s.t. L(xl, yl) = I {ft (y | xl) = f (y | xl)}
(6)

4 The DAFSet Dataset

Due to the lack of training editing sets for various
meta-learning based methods, we propose DAFSet
to provide the initial editing ability of LLMs. It
enables the model to better emerge with knowledge
generalization ability (Yao et al., 2023; Cohen et al.,
2023) in the test editing stage with four properties.
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Figure 3: Model overview. Our DAFNet model mainly includes three steps: Gradient Editing Signal
Acquisition, Dynamic Auxiliary Fusion and Editing Training. Particularly, Dynamic Auxiliary Fusion
is designed with intra and inter-editing attention flows to capture the interaction between editing facts.

4.1 Data Collection

We leverage Wikidata5, a knowledge graph (KG)
with relation triples represented as (eh, r, et),
where eh is the head entity, r is the relation predi-
cate and et is the tail entity. The specific collection
steps for these properties are as follows.
Recency: We gather triplets that have been recently
added to Wikidata. The head eh and tail entities
et are often associated with numerous redundant
triples. To address this, we only collect relation
triples associated with a set of 48 common relation
predicates. We use the off-the-shelf tool6 to search
the triples where each triple has been modified in
the last 7 days. Then, we use templates to map the
triples to construct the data samples, with templates
shown in Appendix C.1.
Popularity: We collect triples corresponding to
popular entities, where head entities are from top-
viewed pages in Wikipedia. Next, we perform
multi-hop selection of tail entities within 2-hops.
Finally, we also leverage the above templates to
construct the training samples.
Long-tailness: LLMs often lack sufficient learn-
ing of low-frequency data, and thus editing effect
on such knowledge is poor. We identify and con-

5https://en.wikipedia.org/wiki/Wikidata:
Main_Page

6https://pypi.org/project/qwikidata/0.2.0/

struct training data related to long-tail knowledge
from three perspectives: (1) Frequency: we first
collect head entities and count their corresponding
frequencies in Wikidata. Then, we set a thresh-
old to select approximately 80% of entities with
low frequencies. (2) In-out KG Degree: we cal-
culate the connectivity of the corresponding head
entities in KG, and then set the threshold to select
low-frequency entities. (3) Likelihood: unlike
the two intuitive statistics, our approach to iden-
tify long-tail data focuses on the semantics of the
model’s output. Specifically, we input the sentence
related to the head entity into LLMs and evaluate
the model’s comprehension of the entity by exam-
ining the likelihood probability of its position7.
Robustness: We employ three robustness proper-
ties (Omar et al., 2022) for constructing the train-
ing data, including text length, context, and emo-
tions. To control the length of input prompts, we
utilize the “loc” and “rephrase” fields of each edited
data (Levy et al., 2017; Mitchell et al., 2022a; Co-
hen et al., 2023). Templates are used for training
sentence construction, specifically for context and
emotions, to prompt the LLMs for generation. To
further enhance the robustness, we generate two
opposite data attributes for each training data point,
such as “positive” and “negative” in emotions.

7Detailed construction process is shown in Appendix C.1.
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To learn auxiliary parameters and provide an
initial meta-weight for editing, the data labeled
as “recent” and “popular” is predominantly stable
and frequently used to insert factual information.
This leads to improved reliability and locality of
test editing. In terms of the generality metric for
test editing, the “long-tailness” and “robustness”
categories can enhance the meta-weights, consid-
ering the sparsity of editing data. Overall, there
are a total of 30,000 final constructed data samples
for long-tailness, 13,000 for robustness, 30,000 for
popularity, and 30,000 for recency.

4.2 Statistical Analysis on Our Dataset
We further conduct analysis on two complicated
properties, i.e., long-tailness and robustness. As
shown in Figure 2, we visualize the statistical re-
sults of our training data. The first subgraph on
the left shows the frequency of head entities. We
can see that the lower the frequency, the greater the
proportion such as the sum of occurrence 1 and 2
has exceeded 80%. The second subgraph shows the
proportion of head entities with different in-out kG’
degrees. We see that most of the data has neigh-
boring edges with high degrees and thus we select
long-tail triples with low in-out degrees. The third
subgraph shows the output likelihood probability
of target entities in editing sentences. We select
data samples with low log likelihood (i.e., < −1.5)
output corresponding to a large proportion as our
long-tail training sentences. In the fourth subgraph,
given that robustness needs to be applicable across
various domains, we analyze the distribution of
domains in the generated training data for robust
editing.

5 The DAFNet Model

In this section, we formally introduce our DAFNet
model, with an overall architecture shown in Fig-
ure 3.

In DAFNet, to obtain rich semantic representa-
tion for each knowledge triple, we perform a token-
level granularity fusion modeling by intra-editing
attention flow in Section 5.2. Next, we leverage
the auto-regressive modeling process to naturally
capture the semantic interaction among sequential
facts by inter-editing attention flow in Section 5.3.

5.1 Editing Signal Acquisition
In auxiliary network-based methods, we need to
first determine the editing position before perform-
ing editing. We heuristically select linear layers

at the last few layers of LLMs (Meng et al., 2022;
Mitchell et al., 2022a). Then, we obtain the editing
signal input to the auxiliary network by decompos-
ing gradients of the editing weight matrix.

Specifically, the gradient of the editing loss w.r.t.
the weight matrix (to be edited) of a certain linear
layer W in a language model f is a summation of
B rank-1 matrix, where B is the token count of an
editing sample (xe, ye). Formally, we have

∇WLedit(xe, ye) =
B∑

i=1

u(i)⊤ · δ(i)

s.t. Ledit(xe, ye) = − log f(ye|xe)
(7)

where u(i) ∈ R1×din , δ(i) ∈ R1×dout are the in-
put and the output gradient of the linear layer at
the ith token position, respectively. Thus, the edit-
ing signal of weight W for editing sample (xe, ye)
is defined as h = [u; δ] ∈ RB×(din+dout). Note
that editing signals w.r.t. different W s are indepen-
dently fed into auxiliary networks.

