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Abstract

Social networks have become ideal vehicles
for news dissemination because posted content
is easily able to reach users beyond a news
outlet’s direct audience. Understanding how
information is transmitted among communities
of users is a critical step towards understand-
ing the impact social networks have on real-
world events. Two significant barriers in this
vein of work are identifying user clusters and
meaningfully characterizing these communi-
ties. Thus, we propose the PGNSC benchmark,
which builds information pathways based on
the audiences of influential news sources and
uses their content to characterize the commu-
nities. We present methods of aggregating
these news-source-centric communities and for
constructing the community feature representa-
tions that are used sequentially to construct in-
formation pathway prediction pipelines. Lastly,
we perform extensive experiments to demon-
strate the performance of baseline pipeline con-
structions and to highlight the possibilities for
future work. Our code and data can be found
here: https://github.com/ataylor24/PGNSC.

1 Introduction

Social media platforms have become a crucial part
of the information dissemination ecosystem. By
allowing users to choose whom they share their so-
called “content feeds" with, these platforms have
created an environment in which the reach of infor-
mation is amplified.

Pew Research (Forman-Katz, 2022) reported
that roughly half of American adults regularly con-
sume news through social media and that 13% pre-
fer to get their news through social media, which
increases to 33% for adults under 30. Further sur-
veying suggests that adults under 30 place as much
trust in news gathered from social media as from

†Corresponding author: Alexander K. Taylor {atay-
lor2@cs.ucla.edu}

traditional news outlets (Liedke, 2022). Because of
this, traditionally "offline" news sources now have
dedicated social media accounts that seek to propa-
gate their content to the growing demographic of
adults using social media for news consumption.

Given the relevance of this problem, we seek to
establish a benchmark that will establish a founda-
tion which future work may use to develop methods
to identify the audiences of influential news sources
and predict the flow of information. Because so-
cial media users rarely explicitly disclose which
news sources they get information from, we must
identify the audience, or community, of each news
source we consider. We will focus on two bene-
fits of aggregating users into communities (Zhang
et al., 2019a; Lancichinetti et al., 2008).

The first benefit of community aggregation is
that it allows us to leverage the structure present in
the data to predict the behavior of a set of closely
connected users (Lancichinetti et al., 2008). Using
this principle, we are able to circumvent the low-
resource setting of user-level prediction caused by
inconsistent user posting schedules by predicting
the behavior of communities of users as demon-
strated in prior work (Li et al., 2022; Taylor et al.,
2023). The second benefit is that we can leverage
inductive bias to improve the representation of the
community; for instance, members of communi-
ties centered around a given news outlet will likely
share that outlet’s political leaning (Liedke, 2022)
and are likely to have their views influenced by that
outlet’s content. This motivates the construction
of community representations that incorporate as
much additional information as possible (to inform
community representation).

We seek to take the first step in establishing a
benchmark for information pathway prediction at
the community level, which we title Prominent
Global News Sources for Covid-19, hereafter re-
ferred to as PGNSC. PGNSC is a novel, human-
validated dataset built using the most influential
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global news sources for COVID-19 (PGNSC). The
dataset consists of instances of news articles being
posted to social media and the resulting interac-
tions between news organization communities. We
also provide a general sequential framework for
building pipelines to perform information pathway
prediction and define baseline methods for each
pipeline stage.

For the community aggregation stage, we in-
clude several methods of aggregating communi-
ties based on prior work (Taylor et al., 2023; Ko-
morowski et al., 2018; Romero et al., 2010) and
show their impact on information pathway predic-
tion performance. To construct community feature
representations, we seek to leverage the recent ad-
vances in large language models (LLMs) and their
use in enhancing graph representations by using
LLMs to summarize and encode of each organiza-
tion’s content (He et al., 2023; Chen et al., 2023b).
Because news content often includes images, we
also incorporate a jointly-trained image-text en-
coder into the set of community node feature gen-
eration pipelines (Radford et al., 2021).

The appeal of PGNSC goes beyond providing
data that can be used for analysis of patterns of
information propagation as well as graph represen-
tation tasks. To the best of our knowledge, this
is the first work to establish benchmark for infor-
mation pathway prediction using heterogeneous
graphs and and to use SOTA LLMs to enhance
node feature representations to improve predicitons.
We believe PGNSC is well positioned to serve as
a vehicle for exploring how LLMs and graph data
can be used in concert to make predictions.

2 Dynamic Graph Benchmarks

The development of graph representations has re-
cently undergone a renaissance with the develop-
ment and application of graph neural networks that
benefit from data richness and complexity (Huang
et al., 2023; noa; Gravina and Bacciu, 2023). This
evolution has underscored the critical need for ro-
bust benchmarks in both static and dynamic graph
domains, divided into real-world and synthetic
datasets. Our focus herein is on dynamic graphs,
which are pivotal for modeling time-evolving rela-
tionships in numerous applications.

2.1 Real-world Dynamic Graph Benchmarks

High-quality, real-world datasets are considered
the gold standard for benchmarking because they

closely simulate the application of models in prac-
tical scenarios. However, such data can be costly to
munge and often presents issues related to missing
values or other quality control measures. There are
many available datasets built from real-world data
and described in prior works as shown in 1 (please
see Appendix 8 for a full list) (Poursafaei et al.;
Huang et al., 2023; Gravina and Bacciu, 2023; Ho-
rawalavithana et al., 2022). While these bench-
marks encompass a broad range of spatial attributes
and temporal granularity, they are overwhelmingly
skewed towards homogeneous graphs with some
exceptions (Poursafaei et al.; Huang et al., 2023;
Gravina and Bacciu, 2023). These works, however,
have not fully exploited the potential of dynamic,
heterogeneous datasets nor embraced the advance-
ments in large language models (LLMs) for multi-
modal representation. Our benchmark aims to fill
this gap by integrating LLM-enhanced multimodal
data, setting a new stage for information pathway
prediction research.

