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Abstract

We propose a simple method that applies a
large language model (LLM) to large-scale re-
trieval in zero-shot scenarios. Our method, the
Large language model as Retriever (LameR),
is built upon no other neural models but an
LLM in a retrieval-augmented retrieval fashion,
while breaking brute-force combinations of re-
trievers with LLMs and lifting the performance
of zero-shot retrieval to be very competitive
on benchmark datasets. Essentially, we pro-
pose to augment a query with its potential an-
swers by prompting LLMs with a composition
of the query and the query’s in-domain candi-
dates. The candidates, regardless of correct or
wrong, are obtained by a vanilla retrieval pro-
cedure on the target collection. As a part of the
prompts, they are likely to help LLM generate
more precise answers by pattern imitation or
candidate summarization. Even if all the can-
didates are wrong, the prompts at least make
LLM aware of in-collection patterns and gen-
res. Moreover, due to the low performance of a
self-supervised retriever, the LLM-based query
augmentation becomes less effective as the re-
triever bottlenecks the whole pipeline. There-
fore, we propose to leverage a non-parametric
lexicon-based method (e.g., BM25) as the re-
trieval module to capture query-document over-
lap in a literal fashion. As such, LameR makes
the retrieval procedure transparent to the LLM,
thus circumventing the bottleneck.

1 Introduction

Large-scale (or first-stage) is to fetch top relevant
documents for a given text query from a huge col-
lection with millions to billions of entries. It is
indispensable in information-seeking tasks, such
as open-domain question answering (Chen et al.,
2017), web search (Shen et al., 2022), knowledge-
grounded dialogue(Zhao et al., 2020), etc. Re-
cently, it is also leveraged as a core retrieval-
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augmenting module to enrich large language mod-
els (LLMs) with up-to-date or domain-specific
knowledge (Guu et al., 2020; Trivedi et al., 2022),
which reduces the hallucination problem (Shuster
et al., 2021) and improves the faithfulness of gen-
erated texts (He et al., 2023). Thereby, large-scale
retrieval is a long-term research problem, attracting
research efforts from academia and industry.

In the last decade, large-scale retrieval relies
heavily on deep representation learning techniques,
from bag-of-words (BoW) (Mikolov et al., 2013)
to pre-trained language models (PLMs) (Devlin
et al., 2019). Compared to supervised representa-
tion learning (Karpukhin et al., 2020; Xiong et al.,
2021) that requires labor-intensive annotations on
query-document pairs, self-supervised (or zero-
shot) learning (Lee et al., 2019; Ni et al., 2021; Izac-
ard et al., 2021; Muennighoff, 2022) on in-domain
pseudo pairs can be readily generalized to any cor-
pora without human-crafted annotations. Nonethe-
less, the zero-shot retriever usually results in an
inferior retrieval quality (Zhou et al., 2022a), even
worse than a non-parametric term-based BM25 re-
trieval (Thakur et al., 2021; Zhou et al., 2022a).

Fortunately, recent surging LLMs provide a
shortcut to reach zero-shot retrieval by augment-
ing a query with its potential answering elicited
from the LLMs (Gao et al., 2022). Coupled with a
self-supervised retriever, Contriever (Izacard et al.,
2021), it delivers superior retrieval performance,
even surpassing a number of supervisedly fine-
tuned retrievers. But, such a brute-force combi-
nation of a self-supervised retriever with a versa-
tile LLM leads to a major problem. The answer
elicitation is merely based on prompting LLMs
with short, intent-ambiguous, and domain-vague
retrieval queries. Due to the ambiguity of user
queries and unawareness of in-domain corpora, the
LLMs are likely to generate spurious and out-of-
domain answers to the queries (Asai et al., 2022),
making the query augmentation even more toxic.
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To circumvent this issue, we propose a brand-
new and simple paradigm for large-scale retrieval,
called LameR. Essentially, during eliciting LLMs
for answers to a query, we inject the query’s top
answer candidates into the prompt, where the can-
didates are obtained by applying a vanilla retrieval
procedure to the query. As such, the LLMs are
prone to distinguish and imitate the candidates
(Brown et al., 2020), while summarizing or/and
re-writing new ones with internal knowledge of
the LLMs. Moreover, despite correct or wrong
candidates, they can at least provide demonstra-
tions about in-domain patterns and knowledge (Min
et al., 2022; Xie et al., 2022; Lyu et al., 2022).