5.2 Intra-editing Attention Flow

In SME, the semantic modeling among facts has
a significant influence on the overall performance.
We first separately fuse the edited signal after di-
mensional reduction w.r.t. each token, and then
aggregate the fused edited sequence fact into auto-
regressive self-attention to further enhance the in-
teraction between fact tokens.

Let the editing signal of the tth editing fact as
h0t ∈ RBt×(din+dout), which is the input to the first
intra-editing attention module. Assume the input
to the kth layer is hk−1

t . For the sake of simplicity,
the layer symbol k is omitted below in this subsec-
tion. We obtain the token attention score αi via
allocating the representation importance. The ag-
gregated fact representations ĥt ∈ Rdin+dout fuse
the tokens’ representations together with the to-
ken attention score. Specifically, we first transform
the editing signal output into fused representation
h′t ∈ RB×(din+dout) through a residual module as:

h′t = (σ(htW1 + b1))W2 + b2 (8)

where W1 ∈ R(din+dout)×ddown and W2 ∈
Rddown×(din+dout) are the linear layer weights. σ is
ReLU function (Agarap, 2018). Then, we calculate
the token attention weight α ∈ RBt×1 using the
transformed representation h′t. The fused editing
representation ĥt is learned from the token-span
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representation h′t as follows:

α = φ(σ(h′tW3 + b3)W4 + b4), ĥt = α⊗ h′t
(9)

h̄t =

Bt∑

i=1

ĥ
(i)
t , ĥ′t = ĥt + ht (10)

where W3 ∈ R(din+dout)×ddown , W4 ∈ Rddown×1.
φ is the softmax non-linear activation function. ⊗
is the element-wise multiplication. Finally, each
fused fact representation h̄t ∈ R1×(din+dout) is ag-
gregated by the token importance. After obtain-
ing the fused representations of all facts in the
sequence, we transform the fused representations
into the auto-regressive model for iteration learn-
ing to enhance the semantic information modeling
between the fused facts:

h̄′1, h̄
′
2, ..., h̄

′
T = fintra(h̄1, h̄2, ..., h̄T ) (11)

h̃t = ĥ′t ⊕ h̄′t, t = 1, 2, ..., T (12)

where fintra is the auto-regressive self-attention
layer to fuse the facts sequentially. h̄′t ∈
R1×(din+dout) is the ith auto-regressive fact rep-
resentation. T is the number of facts for sequential
editing modeling. ⊕ is the element-wise addition.
h̃t ∈ RBt×(din+dout) is the final intra-editing atten-
tion fusion representation. The intra-editing atten-
tion flow module is stacked by K layers. Finally,
h̃t is fed as the input into the next module.

5.3 Inter-editing Attention Flow

Considering the effect of enhancing the interaction
between facts in a sequence on updating iteration
weights, we use the multi-layer auto-regressive di-
agonal attention to fuse the previous edited fact rep-
resentations within a sequence. For each achieved
editing fact weight score, we aggregate the last
layer editing fusion weight representation h̃t, t =
1, ..., T to update the original LLMs.

Specifically, we use another multi-layer auto-
regressive self-attention layer to learn the relation-
ship of facts for sequential editing modeling:

βk = diag
(
fk
sa

(
h̄1, h̄2, . . . , h̄T

))
, k = 1, ...,K

(13)
where fk

sa is the function to obtain the auto-
regressive self-attention matrix at kth layer.
diag(∗) is the function to achieve diagonal values
of a matrix. βk ∈ RT . Then, we aggregate the
diagonal results of K layers into the averaged facts’

importance: β̄ = 1
K

∑K
k=1 β

k where β̄ ∈ RT . Fi-
nally, the inter-editing fusion representations of
each fact is h̃Kt ∈ RBt×(din+dout) at last Kth layer.
We recover it to the original LLM’s weight shape
to obtain updated weights of the T sequential facts
and then sum them weighted by β̄:

[ũt; δ̃t] = h̃Kt , ∆Wt =
ũ⊤t ⊗ δ̃t

Bt
(14)

∆W̃T =

T∑

t=1

(
T∏

τ=t+1

1− β̄τ

)
β̄t ·∆Wt (15)

where ũt ∈ RB×din and δ̃t ∈ RB×dout are the
decomposed weight representations, respectively.
∆W̃T ∈ Rdin×dout aggregates all the token weight
representations together to achieve the fact updated
weights’ representation. Finally, the process of se-
quential editing by T facts can be formulated as:
fT = Γ(fT−1,∆W̃T ) where Γ indicates adding
∆W̃T to the corresponding matrix to be edited. Al-
gorithm 2 in the appendix describes the implemen-
tation of how DAFNet performs each edit one by
one in sequential editing. Next we formulate the
losses of fT to model T edits into DAFNet.

5.4 Sequential Editing Training
Our auxiliary network considers three editing prop-
erties including reliability, generality and locality.
Hence, the total loss with a T sequential editing
facts is defined as follows:

Lrel(fT ) =
T∑

t=1

− log fT (y
(t)
e |x(t)e ) (16)

Lgen(fT ) =
T∑

t=1

N
(t)
g∑

j=1

− log fT (y
(t)
gj |x(t)gj ) (17)

Lloc(f, fT ) =
T∑

t=1

N
(t)
l∑

j=1

KL(f(x
(t)
lj
)||fT (x(t)lj

))

(18)

Ltotal = Lrel(fT ) + Lgen(fT ) + Lloc(f, fT )
(19)

where (x(t)e , y
(t)
e ) is the reliability sample of the tth

fact, i.e., the editing sample itself. (x(t)gj , y
(t)
gj ) and

x
(t)
lj

are the jth generality and locality sample of

tth fact, respectively. N (t)
g and N

(t)
l are the corre-

sponding loss sample number of tth fact. KL is the
Kullback-Leibler Divergence function. Algorithm
1 describes the training process of DAFNet.
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Backbone # Editing Editor ZSRE CounterFact RIPE
Rel. Gen. Loc. Avg. Rel. Gen. Loc. Avg. Rel. Gen. Loc. Avg.