2.2 Synthetic Dynamic Graph Benchmarks

To bypass the limitations of real-world data, some
work has investigated synthetic datasets designed
to replicate real-world data distributions (Greene
et al., 2010; Ammar and Özsu, 2014; Lancichinetti
et al., 2008; Rossetti, 2017). Synthetic benchmarks,
while valuable for their controllability and repro-
ducibility, often lack the unpredictability and intri-
cate variability found in natural datasets, especially
in domains like information propagation. They may
not fully capture the complexities and nuances of
real-world scenarios, and thus cannot provide the
same value as empirical data. Our benchmark con-
tributes a significant, large-scale real-world dataset,
aiming to provide a comprehensive tool for devel-
oping more generalizable and robust GNNs.

3 PGNSC Benchmark

In this section, we discuss the construction of the
PGNSC benchmark. To our knowledge, this is the
first publicly available benchmark in which mul-
timodal information cascades (structure, text, and
image data) have been aggregated into community-
based information pathways.

3.1 News Data Collection

Prior to selecting the news organizations whose
pathways are included in the PGNSC dataset, we
identified countries from which to choose news or-
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Table 1: Statistics of sampled social-media-oriented dynamic-graph datasets (Hom. denotes homogeneous and Het.
denotes heterogeneous). PGNSC is the dataset we introduce in this paper, and we show the statistics of both the
user-level (UL) and community-level (CL) graphs.

Name #Nodes #Edges Snapshot Size
(N/E)

Granularity of
Timestamp

Type

FB-Forum 899 7.1k – Unix Homogeneous
FB-Covid19 456 54.1k 152/13.7 Daily Homogeneous
Reddit 11k 73.5k – Unix Homogeneous
Reddit Hyperlink Network 55.9k 858.5k – Unix Homogeneous
Twitter-Tennis 1k 40.3k 1k/41-936 Hourly Homogeneous
tgbn-reddit 11.8k 27.2M – – Homogeneous
Expert1 3.5M 34M – – Heterogeneous

PGNSC (UL) 11.8k 104.4M 381.2/1322.3 Unix Heterogeneous
PGNSC (CL) 150 104.4M 12.9/36.6 Unix Heterogeneous

1 While we include this dataset for the sake of a comprehensive survey, to our knowledge it is not publicly available nor used
by other work (with the exception of background citations).

ganizations. We identified the 15 countries with the
highest aggregate number of COVID-19 cases from
May 15, 2020 to April 11, 2021. We then used
the Digital News Report from the Reuters Insti-
tute as our primary source in determining the most
prominent online news organizations for each coun-
try, and we supplemented with additional sources
when the report did not cover a given country or
required further justification. A full list of the coun-
tries and news sources identified for each country
is available in the appendix. We then used the
aforementioned URLs to query Google News for
the data associated with the article link using the
open-source package GNews. The data retrieved
contained the article title, article text content, and
the URLs for images embedded in the article, as
shown in Table 4.

Twitter Data
Number of Tweets 304k
Number of Distinct Users 1.01M
Number of Articles 34k
Avg. Number of Articles per News Source 142.09
News Data
Number of News Sources 150
Avg. Number of Articles per Country 2.7M
Avg. Number of News Sources per Country 7.89
Avg. Number of Images per Article 7.12
Avg. Number of Sentences per Article 17.17

Table 4: Relevant statistics of the Twitter and News
data.

3.2 Twitter Data Collection
We utilized the COVID-19 Twitter API to re-
trieve data from May 15, 2020 to April 11, 2021

(331 days) using COVID-19 keywords. From this
window, we identified roughly 53 million tweets
containing article URLs (hereafter referred to as
source tweets) from the selected news sources (see
Appendix for data breakdown). We performed
weighted random sampling based on the number
of article links present in each day, which yielded
roughly 304k source tweets. We then scraped all
retweets and reply tweets (hereafter referred to
as response tweets) for each source tweet as well
as the metadata and content of each tweet (both
source and reply)0. Each source tweet and the sub-
sequent response tweets were used to construct a
User-Level Information Cascade.

3.3 Information Pathway Mapping

We define communities as sets of users ag-
gregated around the news sources defined in
PGNSC (Taylor et al., 2023). Community aggre-
gations were performed using the engagement met-
rics and user interactions drawn from the user-level
information pathways according to methods de-
scribed in detail in a later section. Each user-level
information pathway was mapped to a community-
level information pathway by replacing each user
with the community it was assigned to (no self-
edges) as shown in Figure 2.

We define a set of node and edge types that are
used to construct the graph representation in Ta-
ble 5, following the format of prior work (Taylor

0We want to note that while engagement metrics (num-
ber of favorites, retweets, and replies) were present for all
source tweets, each value was defaulted to 0 for many re-
sponse tweets.
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Figure 1: User-Level Information Cascade Example

Figure 2: User-Level Information Pathway to
Community-Level Information Pathway example

et al., 2023). We generalize the naming conven-
tions for connections at the community level be-
yond Twitter for ease of future application to other
social media platforms.