Moreover, though the LLMs now generate more
precise, and reliable query augmentations, the
whole pipeline is likely to be bottlenecked by the
weak retriever trained on pseudo data in a self-
supervised manner. Therefore, we also propose to
get rid of any learnable parametric retrievers, while
opting for non-parametric term- or lexicon-based
retrieval methods (e.g., BM25 in our experiments)
in our LameR. In contrast to model-specific com-
pressed and/or latent embeddings from a deep re-
triever, the lexicon-based retrieval methods capture
lexicon overlap between augmented queries and
in-collection documents in a literal fashion, thus
taking the outputs of LLMs in a transparent mode
and bypassing the performance bottleneck.

We evaluate LameR on several benchmark
datasets of large-scale retrieval by following Gao
et al. (2022). Our results show that our proposed
method achieves the best retrieval qualities on most
datasets compared to other zero-shot competitors.
Also, it can surpass the LLM-based retriever with
in-context labeled demonstrations and outperform
the baseline retrievers fine-tuned on full datasets.

2 Observation

In our pilot experiments, we observed the brute-
force combination of a versatile LLM with weak
retriever leads to certain demerits, which primarily

Figure 1: nDCG on DL19 for query augmentation w/ LLMs.

Figure 2: HyDE improving Dense and Term-based Retrieval.

motivates this work.

Bottleneck by Self-supervised Retriever. Due
to the weakness of a self-supervised dense retriever
in representing capability, the whole pipeline is bot-
tlenecked by the retriever, even though correct an-
swers are likely to be generated by the strong LLM.
As illustrated in Figure 1, strengthening LLMs in
QA-style query augmentation (i.e., HyDE (Gao
et al., 2022), which elicits an LLM to generate
answers as query augmentation) hardly improves
retrieval performance. Here, ‘d003’ and ‘3.5t’ de-
note text-davinci-003 and gpt-3.5-turbo by
OpenAI, respectively.

Mismatch w/ Term-based Retriever. Due to un-
awareness of in-domain corpora, LLM is likely to
generate out-of-domain answers to a given context-
short and intent-vague query, making the query
augmentation even toxic. Thanks to the fuzzy ca-
pability of dense retrievers, such query augmenta-
tion still bring remarkable improvement in search
quality. However, when it comes to lexicon-based
retrieval (say BM25), the improvement will be re-
duced due to out-of-domain augmentations. Quan-
titatively, as in Figure 2, ‘Contriever’ is a SoTA
self-supervised dense retriever while ‘BM25’ is
a representative lexicon-based retrieval. It is ob-
served that although BM25 can beat Contriever
in the vanilla setting, HyDE brings twice more
improvement to Contriever than BM25, making
BM25 less competitive.

3 Related Work

Although an LLM can directly generate relevant
documents and even the final answer for a user
query upon its parametric memory, such a gen-
erative information-seeking approach is limited
by: i) out-of-date corpora are learned in the para-
metric memory, ii) unreliable, and hallucinative
text is frequently generated, and iii) the domain
of generated text cannot be specified as demand.
In contrast, information retrieval aims to pro-
vide in-domain and reliable documents relevant
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Figure 3: Large language model as Retriever (LameR). Please see Table 1 for the prompt formulation.

to user queries, which dominates people’s daily
information-seeking methods.