GPT-J
(6B)

10

FT 10.3 10.8 0.3 7.1(±0.1) 56.2 24.2 2.1 27.5(±0.5) 7.8 4.3 1.4 4.5(±0.1)
TP 85.2 78.3 77.2 80.2(±1.2) 96.0 54.3 3.6 51.3(±1.2) 80.8 56.7 32.4 56.6(±1.7)
KN 1.0 1.1 1.9 1.3(±0.0) 1.2 0.7 2.3 1.4(±0.0) 0.1 0.3 0.2 0.2(±0.0)

ROME 81.1 78.8 94.6 84.8(±1.7) 95.9 59.4 90.0 81.8(±1.9) 98.2 41.9 39.1 59.7(±0.8)
MEMIT 82.1 76.0 94.7 84.2(±2.0) 96.0 38.1 95.5 76.5(±2.5) 98.5 37.7 47.3 61.2(±1.2)
GRACE 81.8 78.4 94.5 84.9(±1.6) 95.2 60.3 91.2 82.2(±1.6) 98.0 40.9 38.7 59.2(±0.4)

KE♠ 0.0 0.0 0.7 0.3(±0.0) 0.0 0.0 0.2 0.1(±0.0) 0.0 0.0 0.1 0.0(±0.0)

MEND♠ 0.4 0.4 0.5 0.4(±0.0) 0.6 0.2 0.2 0.3(±0.0) 0.0 0.0 0.0 0.0(±0.0)

MALMEN♠ 99.1 95.3 92.8 95.8(±1.6) 90.0 32.9 77.1 66.7(±2.2) 89.7 52.1 51.3 64.4(±1.8)

DAFNet♠ 99.6 97.6 94.8 97.3(±1.5) 96.2 65.8 85.2 82.4(±1.6) 98.7 57.6 57.6 71.3(±1.6)

100

FT 2.2 1.9 0.3 1.4(±0.0) 35.9 10.8 1.6 16.1(±0.3) 5.7 1.6 0.1 2.5(±0.1)
TP 68.5 59.3 52.8 60.2(±1.3) 76.0 31.9 2.2 36.7(±0.8) 64.2 36.4 23.7 41.4(±1.0)
KN 0.6 0.4 0.8 0.6(±0.0) 0.2 0.5 0.8 0.5(±0.0) 0.0 0.0 0.0 0.0(±0.0)

ROME 77.4 75.6 85.0 79.3(±2.2) 78.8 38.4 52.2 56.5(±1.0) 95.7 36.0 32.2 54.6(±1.0)
MEMIT 77.9 74.1 90.2 80.7(±2.5) 94.1 40.2 85.1 73.1(±1.3) 86.6 33.3 33.5 51.1(±1.3)
GRACE 77.8 74.6 85.9 79.4(±2.0) 76.3 39.2 51.6 55.7(±0.8) 94.8 36.7 31.5 54.3(±0.8)

KE♠ 0.0 0.0 0.7 0.2(±0.0) 0.0 0.0 0.1 0.0(±0.0) 0.0 0.0 0.0 0.0(±0.0)

MEND♠ 0.2 0.1 0.0 0.1(±0.0) 0.2 0.2 0.0 0.1(±0.0) 0.0 0.0 0.1 0.0(±0.0)

MALMEN♠ 50.6 40.7 59.3 50.2(±0.8) 29.7 31.8 68.0 43.2(±0.4) 39.9 27.8 53.2 40.3(±0.8)

DAFNet♠ 89.5 76.5 90.2 85.4(±1.6) 81.8 40.3 87.3 69.8(±1.5) 78.5 38.9 64.4 60.6(±1.5)

LLAMA2
(7B)

10

FT 38.3 37.4 57.9 44.5(±0.9) 19.3 13.6 22.3 18.4(±0.2) 30.5 21.8 28.0 26.8(±0.7)
TP 57.3 52.4 36.7 48.8(±1.1) 85.9 58.6 21.5 55.4(±0.9) 63.4 41.2 30.4 45.0(±0.8)
KN 0.0 0.0 0.7 0.2(±0.0) 0.8 0.7 4.4 1.9(±0.1) 0.0 0.0 0.3 0.1(±0.0)

ROME 41.1 39.6 93.0 57.9(±1.4) 38.6 24.9 83.6 49.1(±1.0) 33.4 20.3 29.5 27.7(±0.6)
MEMIT 24.3 24.1 51.1 33.2(±0.9) 18.6 15.4 62.9 32.3(±0.7) 18.4 13.6 10.1 14.1(±0.3)
GRACE 42.5 39.7 92.5 58.2(±1.5) 38.1 24.5 82.6 48.4(±0.8) 31.4 20.8 29.1 27.1(±0.5)

KE♠ 0.5 0.5 1.4 0.8(±0.0) 0.0 0.0 0.2 0.1(±0.0) 0.1 0.2 1.2 0.5(±0.0)

MEND♠ 0.3 0.3 3.3 1.3(±0.0) 0.0 0.0 0.1 0.0(±0.0) 0.3 0.2 1.6 0.7(±0.0)

MALMEN♠ 96.2 88.3 92.6 92.4(±1.8) 79.5 45.8 36.2 53.8(±1.1) 84.7 47.5 70.9 67.7(±2.3)

DAFNet♠ 97.2 92.0 93.3 94.1(±1.2) 87.3 59.6 85.9 77.6(±1.4) 88.8 56.4 83.2 76.1(±1.9)

100

FT 7.6 7.0 4.1 6.3(±0.2) 1.0 0.2 3.6 1.6(±0.0) 1.8 0.8 1.0 1.2(±0.1)
TP 46.1 41.2 9.7 32.3(±0.5) 70.0 40.8 4.5 38.4(±0.8) 44.7 28.9 11.6 28.4(±0.7)
KN 0.0 0.0 0.0 0.0(±0.0) 0.0 0.0 0.0 0.0(±0.0) 0.0 0.0 0.0 0.0(±0.0)