3.4 Community Aggregation Methods
In this section, we describe the aggregation meth-
ods that we used to assign users to communities
centered around the aforementioned news sources.
While there are many methods for unstructured
community identification, we found that the major-
ity of methods do not scale to the size of our graph
for the user-level network we have constructed
(Zhang et al., 2019a; Zeng and Yu, 2018; Sattar
and Arifuzzaman, 2022). We have selected three
heuristic-based methods. Each community aggre-
gation method was performed using the same set of
community centers and applied to the same set of
user-level information cascades. The general for-
mat for the aggregation methods presented in this
work is generating community scores s for each

Table 5: Definitions of Community-Level Information
Pathways.

Node Types
Information Source An article written by a selected

news source.
Community The set of users aggregated

around selected news sources.
Edge Types

Written_by Information Source → Commu-
nity: Indicates the community
that is the original author of the
Information Source.

Mentioned_by Information Source → Commu-
nity: Indicates that a community
authored a message containing an
Information Source, starting an
Information Pathway (IP).

Communicated_to Community → Community: Rep-
resents a user from one commu-
nity interacting with a message
authored by a user in a different
community.

user, and then assigning the user to the commu-
nity for which it has the highest score, as shown in
Figure 3.

Figure 3: Illustration of community assignment. For
each user, a score is generated for all communities that
the user interacts with; the user is then assigned to the
community for which they have the highest score.

Comm. Type Mean Median Max Min
Unbias.-Rand. 7.47k 7.48k 7.73k 7.22k
Bias.-Rand. 126.8k 80.7k 292k 17.4k
Engagement 126.7k 73.3k 328k 13.1k
Interaction 112k 77.6k 248k 31
Inf.-Pass. 18.8k 15.3k 43.3k 1.37k

Table 7: Size distribution for each community aggrega-
tion method.

3.4.1 Engagement
Following prior work on information pathway pre-
diction (Taylor et al., 2023), we compute the En-
gagement score for each user with respect to each
community center. This community aggregation
method is designed to assign users to the commu-
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nity for which their posts have the most engage-
ment and uses collected engagement metrics: the
number of favorites, retweets, replies, user IDs
mentioned in the tweet, and the most recent Fol-
lowing/Follower ratio. Users are assigned to only
the community for which they have the highest
Engagement score with ties broken randomly.

3.4.2 Interaction
Following prior work in community aggregation in
Twitter data (Komorowski et al., 2018), we com-
pute the Interaction score for each user with re-
spect to each community center (Our formulation
is modified to include the number of replies). This
community aggregation method is designed to as-
sign each user to the community for which it has
the highest relative importance, as determined by
the impact of its interactions with other users. We
first construct super-graphs of the User-Level In-
formation Pathway Instances associated with each
community center. The Interaction score is used as
the edge weight for an interaction from user p and
user q.

The PageRank algorithm (Page et al., 1999) is
then applied to each community center’s super-
graph and produces a ranking of the relative impor-
tance of each user with respect to that community
center. u represents the user whose rank we wish
to calculate and Eu represents the set of users that
have interactions with u. d is a damping factor, and
L(p) is the number of links from page p. Users
are assigned to only the community for which they
have the highest Interaction score, with ties broken
randomly.

3.4.3 Influence-Passivity
The last community aggregation method that we
consider follows prior work that measured the
relative influence of nodes in social networks
(Romero et al., 2010). This community aggrega-
tion method is designed to measure the influence
that a given node exerts on its neighborhood (in-
fluence) and vice versa (passivity). For each user
in a given community, we retrieve the number of
URLs they posted and their one-hop neighborhood
of in and outgoing interactions, which results a
directed super-graph for each community. This
information allows us to perform the Influence-
Passivity algorithm (Romero et al., 2010) which
yields a 2-dimensional influence-passivity vector,
[influence_score, passivity_score]. We assign
each user to the community for which they have the

highest l2-norm of the influence-passivity vector.

3.5 Random
To evaluate the effectiveness of the community ag-
gregation methods, we include two random settings,
biased-random and unbiased-random.

Biased-random. The biased-random commu-
nity selection method samples from the commu-
nities whose articles a given user has interacted
with. We include this setting to compare randomly
selecting from a user’s engagement history with
using the bias described by the methods described
in previous sections.

Unbiased-random. The unbiased-random com-
munity selection method randomly assigns each
user to one of any community. This is the tradi-
tional random baseline and is included to evaluate
the information compression properties of commu-
nity assignment.

3.6 Comparison to Similar Benchmarks
We include a selected list of several dynamic het-
erogeneous graph benchmarks in Table 1. FB-
Forum, FB-Covid19, Reddit, Reddit Hyperlink Net-
work, Twitter-Tennis and tgbn-reddit, while rich
structurally, do not incorporate node attributes be-
yond structural embeddings, and only FB-Covid19
and Reddit incorporate edge attributes in the form
of LIWC encodings (Opsahl, 2011; Kumar et al.,
2018; Panagopoulos et al., 2021; Béres et al., 2018;
Huang et al., 2023). As mentioned in 1, to our
knowledge, Expert is not publicly available for
comparison. PGNSC is a publicly available, het-
erogeneous graph benchmark that incorporates
LLM-enhanced multimodal graph attributes.

4 Feature Initialization Pipelines

In this section, we describe the pipelines used to
generate node feature embeddings for each commu-
nity. We explore the efficacy of three approaches to
pipeline construction: single-stage, two-stage, and
zero-shot.

4.1 Single-Stage Pipeline (Lightning)
The single-stage pipeline formulation (Lightning)
illustrated in (Taylor et al., 2023) applies an
encoder-only model to text that represents each
community center. Lightning applies the encoder-
only model, Longformer, to the concatenation of
text from sampled articles to construct a represen-
tation of each community center (Beltagy et al.,
2020; Taylor et al., 2023). The text we use consists
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Figure 4: Illustration of the general baseline pipeline
framework.

of the concatenations of article titles and article
contents (illustrated in Figure 4). The embeddings
generated through this process are used directly as
the node feature representation of the community
center to which they pertain.