Therefore, many research efforts have recently
been dedicated to applying large language mod-
els (LLMs), such as the GPT series, to informa-
tion retrieval tasks for superior search performance.
The majority of these works are in few-shot or
zero-shot scenarios. Yu et al. (2022) proposed
a generate-then-read pipeline instead of the tradi-
tional retrieve-then-read pipeline. Dai et al. (2022)
introduced a few-shot dense retrieval approach for
different tasks with different retrieval intents. Dua
et al. (2022) proposed a data augmentation method
for domain adaptation for open-domain QA, where
a document is passed to LLM for the generation
of its possible queries. Gao et al. (2022) focused
on zero-shot dense retrieval using the Hypothetical
Document Embedding (HyDE) method to generate
potential answers by LLM as query augmentation.
Jeronymo et al. (2023) and Boytsov et al. (2023)
leveraged a fine-tuned ranker (on MS-MARCO in
a supervised manner) to filter LLM-generated data
for better query-document quality and thus superior
performance. Saad-Falcon et al. (2023) designed
a two-stage LLM pipeline for zero-shot query gen-
eration and reranker-distilled retriever. Wang et al.
(2023) utilized a few-shot query-document demon-
stration to generate documents for a new query as
the query’s augmentation.

Unlike these works, we focus on the zero-shot re-
trieval scenario, and neither conduct any in-domain
data augmentation for domain-specific retriever
training nor introduce any other retrieval or/and
intermediate models except for a frozen LLM.

Please refer to Appendix A for more discussions
of §A.1 zero-shot large-scale retrieval (which is our
scope), §A.2 in-context learning (as we could re-
gard the BM25-retrieved docs as unlabeled demon-
strations), and §A.3 retrieval & rerank pipeline (as
we have a two-step retrieval pipeline).

4 Language Language Model as Retriever

This section begins with a task definition, fol-
lowed by elaborations on three components to
achieve LameR – non-parametric lexicon-based
retriever (§4.1), candidate-prompted answer gen-
eration (§4.2), and answer-augmented large-scale
retriever (§4.3). LameR is illustrated in Figure 3.

Task Definition: Zero-Shot Large-Scale Re-
trieval. Providing a huge collection consisting of
many documents, D = {di}|D|i=1, the goal of ‘large-
scale retrieval’ is to rank the whole D in descend-
ing order according to the relevance score between
a given text query q and each di. The relevance
score is usually derived by a high-efficient retrieval
model that operates on a pre-indexed |D| and an on-
the-fly q to satisfy real-time requirements. Mean-
time, ‘zero-shot’ means that there is no training
set with labeled positive query-document pairs for
supervised representation learning.

4.1 Non-parametric Lexicon-based Retriever

To tackle zero-shot retrieval, a recent trend is to
train a deep encoder (e.g., BERT) over pseudo
query-document pairs in a self-supervised manner,
where the pairs are heuristically mined from the
target collection D. Although the self-supervised
learning process is required to especially repeat
or/and design for every retrieval collection (Lee
et al., 2019; Zhou et al., 2022a), the resulting re-
trieval performance is not satisfactory in most cases,
lagging far behind fully-supervised retrievers.

In contrast, non-parametric term- or lexicon-
based retrieval methods, e.g., TF-IDF and BM25 1,
are free of training heavy neural networks, but de-
pend on lexicon overlap with considering term and
document frequency of the lexicons. Even so, the
simple BM25 retrieval method can outperform the

1Although the two hyper-parameters, i.e., k1 and b, in
BM25 algorithm can be tuned, for example, by grid search,
we do not seek to tune them but keep them in defaults, i.e.,
k1 = 0.9 and b = 0.4, in Pyserini (Lin et al., 2021).
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Candidate-prompted Instruction.

Give a question “{q}” and its possible answering passages (most of these
passages are wrong) enumerated as: \n 1.{cq1} \n 2.{cq2} \n 3.{cq3} . . .
please write a correct answering passage.

Table 1: Our simple QA prompt to elicit knowledge from LLM for information retrieval in our LameR. Here, the entry with
‘{·}’ represents a placeholder for the corresponding text. cql ∈ Cq denotes a retrieved candidate. Please see Appendix B for the
prompts for all datasets.

self-supervised retriever in many cases in zero-shot
retrieval (Zhou et al., 2022a; Thakur et al., 2021).