ROME 9.6 10.5 22.0 14.0(±0.4) 33.6 22.1 68.0 41.2(±1.2) 5.9 4.2 5.2 5.1(±0.1)
MEMIT 0.7 0.7 0.9 0.8(±0.0) 0.6 0.6 3.7 1.6(±0.0) 0.2 0.5 0.3 0.3(±0.0)
GRACE 9.3 8.5 23.0 13.6(±0.5) 31.6 21.1 69.0 40.6(±1.0) 5.7 4.9 5.1 5.2(±0.2)

KE♠ 0.0 0.0 0.1 0.0(±0.0) 0.0 0.0 0.9 0.3(±0.0) 0.1 0.1 0.0 0.1(±0.0)

MEND♠ 0.0 0.0 0.1 0.0(±0.0) 0.0 0.0 0.1 0.0(±0.0) 0.0 0.0 0.0 0.0(±0.0)

MALMEN♠ 54.3 51.8 65.3 57.1(±0.9) 48.1 22.4 47.2 39.2(±0.6) 41.6 31.7 38.5 37.3(±0.7)

DAFNet♠ 84.7 72.0 93.6 83.5(±1.4) 72.8 41.5 76.4 63.6(±1.1) 57.7 41.2 87.5 62.2(±1.7)

Table 1: The overall results of DAFNet and baselines in sequential edits. “# Editing” indicates the length of
sequential editing. “Rel.”, “Gen.” and “Loc.” are the reliable, generality and locality editing metrics, respectively.
The t-tests demonstrate the improvements of DAFNet are statistically significant with p < 0.05 level. The editors
marked with ♠ are methods requiring training before editing, which are all augmented with DAFSet in this table.

Backbone # Editing Editor ZSRE CounterFact RIPE
Rel. Gen. Loc. Avg. Rel. Gen. Loc. Avg. Rel. Gen. Loc. Avg.

LLAMA2
(7B) 1

FT 52.8 53.2 92.1 66.0(±0.3) 34.1 25.4 49.8 36.4(±0.5) 49.2 33.7 71.0 51.3(±0.5)
TP 86.4 84.0 86.4 85.6(±1.4) 91.4 68.6 39.0 66.3(±0.3) 77.0 55.1 51.3 61.1(±0.5)
KN 20.2 20.8 52.4 31.1(±0.1) 12.3 9.2 67.9 29.8(±0.4) 21.8 15.4 55.4 30.9(±0.5)

ROME 53.5 51.6 94.0 66.4(±0.7) 41.1 21.8 91.8 51.6(±0.8) 48.3 27.1 42.5 39.3(±0.9)
MEMIT 49.7 49.4 91.9 63.7(±0.5) 45.4 29.3 92.9 55.9(±0.4) 58.4 29.6 38.7 42.2(±0.3)
GRACE 52.3 50.8 95.7 66.3(±0.9) 44.6 28.5 93.4 55.5(±0.5) 56.7 30.6 41.1 42.8(±0.2)

KE♠ 12.9 8.6 90.6 37.4(±0.2) 8.0 2.9 90.3 33.7(±0.4) 9.9 4.4 42.8 19.0(±0.2)

MEND♠ 73.8 70.3 66.1 70.1(±0.5) 81.1 67.2 77.1 75.1(±0.3) 66.4 29.4 29.7 41.8(±0.5)

MALMEN♠ 66.4 67.8 43.7 59.3(±0.5) 52.4 42.3 36.6 43.8(±0.6) 51.5 33.8 20.5 35.3(±0.9)

DAFNet♠ 97.5 97.4 94.9 96.6(±1.5) 92.0 86.7 94.3 91.0(±0.8) 97.8 66.4 72.2 78.8(±0.7)

Table 2: The overall results in single-turn editing.

6 Experiments

In this section, we extensively evaluate the pro-
posed method and compare it with strong baselines.
Due to space limitation, we describe experimental
settings including datasets, baselines and imple-
mentation details in Appendix A.

6.1 General Results of Sequential Editing
We first evaluate our DAFNet model over ZSRE
(Levy et al., 2017), CounterFact (CF) (Meng et al.,
2022) and RIPE datasets (Cohen et al., 2023),
which are editing benchmarks. We compare the
editing performance with 10, 100 and 1000 edits.8

8Due to the space limitations, the experimental results of
single-turn and 1000 edits in Appendix C.3
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Figure 4: The influence of different properties in DAFSet for editing results. “O”, “LT”, “Re”, “P” and “Ro” indicate
original, long-tailness, recency, popularity and robustness data, respectively.

Table 1 shows the overall performance. We can
observe that: (1) Extra-module-based and meta-
learning methods show poor results in all metrics.
We conjecture that meta-learning methods do not
consider the sequential fusion modeling of facts.
These methods only focus on single-turn editing
with one fact. KN (Dai et al., 2022) achieves edit-
ing by amplifying the activation of located neurons,
and thus multiple facts can lead to excessive ampli-
fication of activation. (2) Locate-then-edit methods
in sequential editing scenario show normal perfor-
mance. The reason may be that multiple back-
propagation gradient signals can partially capture
the inherent connections between the correspond-
ing sequences. (3) DAFNet achieves significant im-
provement and the vast majority of results are the
best, which proves the effectiveness of our method.

We further evaluate our DAFNet in single-turn
editing scenario shown in Table 2 with LLAMA2
(7B) backbone. Our model also achieves the com-
petitive performance over the specifically designed
baselines for single-turn model editing.

6.2 Detailed Analysis

Influence of Properties in DAFSet. We discuss
different properties of DAFSet. We choose typi-
cal meta-learning methods such as KE (Cao et al.,
2021) and MEND (Mitchell et al., 2022a) as base-
lines to compare with DAFNet. Other baselines
do not need extra data to learn random initialized
parameters. We choose the entity-centric ZSRE
(Levy et al., 2017) and the relation-centric dataset
RIPE (Cohen et al., 2023) as our testing sets.