4.2 Two-Stage Pipelines

Recent works have made strides in multi-document
Summarization (MDS) (Xiao et al., 2022; Zhang
et al., 2019b), and we seek to incorporate this into
our baseline pipeline formulation. We chose to in-
corporate the state-of-the-art multi-document sum-
mary model, PRIMERA (Xiao et al., 2022), into
the node feature embeddings generation process.
This is accomplished by randomly sampling k arti-
cles from the aggregated articles available for each
community to use as input to PRIMERA, which
produces a text-based summary. We treat this sum-
mary as an encapsulation of the community’s con-
tent and encode it using BERT to serve as the com-
munity’s node features (Devlin et al., 2019; Taylor
et al., 2023). We title this node feature genera-
tion pipeline PRIMERA-BERT. We also seek to
explore the impacts of incorporating multi-modal
data into the information pathway prediction task.
Thus, we also include a pipeline that encodes the
PRIMERA-generated text summary with the CLIP
model (Radford et al., 2021), which is a joint text-
image encoder. The process is similar to that of the
PRIMERA-BERT pipeline: we randomly sample k
articles and their accompanying images and simul-
taneously encode the PRIMERA-generated sum-
mary and relevant images using CLIP. We title this

node feature generation pipeline PRIMERA-CLIP.
We include samples of the generated summaries in
the Appendix.

4.3 Zero-Shot Pipelines

Modern LLMs have made dramatic progress in the
recent past and are often able to outperform fine-
tuned models in low-resource settings. Thus, we
also test pipelines in which we leverage the vast
context of LLMs to generate zero-shot text sum-
maries of each community using manual prompt-
tuning to achieve high-quality results. The gener-
ated text summaries are encoded using both BERT
and CLIP, similar to the pipelines described above.
We use two of the standard LLMs, Llama-2 and
GPT-4, to perform these tasks and follow the nam-
ing convention established above for their respec-
tive pipelines.

5 Experimental Results

In this section, we discuss the logistical settings
of our experiments and discuss the performance of
our baseline models on PGNSC.

5.1 Experimental Setup

Data splits. We divide the data according to an
80:10:10 split for the training, validation, and test-
ing sets, respectively. Each experimental number
shown is the averaged result of 10 experiments.

Evaluation metrics. We use the GMAUC metric
(geometric mean of AUC and AUPR) as the pri-
mary evaluation metric in our work to more aptly
capture performance on both positive and negative
edge predictions, as shown in prior work (Pour-
safaei et al.). We also follow the conventions set by
prior link prediction tasks and include AUPR and
AUC as our evaluation metric (You et al., 2020;
Kumar et al., 2020; Wu et al., 2022), which are
available in the Appendix.

Experiments. We perform a grid search across
the performances of five community aggregation
methods and seven node embedding methods to
investigate the impact of our proposed node repre-
sentation methods and its interaction with com-
munity formulation. The five community ag-
gregation methods are Biased-Random assign-
ment, Unbiased-Random assignment, Engagement
(Taylor et al., 2023), Interaction (Komorowski
et al., 2018), and Influence-Passivity (Romero
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et al., 2010). The seven node feature repre-
sentation pipelines are Longformer, PRIMERA-
BERT, GPT4-BERT, Llama2-BERT, PRIMERA-
CLIP, GPT4-CLIP, and Llama2-CLIP.

5.2 Link Prediction Model
For the dynamic link prediction module, we use
HTGNN (Heterogeneous Temporal Graph Neural
Network) (Fan et al., 2021) as it is a state-of-the-art
model for dynamic link prediction in a heteroge-
neous setting. HTGNN consists of multiple het-
erogeneous temporal aggregation layers, each em-
ploying hierarchical aggregation mechanisms that
are combined to yield the spatio-temporal embed-
ding for each node: intra-relation aggregation, inter-
relation aggregation, and across-time aggregation.
Intra-relation Aggregation For each node v with
type ϕ(v) at timestamp t, the feature vector xt

v is
projected into a unified feature space:

ht,l
v,r =

intra⊕

u∈N t
r (v)

(
ht,l−1
u ;Θintra

)
, (1)

ht,l
v,R =

inter⊕

r∈R(v)

(
ht,l
v,r;Θinter

)
, (2)

ht,l
v,ST =

across⊕

1≤t′≤T

(
ht′,l
v,R;Θacross

)
. (3)

where
⊕

denotes the aggregation function, and the
terms are defined as follows:
N t

r (v) represents the set of neighbors of node
v at timestamp t for relation type r, R(v) denotes
the set of relation types connected to node v, T is
the total number of timestamps considered in the
model. The final embedding for each node is the
sum of its embeddings across all timestamps:

hv =

T∑

t=1

ht,L
v .

Finally, HTGNN is trained with cross entropy
loss:

L =
∑

v∈VL

J(yv, ŷv)+λ∥Θ∥22, ŷv = σ(MLP(hv)),

5.3 Overall Information Pathways Prediction
Results

In this section, we will discuss the observations
made and conclusions drawn from the experimental
results shown in Figure 5.

Community Aggregation Method Comparison
results. We observe that feature initialization
pipelines (FI) show improvements of 6.55 to 10.98
on pathways mapped to communities constructed
using the Influence-Passivity (IP) heuristic. We
believe that IP benefits from factoring in both the
influence exerted on outgoing edges and receptiv-
ity of users to incoming edges as opposed to In-
teraction and Engagement scores, which simply
compare the relative influence exertion of users.