Therefore, in this work we leverage the BM25
method (Robertson and Zaragoza, 2009) to perform
large-scale retrieval. The core idea of BM25 is to
rank documents according to their relevance to a
given query by incorporating term frequency and
inverse document frequency. In brief, its relevance
score between a document d ∈ D and a query q is
defined as

RelBM25(d, q) = (1)
∑

t∈q
IDF(t)· TF(t, d) · (k1 + 1)

TF(t, d)+k1 ·(1−b+b· len(d)
avgdl )

,

where IDF(t)=log
N−n(t)+0.5

n(t) + 0.5
.

Here, t denotes a lexicon term in q, TF(t, d) is the
term frequency of t in document d, and IDF(t) is
the inverse document frequency of term t, N = |D|
is the total number of documents in the collection,
n(t) is the number of documents containing term
t, len(d) is the length of d, and avgdl is the aver-
age document length across the collection. In the
remainder, we define a retrieval procedure as

D̂q = Retriever(q,D,K). (2)

D̂q is a list of top-K retrieval candidates of q with
descending relevance scores, so |D̂q| = K.

Remark. When employing a strong, non-tunable,
generative model, e.g., LLM, for explicit text aug-
mentations of a query, a lexicon-based retrieval
method has its own merit in not only high effi-
ciency, but taking the exact augmentations for re-
trieval without compressed embedding. Therefore,
using the lexicon-based method exposes LLMs’
outputs to the retrieval collection literally, making
the retrieval module transparent to LLMs. By com-
parison, the neural encoder, trained on heuristically
mined pseudo data in a self-supervised manner, is
too weak to model the LLM-augmented queries,
leaving a performance bottleneck here (see §2).

4.2 Candidate-Prompted Answer Generation
Given a query q, we augment it with its answer(s) a
elicited from an LLM, which has been proven effec-
tive in improving zero-shot retrieval quality (Gao
et al., 2022; Wang et al., 2023). How to conduct the
elicitation remains an open question. For example,
in a straightforward way, Gao et al. (2022) propose
to prompt an LLM with a composition of a QA
instruction and the query. However, as the LLM
can only receive a short, intent-ambiguous query,
joined with a broad and general QA instruction, it
is not well instructed by the prompt with both the
intent and domain of a query, leading to less precise
answers. Wang et al. (2023) add few-shot query-
document examples as in-context demonstrations
to the prompt for more reasonable answers, which,
however, is unavailable in zero-shot settings.

Instead, we propose a new prompt schema,
called candidate-prompted answer generation, for
query augmentation in large-scale retrieval. As
shown in Table 1, besides a task instruction and a
retrieval query, a list of top answering candidates
is also included in the prompt for elicitation of an
LLM. Here, the top candidates are obtained by di-
rectly applying a vanilla retrieval process to the
query via the retriever (§4.1). So, we first retrieve
top-M candidates for q from the whole D by

Cq = Retriever(q,D,M), (3)

where M is usually very small (e.g., < 10) to re-
duce computation overhead for downstream mod-
ules. Then, to elicit knowledge from an LLM, we
construct a prompt with Cq and then invoke the
LLM for answer generation, i.e.,

Aq = {aq1 . . . aqN |aq ∼ LLM(p (t, q,Cq))} (4)

where p(·) composes the prompt using task an in-
struction t, the query q, and the retrieved candidates
Cq (see Table 1 for an example and Appendix B
for prompts of all tasks). It is noteworthy that we
generate multiple (i.e., N ) answers by sampling
outputs of the LLM, because we’d like to provide
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TREC Deep Leaning 2019 TREC Deep Leaning 2020
MAP nDCG@10 R@1k MAP nDCG@10 R@1k

w/o relevance judgment (zero-shot retrieval)
BM25 30.1 50.6 75.0 28.6 48.0 78.6
Contriever 24.0 44.5 74.6 24.0 42.1 75.4
HyDE 41.8 61.3 88.0 38.2 57.9 84.4
LameR (ours) 47.2 69.1 89.9 45.6 64.8 88.7