Based on Figure 4, we can see that (1) For
Reliability and Generality, all training data
with each property is beneficial for performance

improvement on the testing data. The KE model
shows the performance on individual and combined
data is poor. We suggest that the training of KE is
based on a fixed batch of editing and modeling on
the original model and thus the auxiliary network
cannot adapt to new models generated by more
than one edit. As the number of edits increases,
the performance of these two indicators gradually
decreases due to the increase in modeling com-
plexity. (2) From the Locality results, we can
also observe that the model performance can be
further improved by adding our data to learn the
meta weights. The locality results increase as the
number of model edits increases.
Influence of Attention Flows. In intra- and inter-
attention flows, we use the auto-regressive attention
mapping to all previous token and fact granularities.
Considering that different window sizes may have
different impacts on semantic interaction, we con-
trol different window sizes to test the model during
editing. For the inter-attention flow, we need to
explore whether the model really pays attention to
the previous editing data during the sequence edit-
ing process. Specifically, we evaluate our DAFNet
model on ZSRE using LLAMA2.

From Figure 5, we explore the window size in-
fluence of intra-editing attention flow. We can see
that as the number of attention modeling window
size increases, the results of these two indicators
steadily improve. The reason is that these two edit-
ing metrics are highly relevant to the data of the
test edited facts and thus the performance can be
greatly improved based on the generality of the
data. From Figure 6, the multi-layer inter-editing
attention flow shows the self-attention importance
with 1,000 edits. We can see that the importance
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Data intra Inter 10 100
R G L R G L

ZSRE

98.5 95.7 93.5 81.7 68.7 89.9
✓ 99.5 97.2 93.7 88.7 75.1 90.1

✓ 99.2 96.5 93.8 83.5 71.3 90.1
✓ ✓ 99.8 98.0 94.3 90.1 76.8 90.3

RIPE

80.7 44.6 45.9 54.7 29.1 45.5
✓ 94.0 56.2 55.8 70.5 37.3 60.5

✓ 82.6 47.8 48.7 58.1 31.7 52.3
✓ ✓ 99.2 59.8 58.6 76.3 40.6 64.1

Table 3: Ablation study for GPT-J on ZSRE and RIPE.
“R, G, L” means the three test editing metrics.

of semantic modeling for each interactive sentence
is the greatest, which is consistent with the self-
attention mechanism. With the increase of editing
interactions, we can see that the data distribution
of self-attention becomes more uniform, and the
model can better focus on previously edited data.

6.3 Ablation Study
To assess the impact of intra- and inter-editing at-
tention flows, we conduct an ablation study where
we remove each module. This study demonstrates
the performance on ZSRE (Yao et al., 2023) and
RIPE (Cohen et al., 2023) using GPT-J. From Table
3, when the intra-editing attention flow module is
removed, the editing performance of LLMs deteri-
orates rapidly. The results suffer when the dynamic
token modeling process is removed, as it hampers
the effective transfer of previously edited seman-
tic memory to the editing of the next token in the
facts. When we remove two main modules simul-
taneously, our model degenerates to only use the
autoregressive attention modeling to perform the in-
put gradient signal. Hence, it is easier to capture the
semantic connections between sequentially edited
data than other meta learning-based methods.

7 Conclusion

In this paper, we propose a dynamic auxiliary fu-
sion model (DAFNet) for sequential editing, in-
cluding the intra-editing and inter-editing attention
flow modules. To obtain better meta weights for
updating LLMs’ original weights in the auxiliary
network, we further propose the DAFSet dataset to
enhance the editing ability of LLMs. Experimental
results show that our model achieves state-of-the-
art results over the strong baselines.

Limitations

For DAFSet, the raw data we currently use only
contains factual knowledge from the Wiki. There-
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Figure 5: The window size influence of intra-editing
attention flow.

(1) (2) (3) (4) (5) (6) (7)

(1) 
(2) 
(3) 
(4) 
(5) 
(6) 
(7) 

1.00 0.00 0.00 0.00 0.00 0.00 0.00
0.19 0.81 0.00 0.00 0.00 0.00 0.00
0.13 0.14 0.73 0.00 0.00 0.00 0.00
0.09 0.10 0.11 0.70 0.00 0.00 0.00
0.12 0.09 0.12 0.10 0.57 0.00 0.00
0.08 0.05 0.08 0.10 0.14 0.54 0.00
0.11 0.06 0.13 0.08 0.07 0.10 0.45

(1) What language is Le Vif/L'Express in?  English
(2) The nationality of Lucie Lucas was what?  Italian
(3) What city is WTCB located?  Melbourne
(4) What was the name of the architect who worked on High Hollow?  HNTB
(5) The production company for Drawing Flies was what?  Pixar
(6) What is the universe that Veronica Cale exists in?  Stargate
(7) What was the record label of Mata Leão?  Sony Music Entertainment

0.0

0.2

0.4

0.6

0.8

1.0

Figure 6: The inter-editing attention flow scores of 1000
sequential edits.

fore, in the future, we will consider building a more
widely distributed training set on other types of
raw data. For DAFNet, due to the need for train-
ing, the preparation work before editing is more
tedious and time-consuming compared to locate-
then-editing based methods. In addition, due to
limitations in machine resources, our model has
only been tested at a parameter scale of around 10B.
If there are more resources, we can experimentally
demonstrate our results on a larger parameter scale.
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A Experimental Settings

A.1 Training Data
Following Yao et al. (2023), we use the ZSRE train-
ing data containing 162555 entries, the CF training
data containing 10000 entries, and our proposed
enhanced dataset DAFSet to train meta-learning

based models, including KE (Cao et al., 2021),
MEND (Mitchell et al., 2022a), and our DAFNet
model.

A.2 Evaluation Data
ZSRE (Levy et al., 2017): It uses BART (Lewis
et al., 2020) to answer questions and manually fil-
tering, where each piece of data contains an editing
sample, rephrased counterpart and an irrelevant
sample corresponding to the reliability, generality
and locality indicators, respectively. Inspired by
(Yao et al., 2023), we divide it into a training set
and a testing set with 162555 and 19009 entries.
CF (Meng et al., 2022): The characteristic is that
the facts to be edited are all false facts. Hence, the
probability of the model answering correctly before
editing is low, thereby increasing the difficulty of
editing evaluation. Similar to ZSRE, each data
contains an editing sample, rephrased data and an
irrelevant sample. Following (Yao et al., 2023),
both the training and testing sets contain 10000
entries.
RIPE (Cohen et al., 2023): It finely divides the
generality and locality into multiple parts. The gen-
erality includes logical generalization, combination
I, combination II, and subject aliasing (Cohen et al.,
2023). The locality includes forgetfulness and re-
lation specificity. It is also an dataset editing false
fact like CF, coupled with its fine-grained evalua-
tion making it a difficult and comprehensive dataset.
After pre-processing, a total of 4388 entries are col-
lected.