We also find that the Engagement community
aggregation methods yields similar results to Bi-
ased Random community assignment, which in-
dicates that heuristics relying on user-level net-
work structure (Interaction and IP) are able to more
meaningfully characterize communities than can
engagement metrics. These results support the as-
sertion that relying on the frequency of interactions
provides more insight into user behavior than ag-
gregated user engagement metrics (Romero et al.,
2010).

Feature Initialization Method Comparison re-
sults. We observe that FI pipelines encoded by
BERT offer an average 1.1 point improvement over
those using CLIP across all community aggregation
methods; this further increases to 1.6 point average
improvement when considering the non-random
aggregation heuristics. The two-stage FI pipelines
provide an average improvement of 5.4 points over
one-stage FI pipelines across all community heuris-
tics, which increases to 6.2 points when excluding
randomized community heuristics. We believe the
reason behind the discrepancy between the effec-
tiveness of BERT encodings and multimodal CLIP
encodings is two-fold. First, CLIP embeddings are
smaller due to model output parameters. Second, a
manual investigation yields that, while images en-
hance the representation of articles they accompany,
they may not aid in differentiating one community
from another (See Appendix for example).

We also observe a slight trend in Llama-2 sum-
mary modules outperforming those using Primera
and GPT4-based summary modules, and Llama-
2 has an average 1.2 point improvement over
PRIMERA under non-random community aggre-
gation heuristics. However, this difference shrinks
to 0.8 points when random settings are included,
and the average relative differences in performance
between Llama-2 and GPT4 and between GPT4
and PRIMERA are similarly insignificant.
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Figure 5: Overall Results. We provide the performance results of our baseline pipelines (GMAUC). Please see
Appendix (Table 10) for full tabular representation including AUC and AUPR.

6 Related Works

6.1 Community-based Information
Propagation Prediction on Social
Networks

There are many existing methods designed to im-
prove the performance of link prediction over social
media network representations (Daud et al., 2020;
Kumar et al., 2020; Wu et al., 2022; Haghani and
Keyvanpour, 2019; Toprak et al., 2023). Several re-
cent works have framed the link prediction problem
as predictions of information propagation (Taylor
et al., 2023; Jin et al., 2023). These works both
define information pathways as the trajectory of
individual pieces of information through communi-
ties of users.

Prior work made use of Reddit data, equating
user participation in Subreddits with community
membership and predicting information propaga-
tion (Jin et al., 2023). Many social networks that
generate information cascades do not have explicit
communities, thus Taylor et al. developed the En-
gagement heuristic to identify implicit communi-
ties using engagement metrics (Favorites, Retweets,
etc.) on Twitter COVID-19 data (Taylor et al.,

2023). Using this heuristic, Taylor et al. showed
that using collections of articles to construct the fea-
ture representations of these communities yielded
better static link prediction results over using tweet
histories to represent individual users.

Our work continues in this vein and uses four
distinct community construction methodologies (in-
cluding the Engagement heuristic) and novel LLM-
enhanced node feature generation methods for com-
munity feature representations (Taylor et al., 2023).

6.2 Multi-Modal Knowledge Graph
Representations

Multi-modal graph representations have recently re-
ceived increased attention because they more fully
represent problems and lead to improved perfor-
mance on downstream tasks (Peng et al., 2023;
Liang et al., 2021; Zheng et al., 2022; Wei et al.,
2019; Ektefaie et al., 2023). These improvements
have been observed in diverse applications, from
misinformation detection to transport systems (Ab-
dali, 2022; Zhang et al., 2023; Tian et al., 2022;
Rahmani et al., 2023; Jin et al., 2023; Chen et al.,
2023a).

The recent revolution of LLMs has inspired re-
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cent work to investigate the potential benefits of in-
corporating LLMs into graph neural networks (He
et al., 2023; Chen et al., 2023b). Further works has
shown that it is possible to use zero-shot LLM sum-
marization in concert with graph embeddings to
predict the news consumption habits of individual
users (Chen et al., 2023a; Liu et al., 2023). These
successes inspired prior work to use a longform
text encoder to construct the node feature repre-
sentations of communities based on collections of
articles to predict information propagation (Taylor
et al., 2023; Beltagy et al., 2020).

Our work furthers this direction by using SOTA
LLMs to generate and encode community embed-
dings of a highly-curated, novel dataset. We demon-
strate that downstream link-prediction performance
benefits significantly from LLM-enhanced com-
munity summarization and outperforms prior ap-
proaches on our dataset.

7 Conclusion

In this work, we present a novel benchmark for dy-
namic link prediction on heterogeneous graphs in
the novel application domain of information path-
way prediction. We consider 5 community aggre-
gation heuristics and 7 different feature initializa-
tion pipeline constructions, all of which show the
improvement that LLM-enhanced feature represen-
tations can have on downstram link prediction. We
also show that the community construction method
significantly impacts overall performance, and our
results support prior assertions of the benefits of
considering interaction network structure (Romero
et al., 2010).

It is our hope that PGNSC will make LLM-
enhanced graph tasks more accessible, fill the ne-
cessity for a large dynamic heterogeneous graph
dataset, and last, but not least, offer a challenging
setting for incorporating community aggregation
into information propagation prediction tasks.