reranking w/o relevance judgment
BM25top-100 →LRL (Ma et al., 2023) - 65.8 - - 62.2 -

w/ few-shot relevance judgment (few-shot ICL for answer generation)
Q2DBM25 - 66.2 - - 62.9 -

w/ relevance judgment (fully-supervised fine-tuning)
DPR 36.5 62.2 76.9 41.8 65.3 81.4
ANCE 37.1 64.5 75.5 40.8 64.6 77.6
ContrieverFT 41.7 62.1 83.6 43.6 63.2 85.8

Table 2: Results for web search on DL19/20. Best w/o relevance judgment is marked bold. DPR, ANCE and ContrieverFT are
in-domain supervised models that are finetuned on MS-MARCO training data. We use gpt-3.5-turbo by default.

as many potential answers as we can to prevent the
‘vocabulary mismatch’ problem.

As such, LLM(·) utilizes the answering candi-
dates Cq in two aspects: i) If one or many gold
documents of q existing in Cq, LLM(·) serves like
a re-ranker and generates the answers Aq by both
summarizing the correct documents from Cq and
eliciting internal parameterized knowledge. ii) Re-
gardless of the correctness of Cq, LLM(·) also re-
ceives in-collection answering information about
intents, domains, and units, which are prone to help
the LLM generate more precise answers Aq.

4.3 Answer-Augmented Large-Scale Retrieval
Given the generated answers Aq of q, we use them
to augment q and produce a new query q̄. At-
tributed to the non-parametric lexicon-based re-
triever, we can perform the query augmentation
in a very straightforward way, which operates on
plain text rather than latent embeddings. That is,
we can easily concatenate every aq ∈ Aq with the
original q, i.e.,

q̄ = Concat(q, aq1, q, a
q
2, . . . , q, a

q
N ), (5)

where Concat denotes a concatenation operation
in text. Lastly, we simply use the augmented query,
q̄, to conduct a large-scale retrieval,

D̂q̄ = Retriever(q̄,D,K), (6)

where D̂q̄ is a list of final retrieved documents for
query q and K = 1000 for metric calculation.
Thanks to the high efficiency of the lexicon-based
retriever with an inverted index, the augmentation
would not cause catastrophic overhead increases,
which is still faster than a dense retriever.

5 Experiment

In this section, we will conduct extensive experi-
mental evaluations of the proposed retrieval method
and compare it with strong competitors. Implemen-
tation of LameR is available at https://github.
com/taoshen58/LameR.

5.1 Evaluation Setup

Datasets and Metrics. Following the datasets
used by Gao et al. (2022), we first employ
the widely-used passage retrieval datasets, MS-
MARCO (Nguyen et al., 2016) and report
performance on TREC Deep Learning 2019
(Craswell et al., 2020) and TREC Deep Learning
2020(Craswell et al., 2021) test sets (DL19 and
DL20 for short, respectively). Meantime, we also
evaluate our method on BEIR benchmark (Thakur
et al., 2021). Here, we follow Gao et al. (2022)
to consider low-resource datasets from the BEIR
dataset, so we employ six datasets, consisting
of one fact-checking task (Scifact), one question-
answering task (FiQA), one bio-medical IR task
(TREC-COVID), one news retrieval task (TREC-
NEWS), one argument retrieval task (ArguAna),
and one entity retrieval task (DBPedia). Note that,
as a zero-shot retrieval setting, we do not use any
training query-document pairs but directly evalu-
ate our method in the test sets. Following previ-
ous works, we report MAP, nDCG@10 and Re-
call@1000 (R@1k) for both TREC Deep Learn-
ing 2019 and TREC Deep Learning 2020. And
nDCG@10 is reported for all the datasets in the
BEIR benchmark.
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nDCG@10 Scifact Arguana Trec-COVID FiQA DBPedia TREC-NEWS