A.3 Baselines
In this work, besides using fine-tuning as the basic
baseline, we mainly compare our DAFNet with
three types of editing methods:
Adding Additional Parameters: T-Patcher
(Huang et al., 2023) attaches and trains additional
neurons in the FFN of the last layer of the model
to be edited. GRACE (Hartvigsen et al., 2022) pro-
poses a General Retrieval Adapters for Continuous
Editing (GRACE), which maintains a dictionary
like structure to construct new mappings for poten-
tial representations that need to be modified.
Locate-then-Edit: (1) KN (Dai et al., 2022) uses
an integral gradient-based method to locate neurons
in FFN, achieving editing by amplifying the activa-
tion of the located neurons. (2) ROME (Meng et al.,
2022) first uses causal mediation analysis to locate
the layer that has the greatest impact on the editing
sample. They propose Rank One Model Editing
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(ROME) to modify the FFN weight of the located
layer. (3) MEMIT (Meng et al., 2023) expands the
editing scope to multiple layers based on ROME,
which improves editing performance and supports
batch editing.
Meta learning-Based: (1) KE (Cao et al., 2021)
trains a bidirectional LSTM auxiliary network to
predict weight updates of the editing samples. (2)
MEND (Mitchell et al., 2022a) trains an MLP to
transform the low-rank decomposition of the gradi-
ents of the model to be edited with respect to the
editing samples, and updates the model with the
transformed gradients to achieve editing.

We conduct a comprehensive comparison includ-
ing the methods with additional or without addi-
tional data to train the auxiliary network. Some
methods require additional data, while others inher-
ently do not require additional data. Each method
can be divided into three categories based on the
different editing modes: (1) adding extra parame-
ters modules (2) locate-then-editing and (3) meta-
learning based approach. Both meta-learning based
methods and locate-then-editing based methods
require additional data at different stages such
as “ROME, MEMIT, KE, MEND”. Our DAFSet
dataset aims to enhance meta-learning based edit-
ing methods. The meta-learning methods in our
main experiment of Table 1 are all trained on
data enhanced with DAFSet such as “KE” and
“MEND”. From Figure 4, we can observe that our
DAFNet model also achieves SOTA competitive
performance without using additional DAFSet data.
If DAFSet data is used, our modeling performance
for SME can be further improved.

A.4 Model Settings and Training Details

DAFNet (1) Hyperparameter Settings: We use
GPT-J 9 and LLAMA2 10 as our backbone models
to edit and the same hyperparameter settings for
the DAFNet auxiliary network. The basic module
(including intra-editing attention flow and inter-
editing attention flow) of the auxiliary network has
2 layers. We set ddown = 1024. All self-attention’s
head numbers and middle dimensions (including
K,Q, V,O) are set as 2 and 1024, respectively. Re-
garding the selection of editing weights, we use
settings consistent with MEND and KE: GPT-J and
LLAMA2 both use the FFN weights of the last

9https://huggingface.co/docs/transformers/
model_doc/gptj

10https://huggingface.co/docs/transformers/
model_doc/llama2

Algorithm 1 Training of DAFNet
1: Input: Language model to be edited f ,

initialized DAFNet M, training set D ={(
x
(i)
e , y

(i)
e ,
{
x
(i)
gj , y

(i)
gj

}N
(i)
g

j=1
,
{
x
(i)
lj

}N
(i)
l

j=1

)}N

i=1

,

maximum number of sequential editing modeling Tmax,
EMA loss coefficient α, EMA loss initial value Lini,
iteration number to increase sequential modeling number
Iinc, increment scale γ for increasing sequential editing
modeling number, maximum iteration number Imax,
DAFNet learning rate η.

2: Output: trained DAFNetM.
3: # Current sequential editing modeling number.
4: Tnow = 1
5: # Initialize EMA loss and minimum EMA loss.
6: Lmin = Lema = Lini

7: # Set the iteration number of minimum EMA loss.
8: imin = 1
9: # Training iterations for DAFNetM.

10: for i← 1 to Imax do
11: # Randomly sample editing number T smaller than

current modeling number Tnow.
12: Sample integer T from Uniform(1, Tnow)
13: D ← Sample T data from D
14: # Collect editing signals for T editing samples.
15: Sedit = []

16: for (x
(t)
e , y

(t)
e , _, _) in D do

17: # Get editing signal by hook functions.
18: ut, δt = Hook(f, (x

(t)
e , y

(t)
e ))

19: Sedit.append([ut; δt])
20: end for
21: # Input editing signals of the T sequential editing

modeling samples and obtain corresponding editing
weights.

22: [∆W1, ...,∆WT ], [h̄1, ..., h̄T ], β̄ =M (Sedit, [])
23: # Compute the fused editing weight of the T editing

samples and update the language model f .
24: Compute ∆W̃T by formula 15
25: fT = Γ(f,∆W̃T )
26: # Compute loss using data from D.
27: Ltotal = Lrel(fT ) + Lgen(fT ) + Lloc(f, fT )
28: # Update DAFNetM.
29: M← Adam (∇MLtotal, η)
30: # Update EMA loss and minimum EMA loss.
31: Lema = (1− α)Lema + αLtotal

32: if Lema < Lmin then
33: Lmin = Lema

34: imin = i
35: end if
36: # Update current sequential modeling number Tnow,

which will increase exponentially until Tmax.
37: if i− imin > Iinc and Tnow < Tmax then
38: Tnow = Tnow +max(10, ⌊γTnow⌋)
39: Lmin = Lema = Lini

40: imin = i
41: end if
42: end for
43: return M

three layers of the model. Different editing ma-
trices with the same shape and a shared DAFNet.
Embedding layers are used to remap the represen-
tations of editing matrices of different FFN layers
inputting into the same DAFNet.