Limitations

This work presents a novel benchmark, 5 commu-
nity aggregation heuristics, and 7 feature initial-
ization pipelines. While we mentioned scalability
issues of existing methodologies, we acknowledge
the simplicity of the community aggregation heuris-
tics included in this work. We also acknowledge the
limitations of our data: as mentioned in the main
paper, many response tweets are missing engage-
ment metrics, meaning that the Engagement and

Interactions scores are being computed over incom-
plete data. Lastly, we have included the sources
used to determine prominent global news sources,
but acknowledge the bias inherent in the process of
deciding whether to include news sources as com-
munities or when excluding countries from data
collection.
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8 Appendices

8.1 Full Selected List of Dynamic Graph
Benchmarks

Please see Table 8 for the full list of graph bench-
marks used to inform the decisions made in this
work.

Training and evaluation. We select the best
epoch based on the highest GMAUC score of the
link prediction task on the validation set.

Frameworks. Our entire codebase is imple-
mented in PyTorch.1 The implementations of the
transformer-based models are extended from the
Huggingface2 codebase (?).

8.2 Experiment Details
We report the median result for ten runs with dif-
ferent random seeds (by default). All the models in
this work are trained on NVIDIA A100 GPUs on a
Ubuntu 20.04.2 operating system.

8.3 LLM Community Summaries and Prompt
Justification

We performed a manual tuning of 20 distinct
prompt candidates and selected the prompt tem-
plate that yielded the best results across the set of
community summaries (150), which was a small
enough set to manually validate.

Below is an example of the GPT4 response to
the following prompt :"Summarize past content of
NPR with respect to COVID-19 (Do not tell me
you’re an AI)"

1https://pytorch.org/
2https://github.com/huggingface/transformers

"NPR has provided comprehensive coverage of
COVID-19 since the early beginnings of the pan-
demic. Its content has ranged from daily updates
on the number of COVID-19 cases, deaths and
progress on vaccines to in-depth features and anal-
yses. They’ve frequently reported on the impact of
the virus on businesses and the economy, as well as
on daily life, education, and mental health issues.

NPR has regularly reported on the response of
federal, state, and local governments to the pan-
demic, including policies put in place and financial
relief measures. This has also included coverage
of controversy around stay-at-home orders, mask
mandates, and businesses re-openings.

They’ve conducted numerous interviews with
public health officials, researchers, doctors, and
individuals affected by the pandemic. They’ve also
widely covered the development of COVID-19 vac-
cines, including the process, distribution issues,
and public perception.

Specifically, there have been stories on the ef-
fect of the pandemic on marginalized communi-
ties, including racial disparities in healthcare and
its impact. NPR also looked at international as-
pects of the pandemic, from the initial outbreak in
Wuhan, China to comparisons with other countries’
responses and strategies.

NPR’s COVID-19 coverage tends to focus on
factual reporting and sharing human stories and
includes input from experts in multiple fields.
They’ve encouraged listeners to practice safety
measures and have made an attempt to dispel myths
around COVID-19. The tone of the coverage,
though serious, often brings in elements of em-
pathy, humanity, and sometimes humor to lighten
the heavy subject matter."

8.4 Overall Model Results Table

Please see Table 10 for the full tabular representa-
tion of the experiments shown in Figure 5.

8.5 Image Relevance Discussion

To provide an example included in our manual
error analysis, we consider the following article
from Hindustan Times. The article concerns beach
crowds during a time of heightened infections, but
the images are only of ’beach crowds’. Further
work in gauging image relevance is necessary to ex-
plore the full benefits of incorporating multimodal
article information into the feature initialization
pipeline.

15798

https://doi.org/10.1007/s13042-018-0823-8
https://doi.org/10.1007/s13042-018-0823-8
https://doi.org/10.1007/s13042-018-0823-8
https://api.semanticscholar.org/CorpusID:209405420
https://api.semanticscholar.org/CorpusID:209405420
https://doi.org/10.1109/TMI.2022.3159264
https://doi.org/10.1109/TMI.2022.3159264
https://pytorch.org/
https://github.com/huggingface/transformers
https://www.hindustantimes.com/world-news/crowds-at-uk-beaches-stir-covid-19-concern-and-govt-warning/story-G0WS7pAww4QWVERIhrjeXP.html


Table 8: Full collection of sampled graph benchmarks.

Name #Nodes #Edges Seq. len. Snapshot
sizes (N/E)

Granularity Type

Autonomous systems 7,716 13,895 733 10.6k-7.2k /
13.2k

daily D

Bitcoin-OTC 3,783 24,186 24,186 – seconds C
Bitcoin-Alpha 3,783 24,186 24,186 – seconds C

CONTACT 5.3k 35.6k 38.4k – seconds C
ENRON 151 2.2k 50.6k – unix timestamp C
Elliptic 203.8k 234.4k 49 1.6k-2.2k /

1.2k-2.0k
49 steps D

FB-Forum 899 7.1k 33.7k – unix timestamp C
FB-Covid19 152 (ENG),

154 (FRA),
96 (ITA), 54
(ESP)

13.7k (ENG),
23.4k (FRA),
7.7k (ITA),
12.2k (ESP)

610 (ENG),
105 (FRA),
58 (ITA), 53
(ESP)

152/13.7k
(ENG),
154/23.4k
(FRA),
96/7.7k
(ITA),
54/12.2k
(ESP)

daily D

HYPERTEXT09 113 2.5k 30.2k – seconds C
IA-Email-EU 986 24.9k 332.3k – seconds C

LastFM 2k 15.5k 1.3M – unix timestamp C
Loop 207 2.4k 2.4k 207 / 2.4k 5 mins S/T

METR-LA 207 1.5k 34.3k 207 / 1.5k 5 mins S/T
Montevideo 675 690 740 675 / 690 hourly S/T