w/o relevance judgment
BM25 67.9 39.7 59.5 23.6 31.8 39.5
Contriever 64.9 37.9 27.3 24.5 29.2 34.8
HyDE 69.1 46.6 59.3 27.3 36.8 44.0
LameR (ours) 73.5 40.2 75.8 25.8 39.0 50.3

w/ few-shot relevance judgment
Q2DBM25 68.6 - 72.2 - 37.0 -

w/ relevance judgment
DPR 31.8 17.5 33.2 29.5 26.3 16.1
ANCE 50.7 41.5 65.4 30.0 28.1 38.2
ContrieverFT 67.7 44.6 59.6 32.9 41.3 42.8

Table 3: Low resource tasks from BEIR. Best performing w/o relevance judgment are marked bold.

Experimental Setup. As for the large language
model, we use gpt-3.5-turbo as the LLM to per-
form answer generation by default. Meantime, we
also involve gpt-4 to investigate whether stronger
LLM will bring more improvement. And, the
number of candidates, M in Eq.(3), is set to 10
in our main results, and the number of generated
answers, N in Eq.(4) is set to 5. To ensure effi-
ciency, we truncate each of the queries and pas-
sages/documents to 128 tokens.

Baselines and Competitors. As we focus on the
zero-shot retrieval setting, our main baselines fall
into the retrieval methods without dependency on
annotated query-document pairs (i.e., w/o relevance
judgment). In particular, we use BM25 (Robertson
and Zaragoza, 2009) and Contriever (Izacard et al.,
2021) as strong baselines for zero-shot lexicon and
dense retrieval, respectively. And, we also include
HyDE (Gao et al., 2022) as the state-of-the-art
competitor for LLM-based retrieval. Furthermore,
we also employ some baselines not in zero-shot
settings to verify the effectiveness of our method.
On the one hand, we leverage Q2D+BM25 (Wang
et al., 2023) as a few-shot baseline (i.e., w/ few-shot
relevance judgment), where in-context gold query-
document pairs are provided to help LLM gener-
ate answers for a query. On the other hand, we
consider some popular fully-supervised retrieval
models (i.e., w/ relevance judgment), including
DPR (Karpukhin et al., 2020), ANCE (Xiong et al.,
2021), fine-tuned Contriever (Izacard et al., 2021),
etc.

5.2 Main Evaluation

DL19 and DL20 Test Sets. As shown in Table 2,
we compare our LameR with its baselines and
competitors in both TREC Deep Learning 2019

and 2020 test sets. It is observed that our method
achieves the best performance in the zero-shot set-
ting, significantly outperforming its strong competi-
tor, HyDE2. This clearly verifies the effectiveness
of our candidate-prompted answer generation. It
is also noteworthy that our LameR is based on a
much faster BM25 retriever, in contrast to the heavy
dense retriever, Contriever, in HyDE. Meantime,
compared to the method (Q2DBM25) with few-shot
relevance judgment and the methods (DPR, etc.)
with full relevance judgment, our proposed LameR
achieves the best on most retrieval evaluation met-
rics. Note LameR can surpass retrieval (w/ BM25)
& reranking (w/ LLM) pipeline, i.e., LRL (Ma
et al., 2023) (or GPT-reranker (Sun et al., 2023)),
showing the superiority of our two-step pipeline.

BEIR Benchmark. Furthermore, we compare
our retrieval method with the others on six low-
resource tasks from the BEIR dataset. As shown
in Table 3, our proposed method performs best on
four out of six datasets. It should be highlighted
that our LameR achieves superior performance on
two TREC retrieval datasets, i.e., TREC-COVID
and TREC-NEWS, which verify our proposed
method in web information-seeking tasks. Mean-
time, We found our LameR delivers poor results on
‘Argunan’, a dataset designed to retrieve counter-
argument passages from a collection. Since the
queries and documents in the dataset are usually
over-long (> 256), this is possibly caused by ap-
plying aggressive truncation (cap at 128) to the
long queries and passages in the dataset. Besides,
we also noticed that the performance of FiQA in
zero-shot settings is far from that in the few-shot or
fully-supervised settings. This may be caused by