(2) Training Details: As shown in Algorithm 1,
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Algorithm 2 The tth Edit of DAFNet in Sequential
Editing Scenario
1: Input: Language model to be edited f , trained DAFNet
M, the tth edit sample (x

(t)
e , y

(t)
e ), the editing weight

of previous t − 1 edits ∆W̃t−1 (zero when t = 1), the
fused fact representations of previous t− 1 edits H̄t−1 =
[h̄1, ..., h̄t−1] (empty list then t = 1).

2: Output: Edited model ft, the updated editing weights
∆W̃t, the updated fact representations H̄t.

3: # Get editing signal by hook functions.
4: ut, δt = Hook(f, (x

(t)
e , y

(t)
e ))

5: # Below input current editing signal [ut; δt], and past
fused fact representations for Intra-editing Attention
H̄t−1. Output the editing weight ∆Wt of the current
fact, the fused representations h̄t of current fact, and the
vector β̄ ∈ Rt described in subsection 5.3.

6: ∆Wt, h̄t, β̄ =M
(
[ut; δt], H̄t−1

)
7: # Update editing weight.
8: ∆W̃t = (1− β̄t)∆W̃t−1 + βt∆Wt

9: # Add updated editing weight to f .
10: ft = Γ(f,∆W̃t)
11: # Append fused representation of current fact into the list.

12: H̄t = [h̄1, ..., h̄t−1, h̄t]

13: return ft, ∆W̃t, H̄t

we define the initial sequential editing modeling
number Tnow = 1. The moving coefficient of expo-
nential moving average (EMA) loss α = 0.01, and
set Iinc = 1000. We set the scale to increase the
current sequential editing modeling number Tnow

as 0.25, i.e., γ = 0.25. The upper limit for the
sequential editing modeling number is 1000, i.e.,
Tmax = 1000. When the sequential editing mod-
eling number reaches the maximum value, we per-
form an additional 20000 iterations before stopping.
We store checkpoints every 1000 iterations and the
checkpoint with the lowest loss would be selected
for evaluation. The learning rate η is set as 1e-6.
The training process takes 7 days on 8 NVIDIA
A800 GPUs. These experiments are presented on
average with 5 random runs with different random
seeds and the same hyper-parameters.

Baseline Models For the baselines, we use the
same settings in EasyEdit (Wang et al., 2023) to
train and evaluate other editing methods.

B The Editing Algorithm

In order to facilitate readers to better understand
the model training and editing process, we have
presented the algorithm pipeline of the training and
editing in Algorithm 1 and Algorithm 2.

C Additional Experimental Results

C.1 Dataset Construction
The collected dataset samples are shown in Table 4,
including the manual templates used to prompt the
LLMs. The detailed long-tail dataset construction
process is shown as follows:

• We use the LLMs to perform language model-
ing on each data in the dataset to obtain the log
likelihood probability for each token position
in the sentence.

• The sentence semantic representation is ob-
tained by multiplying the log likelihood prob-
ability of all tokens.

• We select the subject in the sentence that is
lower than the threshold as the long tail sen-
tence.

Since the editing samples are all obtained through
a single triple transformation, each editing sample
only contains one entity and relation such as above
samples. Therefore, the semantic of this sentence
is usually dominated by entity and corresponding
relation. If the log likelihood probability of the sen-
tence is relatively low, it indicates that the semantic
of the entity triple is not well memorized in the
LLMs and the entity triple is low-frequency sparse
knowledge (Godbole and Jia, 2023; Kandpal et al.,
2023). Hence, it can be used for capturing the long-
tailnesses of those subject entities. Note that the
construction process of long-tail data involves con-
catenating knowledge triples with conjunctions or
articles to form a natural language. Their training
samples lengths are basically the same. Meanwhile,
we multiply by the corresponding sample length to
maintain the fairness of the prediction probability
as much as possible. Most samples have lengths
between 6 and 8, and thus there is no unfairness in
comparison after multiplication.

C.2 Computational Resource Analysis
In order to evaluate the computational cost of our
model and baselines, we compare the scores of dif-
ferent editors including “No training” and “Train-
ing” before editing on all datasets. The average
score is performed on the editing numbers of 1, 10
and 100. Specifically, we evaluate the model’s over-
head on machine resources by comparing Training
time, GPU memory and Inference time.

From the Table 5, we can conclude that although
our DAFNet model is not the optimal design in
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Recency
subject: ‘syukuro manab’ src: ‘The employer of syukuro manabe is’ tgt: ‘Princeton University’
subject: ‘Giancarlo González’ src: ‘The member of sports team of Giancarlo González is’ tgt: ‘Alajuelense’
subject: ‘polonia bytom’ src: ‘The league of polonia bytom is’ tgt: ‘III liga’

Popularity
subject: ‘Canon de 75 mle TR ’ src: ‘What year did Canon de 75 mle TR come into use?’ tgt: ‘1904’
subject: ‘Walker Pond’ src: ‘What state is Walker Pond located?’ tgt: ‘Maryland’
subject: ‘Golden Bay Air’ src: ‘What airport is Golden Bay Air associated with?’ tgt: ‘Barnstable Municipal Airport’

Long-tailness
subject: ‘Austin-Healey’ src: ‘The manufacturer of Austin-Healey is’ tgt: ‘British Motors Corp’
subject: ‘Erkin Hadımoğlu’ src: ‘The league of polonia bytom is’ tgt: ‘Painoist’
subject: ‘Isaac Barrow’ src: ‘The place of birth of Isaac Barrow is’ tgt: ‘London’

Robustness

subject: ‘Sandy High School’ src: ‘What state is Sandy High School located?’ tgt: ‘Florida’
prefix: 'A student asking a friend for the location of Sandy High School.’, 

'A parent inquiring about the state where Sandy High School is situated.’, 
'Sandy High School is a great educational institution.’, 
'There are some negative comments about Sandy High School.'

subject: ‘Purabirbal’ src: ‘Which state is Purabirbal located?’ tgt: 'Tiruchir district'
prefix: 'The sentence is asked in a geography quiz, where participants are being tested on their knowledge of different states.', 

'The sentence is part of a conversation between two friends who are discussing a place called Purabirbal.’, 
‘I'm excited to know where Purabirbal is located!’, 
‘I have no idea where Purabirbal is located, and I don't care to find out.’

subject: ‘Coca-Cola Telecommunications’ src: ‘What year was Coca-Cola Telecommunications formed in?‘ tgt: '1926’
prefix: 'The sentence indicates a query about the company's past and origins.’, 

‘The sentence suggests an interest in the company's history and possibly its involvement in the specific industry.’, 
‘It demonstrates that the company's commitment to expanding its reach and diversifying its offerings.’, 
‘It's hard to believe they even bothered with such a pointless venture.’

