@inproceedings{han-etal-2024-rethinking,
title = "Rethinking Efficient Multilingual Text Summarization Meta-Evaluation",
author = "Han, Rilyn and
Chen, Jiawen and
Liu, Yixin and
Cohan, Arman",
editor = "Ku, Lun-Wei and
Martins, Andre and
Srikumar, Vivek",
booktitle = "Findings of the Association for Computational Linguistics: ACL 2024",
month = aug,
year = "2024",
address = "Bangkok, Thailand",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.findings-acl.930",
doi = "10.18653/v1/2024.findings-acl.930",
pages = "15739--15746",
abstract = "Evaluating multilingual summarization evaluation metrics, i.e., meta-evaluation, is challenging because of the difficulty of human annotation collection. Therefore, we investigate an efficient multilingual meta-evaluation framework that uses machine translation systems to transform a monolingual meta-evaluation dataset into multilingual versions. To this end, we introduce a statistical test to verify the transformed dataset quality by checking the meta-evaluation result consistency on the original dataset and back-translated dataset. With this quality verification method, we transform an existing English summarization meta-evaluation dataset, RoSE, into 30 languages, and conduct a multilingual meta-evaluation of several representative automatic evaluation metrics. In our meta-evaluation, we find that metric performance varies in different languages and neural metrics generally outperform classical text-matching-based metrics in non-English languages. Moreover, we identify a two-stage evaluation method with superior performance, which first translates multilingual texts into English and then performs evaluation. We make the transformed datasets publicly available to facilitate future research.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="han-etal-2024-rethinking">
<titleInfo>
<title>Rethinking Efficient Multilingual Text Summarization Meta-Evaluation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Rilyn</namePart>
<namePart type="family">Han</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jiawen</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yixin</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Arman</namePart>
<namePart type="family">Cohan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: ACL 2024</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lun-Wei</namePart>
<namePart type="family">Ku</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andre</namePart>
<namePart type="family">Martins</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vivek</namePart>
<namePart type="family">Srikumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Bangkok, Thailand</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Evaluating multilingual summarization evaluation metrics, i.e., meta-evaluation, is challenging because of the difficulty of human annotation collection. Therefore, we investigate an efficient multilingual meta-evaluation framework that uses machine translation systems to transform a monolingual meta-evaluation dataset into multilingual versions. To this end, we introduce a statistical test to verify the transformed dataset quality by checking the meta-evaluation result consistency on the original dataset and back-translated dataset. With this quality verification method, we transform an existing English summarization meta-evaluation dataset, RoSE, into 30 languages, and conduct a multilingual meta-evaluation of several representative automatic evaluation metrics. In our meta-evaluation, we find that metric performance varies in different languages and neural metrics generally outperform classical text-matching-based metrics in non-English languages. Moreover, we identify a two-stage evaluation method with superior performance, which first translates multilingual texts into English and then performs evaluation. We make the transformed datasets publicly available to facilitate future research.</abstract>
<identifier type="citekey">han-etal-2024-rethinking</identifier>
<identifier type="doi">10.18653/v1/2024.findings-acl.930</identifier>
<location>
<url>https://aclanthology.org/2024.findings-acl.930</url>
</location>
<part>
<date>2024-08</date>
<extent unit="page">
<start>15739</start>
<end>15746</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Rethinking Efficient Multilingual Text Summarization Meta-Evaluation
%A Han, Rilyn
%A Chen, Jiawen
%A Liu, Yixin
%A Cohan, Arman
%Y Ku, Lun-Wei
%Y Martins, Andre
%Y Srikumar, Vivek
%S Findings of the Association for Computational Linguistics: ACL 2024
%D 2024
%8 August
%I Association for Computational Linguistics
%C Bangkok, Thailand
%F han-etal-2024-rethinking
%X Evaluating multilingual summarization evaluation metrics, i.e., meta-evaluation, is challenging because of the difficulty of human annotation collection. Therefore, we investigate an efficient multilingual meta-evaluation framework that uses machine translation systems to transform a monolingual meta-evaluation dataset into multilingual versions. To this end, we introduce a statistical test to verify the transformed dataset quality by checking the meta-evaluation result consistency on the original dataset and back-translated dataset. With this quality verification method, we transform an existing English summarization meta-evaluation dataset, RoSE, into 30 languages, and conduct a multilingual meta-evaluation of several representative automatic evaluation metrics. In our meta-evaluation, we find that metric performance varies in different languages and neural metrics generally outperform classical text-matching-based metrics in non-English languages. Moreover, we identify a two-stage evaluation method with superior performance, which first translates multilingual texts into English and then performs evaluation. We make the transformed datasets publicly available to facilitate future research.
%R 10.18653/v1/2024.findings-acl.930
%U https://aclanthology.org/2024.findings-acl.930
%U https://doi.org/10.18653/v1/2024.findings-acl.930
%P 15739-15746
Markdown (Informal)
[Rethinking Efficient Multilingual Text Summarization Meta-Evaluation](https://aclanthology.org/2024.findings-acl.930) (Han et al., Findings 2024)
ACL