2Although HyDE uses text-davinci-003 as its LLM,
we found updating it with gpt-3.5-turbo leads to similar
retrieval performance. See Figure 1 for details.
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(a) (b) (c) (d)

Figure 4: Hyperparameter explorations and ablation studies, where the data points in dashed rectangles denote our default
choices. (a) The number of retrieved passages as in-context demonstration for answer generation, i.e., M in Eq.(3). (b) The
number of generated answers as query augmentations for large-scale retrieval, i.e., N in Eq.(4). (c) and (d) depict the schemes
to obtain the 10 demo-passages, where the first is to fetch 10 consecutive passages from a start index of the BM25-retrieved
passages and the second is to randomly sample 10 passages from top-N passages. Note that ‘≫1k’ denotes randomly sampling
10 passages from the whole collection.

DL19 MAP nDCG@10 R@1k

DPR 36.5 62.2 76.9
Contriever-FT 41.7 62.1 83.6

HyDELLaMA-2-7B 37.5 57.1 82.0
LameRLLaMA-2-7B 40.6 59.8 83.8

HyDELLaMA-2-13B 38.8 58.3 83.7
LameRLLaMA-2-13B 42.8 64.9 84.2

Table 4: LameR with open-source LLMs on DL19.

the lack of financial knowledge in general LLM.

Open-Source LLMs. Table 4 shows the effec-
tiveness of integrating open-source LLMs, LLaMA-
2-chat-7B and -13B (Touvron et al., 2023b), into
the LameR framework for the DL19 dataset. No-
tably, LameR, when augmented with these LLMs,
outperforms both HyDE configurations and tradi-
tional methods like DPR and Contriever-FT, show-
casing the adaptability and efficiency of LameR
with various LLM backbones.

Power of Stronger LLM. To further verify if
our LameR will benefit from stronger LLM, we
involve the bleeding-edge LLM, GPT-4, in our
LameR framework and apply it to DL20 dataset
as its results in the main evaluation with GPT-3.5

DL20 nDCG@10
BM25 48.0
HyDE 57.9
DPR (supv.) 65.3
LameRGPT-3.5 64.8
LameRGPT-4 65.9

Table 5: LameR with GPT4.

DL19 MAP nDCG@10 R@1k

BM25 30.1 50.6 75.0
LameR (dflt) 47.2 69.1 89.9
LameR-oracle 60.7 84.0 93.8

3 2nd Round 46.7 68.1 87.5

Table 6: Exploring extremes of LameR.

is not superior enough. As shown in Table 5, af-
ter applying GPT-4, our retrieval method achieves
significantly high performance and beats all the
competitors even with full relevance judgment.

5.3 Ablation Study and Further Analysis

Number of Retrieved Demos. First, we inves-
tigate whether the number of retrieved passages
(as in-context demonstration) affects query aug-
mentation and thus retrieval quality. As shown in
Figure 4(a), increasing M > 0 consistently brings
improvement in answer-augmented large-scale re-
trieval, and the improvement becomes marginal
when the number exceeds 10. Considering that
increasing M inevitably causes more computation
overheads, we use M = 10 for a better trade-off
between performance and efficiency. Besides, an
interesting point is that LameR with M = 0 is
surprisingly better than both i) HyDE, which ver-
ifies the effectiveness of our query augmentation
coupled with BM25 retrieval, i.e., Eq.(5-6), and
ii) LameR with M = 1, which is likely caused by
low recall performance in top-1 and more severe
interference of error candidates.

Number of Answers. We also investigate if the
number of answers generated by LLM will affect
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the performance of our LameR. As shown in Fig-
ure 4(b), the performance of retrieval grows along
with the number of generated answers, but becomes
fluctuating and saturated when N > 5. Therefore,
we use N = 5 as the default in our experiments.