MOOC 7.1k 411.7k 178.4k – unix timestamp C
PDMS03 358 442 26.2k 358 / 442 5 mins S/T
PDMS04 307 290 16.3k 307 / 290 5 mins S/T
PDMS07 883 709 28.9k 883 / 709 5 mins S/T
PDMS08 170 137 17.9k 170 / 137 5 mins S/T

PDMSBay 325 2.4k 5.2k 325 / 2.4k 5 mins S/T
PDMSBy 1.3k 19.1k 1.3M – 5 mins S/T

RADOSLAW 167 5.5k 82.9k – seconds C
Reddit 11k 73.5k 672.4k – unix timestamp C

Reddit Hyperlink Network 55.9k 858.5k 85.9k – unix timestamp C
SBM-synthetic 1k 130.4k 50 1k / 933.1-

105.4k
50 steps S/T

SOC-Wiki-Elec 7.1k 103.7k 107.1k – unix timestamp C
SZ-taxi 1.2k 1.5k 1.3k 156 / 532 15 mins S/T
Traffic 4.4k 9k 2.2k 4.4k / 9k hourly S/T

Twitter-Tennis 1k 40.3k 1.9k 1k / 41-936 hourly D
UCI messages 1.9k 20.3k 59.8k – unix timestamp D

Wikipedia 9.2k 18.3k 157.5k – unix timestamp C
tgbl-wiki 9.2k 157.5k 152.8k – – D

tgbl-review 352.6k 4.9M 6.9k – – D
tgbl-coin 638.5k 22.8M 1.3M – – D

tgbl-comment 994.8k 44.3M 31M – – D
tgbl-flight 18.1k 67.2M 1.4k – – D
tgbn-trade 255 468.2k 32 – – D
tgbn-genre 1.5k 17.9M 133.8k – – D
tgbn-reddit 11.8k 27.2M 21.9M – – D
tgbn-token 61.8k 72.9M 2M – – D
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Table 10: Model Pipeline Performances

Pipeline Configuration Performance Metrics

Comm.
Agg.

LLM Encoder AUC Var AUPR Var GMAUC Var

Unbiased-
Random

- Longformer 57.66 1.79E-06 24.18 1.39E-04 37.34 1.22E-04
PRIMERA

CLIP
58.56 3.52E-06 29.58 1.43E-04 41.62 5.36E-05

GPT4 60.82 1.13E-05 27.49 1.05E-04 40.89 1.03E-04
Llama-2 61.88 3.67E-06 23.72 5.15E-05 38.31 1.03E-04
PRIMERA

BERT
60.94 6.84E-05 26.14 2.41E-04 39.91 4.95E-04

GPT4 62.65 2.04E-05 23.66 1.43E-04 38.50 2.11E-04
Llama-2 52.82 6.84E-05 27.54 2.05E-04 38.14 4.95E-04

Biased-
Random

- Longformer 57.86 2.58E-03 32.70 1.075E-02 42.63 4.68E-03
PRIMERA

CLIP
61.77 1.65E-05 28.89 4.07E-06 42.24 6.24E-06

GPT4 61.79 3.81E-06 30.64 8.65E-07 43.51 5.13E-08
Llama-2 62.12 5.62E-07 32.38 7.43E-07 44.84 6.50E-07
PRIMERA

BERT
63.34 2.70E-05 31.28 1.07E-05 44.51 5.60E-06

GPT4 64.96 1.59E-05 32.43 2.19E-05 45.90 1.31E-05
Llama-2 64.26 5.83E-06 33.66 5.84E-06 46.50 6.26E-06

Engage-
ment

- Longformer 65.17 1.16E-04 26.86 1.87E-07 41.84 1.09E-05
PRIMERA

CLIP
64.37 7.23E-05 30.56 4.20E-05 44.34 5.82E-06

GPT4 64.67 4.30E-06 26.38 3.77E-04 41.28 2.42E-04
Llama-2 65.74 6.84E-05 29.26 1.86E-04 43.85 9.72E-05
PRIMERA

BERT
64.20 1.13E-05 29.13 1.89E-06 43.24 2.02E-06

GPT4 66.61 4.42E-05 33.06 8.62E-06 46.93 1.75E-05
Llama-2 66.58 6.48E-06 33.02 9.08E-06 46.89 5.10E-06

Interaction

- Longformer 63.43 2.38E-04 32.90 2.947E-02 44.11 1.247E-02
PRIMERA

CLIP
62.52 2.84E-05 36.94 9.92E-05 48.05 7.48E-05

GPT4 62.17 6.13E-05 36.75 4.34E-05 47.80 3.62E-05
Llama-2 62.22 2.18E-05 36.83 1.19E-04 47.87 3.72E-05
PRIMERA

BERT
63.52 2.02E-05 36.71 6.82E-05 48.29 5.46E-05

GPT4 63.16 2.75E-05 36.83 6.19E-06 48.23 2.60E-06
Llama-2 62.98 4.01E-05 37.06 7.62E-05 48.32 3.48E-05

Influence-
Passivity

- Longformer 66.85 3.99E-06 38.42 4.23E-04 50.66 1.69E-04
PRIMERA

CLIP
81.06 2.20E-05 53.12 3.66E-04 65.61 1.87E-04

GPT4 78.89 8.06E-05 55.25 3.07E-04 66.01 1.58E-04
Llama-2 79.33 2.31E-04 54.25 3.93E-04 65.59 2.52E-04
PRIMERA

BERT
78.95 7.15E-06 54.63 1.13E-04 65.67 3.22E-05

GPT4 82.43 1.47E-05 56.92 2.43E-05 68.50 1.98E-06
Llama-2 82.54 4.26E-06 58.17 2.02E-06 69.30 2.73E-07
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8.6 List of countries and News Sources
We include a list of the news sources included in
this work in Table 11, as well as the resources that
we used to compile the list of news sources used in
this work shown in Table 12.