Table 4: Samples of the DAFSet dataset.

Training Type Model Training Time (Day) GPU Memory (GB) Inference Time (s) Avg.

No Training Before Editing

FT N/A 27.80 1.73 25.09
TP N/A 32.30 5.56 55.63
KN N/A 31.50 20.41 9.08

ROME N/A 36.80 16.10 56.85
MEMIT N/A 42.90 31.65 50.40
GRACE N/A 35.20 0.16 54.12

Training Before Editing

KE 3 41.10 0.26 10.53
MEND 1 59.40 0.08 19.79

MALMEN 2 56.20 2.18 52.40
DAFNet 7 37.20 0.29 80.42

Table 5: The overall comparison of computation efficiency.

Backbone # Editing Editor ZSRE CounterFact RIPE
Rel. Gen. Loc. Avg. Rel. Gen. Loc. Avg. Rel. Gen. Loc. Avg.

GPT-J
(6B) 1000

FT 4.3 3.0 0.1 2.5(±0.1) 12.9 5.1 1.1 6.4(±0.1) 3.1 0.9 0.8 1.6(±0.0)

TP 45.7 40.4 10.5 32.2(±0.8) 47.3 17.0 1.4 21.9(±0.7) 48.1 29.1 15.2 30.8(±0.6)

KN 0.8 0.0 2.2 1.0(±0.0) 0.1 0.4 1.0 0.5(±0.0) 0.0 0.0 0.0 0.0(±0.0)

ROME 57.2 53.9 29.9 47.0(±1.1) 0.2 0.2 0.0 0.1(±0.0) 47.5 16.9 13.4 26.0(±0.5)

MEMIT 56.8 54.6 54.9 55.4(±1.3) 82.3 36.4 30.7 49.8(±1.3) 0.0 0.0 0.0 0.0(±0.0)

GRACE 56.2 51.3 28.4 45.3(±1.2) 0.3 0.4 0.1 0.3(±0.1) 46.7 16.3 13.8 25.6(±0.7)

KE♠ 0.0 0.0 1.1 0.4(±0.0) 0.0 0.0 0.1 0.0(±0.0) 0.0 0.0 0.2 0.1(±0.0)

MEND♠ 0.0 0.0 0.0 0.0(±0.0) 0.0 0.0 0.0 0.0(±0.0) 0.2 0.1 0.1 0.1(±0.0)

MALMEN♠ 43.0 35.1 39.3 39.1(±0.4) 15.0 12.4 25.1 17.5(±0.4) 31.1 19.1 35.3 28.5(±0.6)

DAFNet♠ 60.0 57.6 88.0 68.5(±1.9) 53.1 38.1 82.3 57.8(±1.2) 48.3 31.3 57.3 45.6(±1.2)

LLAMA2
(7B) 1000

FT 7.9 6.7 4.6 6.4(±0.1) 1.5 0.1 1.7 1.1(±0.0) 2.7 1.0 2.2 2.0(±0.0)

TP 47.7 44.1 4.4 32.0(±0.6) 64.7 32.5 11.6 36.3(±0.9) 42.3 26.8 9.9 26.3(±0.6)

KN 0.0 0.0 0.0 0.0(±0.0) 0.0 0.0 0.0 0.0(±0.0) 0.0 0.0 0.0 0.0(±0.0)

ROME 1.6 1.5 0.6 1.2(±0.0) 0.2 0.1 0.1 0.1(±0.0) 0.0 0.0 0.0 0.0(±0.0)

MEMIT 0.2 0.2 0.1 0.2(±0.0) 0.1 0.1 1.0 0.4(±0.0) 0.0 0.0 0.0 0.0(±0.0)

GRACE 1.5 1.6 0.8 1.3(±0.1) 0.1 0.2 0.1 0.1(±0.0) 0.0 0.0 0.0 0.0(±0.0)

KE♠ 0.0 0.0 0.0 0.0(±0.0) 0.0 0.0 0.3 0.1(±0.0) 0.0 0.0 0.0 0.0(±0.0)

MEND♠ 0.0 0.0 0.0 0.0(±0.0) 0.0 0.0 0.0 0.0(±0.0) 0.0 0.0 0.0 0.0(±0.0)

MALMEN♠ 32.0 28.5 28.1 29.6(±0.6) 15.8 16.4 22.5 18.3(±0.3) 42.3 38.4 38.5 39.8(±0.9)

DAFNet♠ 50.5 48.6 93.6 64.2(±1.3) 50.4 35.8 76.9 54.4(±1.6) 44.1 34.3 85.8 54.7(±0.9)

Table 6: Results with 1000 edits of DAFNet and baselines.
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terms of machine resources overhead, our model
results have achieved significant improvement un-
der the GPU memory. Our inference time also has
strong competitiveness. Since the LLMs are usu-
ally trained once and can be reused, our training
time is also acceptable. The high memory overhead
is mainly due to the need for two different auxiliary
networks to model the semantic interaction within
and between facts. We can unify the modeling of
the fusion process in two scenarios to save memory
costs in the future.

C.3 Results of 1000 Sequential Edits
The results of 1000 sequential edits are presented
in Table 6. They also show the similar conclusion
with general results, which prove the effectiveness
of our approach.
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