Table 11: News Sources by Country with Selected URLs

Country News Source Selected URLs

US Fox, CNN, NPR,
NBC, ABC, CBS
News, MSNBC,
nyt, Facebook, The
Washington Post

https://www.
foxnews.com,
https://www.cnn.
com, https://
www.nytimes.com,
https://www.
washingtonpost.
com

Russia Russia Today, Sputnik,
TASS, Interfax, Ria
Novosti, Argumenty i
Fakty, The Moscow
Times

https://www.rt.
com, https://
sputniknews.com,
https://tass.ru

China China Media Group,
CGTN, People’s Daily,
Xinhua News Agency,
China News Service,
China Daily

https://www.
cgtn.com,
https://news.cn,
https://www.
chinadaily.com.
cn

Hong
Kong

TVB News online,
Hk01, Now TV News
online, Headline Daily
online, Oriental Daily
News online

https://news.
tvb.com, https:
//www.hk01.com

Taiwan ETtoday online, TVBS
News online, Line
News, EBS News
online, Sanlih E-TV
News

https://www.
ettoday.net,
https://news.
tvbs.com.tw

Britain BBC News online,
Guardian online, Sky
News online, ITV
news, Channel 4 News,
Daily Mail/Mail on
Sunday

https://www.bbc.
com, https://www.
theguardian.com

France France Televisions,
BFM TV News, TF1
News, M6 News, 20
minutes online, France
Info

https://www.
francetelevisions.
fr, https:
//www.bfmtv.com
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Table 11 – continued from previous page

Country News Source Selected URLs

India Press Trust of In-
dia, CNN News
18, Times of India,
The Hindu, Indian
Express, Republic
TV/Republic World,
Hindustan Times,
NDTV, Dainik Jagran,
Dainik Bhaskar, Hin-
dustan, Amar Ujala,
Malayala Manorama,
Sakal, Dina Thaanthi,
Eenadu, Lokmat

https://www.
ptinews.com,
https:
//timesofindia.
indiatimes.com

Brazil Globo News, UOL on-
line, Record News, O
Globo, Band News,
CNN Brazil, O dia,
Folha de Sao Paulo, O
Estado de Sao Paulo,
Rio Times

https://g1.
globo.com, https:
//www.uol.com.br

Turkey Sozcu, CNN turk,
Haberturk, TRT
news, Sondakika,
Mynet, NTV, Hurriyet,
Cumhuriyet

https://www.
sozcu.com.tr,
https://www.
cnnturk.com

Italy La Repubblica, Cor-
riere della Sera, Il Sole
24 Ore, TGCom 24,
ANSA, Notizie Libero,
Il Fatto Quotidiano

https://www.
repubblica.it,
https://www.
corriere.it

Spain El Pais, OKDiario, El
Mundo, La vanguardia,
ABC Spain, La Razon,
Antena 3, Telecinco,
RTVE

https://elpais.
com, https:
//www.elmundo.es

Argentina Telefe News, Todo
Noticias, Canal 13
News, C5N, A24, In-
fobae, Clarin online,
La Nacion online

https:
//noticias.
mitelefe.com,
https://www.
infobae.com
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Table 11 – continued from previous page

Country News Source Selected URLs

Colombia El Tiempo, Noticias
Caracol, Las 2 Orillas,
El Espectador, Pulzo,
Noticias RCN, Noti-
cias uno, Q hubo, El
nuevo siglo, City Paper
Bogota, Colombia Re-
ports

http://www.
eltiempo.com,
https:
//noticias.
caracoltv.com

Mexico TV Azteca News, Tele-
visa News, El Uni-
versal, Imagen News,
Milenio Noticias, Un-
oTV news online, Aris-
tegui News

https://www.
tvazteca.com,
https://www.
televisa.com

Israel Israel Hayom, Maariv,
Haaretz, Yedioth
Ahronoth

https://www.
israelhayom.com,
https://haaretz.
com

Iran Tehran Times, Iran
Daily, Iranian Students
News Agency, Finan-
cial tribune, Resalat,
Hamshahri, Kayhan,
Ettelaat

https://www.
tehrantimes.com,
https://en.isna.
ir

Germany ARD News, ZDF
News, RTL News,
t-online, Spiegel
online, Bild.de

https://www.
tagesschau.de,
https://www.zdf.
de

Poland TVN News, RMF
FM / RMF24, Polsat
News, Radio Zet, Fakt,
Gazeta Wyborcza,
Onet, WP, Interia

https://tvn24.
pl, https:
//www.rmf24.pl

Table 12: Sources for Determining Inclusion of News
Sources

Source Name Link

Pew Research Center Re-
ports (pew)

N/A

News Agencies - Russia
(new)

N/A

Mass media in Russia
(Wikipedia) (mas)

https://wikipedia.
org

China Central Television
(CCTV) Reports (cct)

N/A

Oxford Studies (oxf) N/A
Digital News Report
(Reuters Institute) (reu)

https://
reutersinstitute.
politics.ox.ac.uk/
digital-news-report

BBC Guide for India
(bbc, a)

N/A

Audit Bureau of Circula-
tions India (aud)

N/A

Potential Political Lean-
ings (Twitter, Reddit) (?)

Twitter, Reddit

Media Bias/Fact Check
(med)

https://
mediabiasfactcheck.
com

BBC Media Guide Brazil
(bbc, b)

N/A

Eurotopics (eur) https://www.
eurotopics.net
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