Schemes to Obtain Demo-passages. We lever-
age top-10 retrieved passages as demonstrations
as they are likely to provide pivot query-related
knowledge in a limited context window of LLMs.
To empirically check this intuition, we propose
three schemes for demo-passages: i) As shown in
Figure 4(d), the performance consistently drops
when we increase the sample range because the
related knowledge and correct demonstrations are
weakened gradually. ii) As shown in Figure 4(c),
we fetch 10 consecutive passages from different
start indices in BM25 results. Surprisingly, there is
a U-shaped curve, which can be explained by ‘hard
negatives’ widely presenting in IR: Basically, hard
negatives in top candidates challenge LLMs’ dis-
tinguishing capability between positives and hard
negatives. What’s worse, with increasing start in-
dices, the correct passages scarcely appear in the
10 consecutive passages, making the LLMs lose
contrastive samples and get fooled by the negatives.
iii) More interestingly, as the ‘≫1k’ in both Fig-
ure 4(c) & 4(d), randomly sampling 10 entries from
the whole collection as demo-passages results in
surprisingly high results. This is because they are
focused on providing useful information about the
knowledge domain (e.g., web, news, Wikipedia,
scientific, arguments), task intent (e.g., dialogue,
question answering), answering format (e.g., unit,
length, pattern), etc., while free from hard negatives
or spurious answers.

Exploring Extremes of LameR. As LameR is
built upon BM25 retrieval system, the lower bound
of LameR would be BM25. Go beyond, it is in-
teresting to find out the upper bound of LameR,
which can demonstrate the extreme performance
that LameR may deliver. As shown in Table 6,
we conduct an experiment called ‘LameR-oracle’,
where 10 demo-passages are instead obtained by
gold query-document pairs in the labeled test set.
It’s seen that compared to our LameR w/ default
settings (i.e., dflt), LameR-oracle performs much
higher, verifying i) the importance of the correct-
ness of demonstrated passages and ii) a great im-
provement room left for further research. As an
initial exploration, we propose a brute-force at-
tempt that a 2nd-round LameR is applied to the

Figure 5: Efficiency of LameR with HyDE in retrieval la-
tency (QPS) and index size (GB). Numbers for LameR sum
overheads in two stages, and the variants for each system are
achieved by changing the generation number.

retrieval results by default LameR, but to our sur-
prise, the performance even drops by absolute 1.0%
nDCG@10 (see the last row of Table 6). Sharing
inspirations with error reinforcement, the query
augmented by an LLM (in the 1st round) is prone
to return spurious passages that especially confuse
the LLM (i.e., hardly distinguished), resulting in
wrong answers to poison BM25. This suggests that
in the future, we should focus more on introducing
multiple retrieval methods to achieve diversity.

5.4 Efficiency Analysis

Overheads with LLMs. Similar to HyDE (Gao
et al., 2022) and Q2D (Wang et al., 2023), us-
ing LLMs to generate query augmentations in-
evitably leads to high computation overheads. Op-
timistically speaking, such inference-only over-
heads do not increase with the scale of retrieval
collection, and a recent trend is to make smaller
LLMs competitive (Touvron et al., 2023a; Taori
et al., 2023), which would benefit these meth-
ods. In the future, we will explore specializing
in a smaller LLM to generate query augmenta-
tions. Besides, in HyDE and our LameR, intro-
ducing LLMs makes the whole retrieval system
free from heavy query-document annotations and
outperforms fully-supervised baselines. Specifi-
cally, as few-shot Q2D and our zero-shot LameR
use extra passages in contrast to zero-shot HyDE,
they outperform HyDE significantly. Comparing
LameR with few-shot Q2D, with similar LLM’s
overheads (i.e., reducing our retrieved candidates),
the LameR achieves 66.7% nDCG@10 on DL19,
still surpassing Q2D.

Overheads in Retrieval. Moving to overheads
in retrieval, we compare BM25-based zero-shot
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TREC Deep Leaning Track 2019 TREC Deep Leaning Track 2020
MAP nDCG@10 R@1k MAP nDCG@10 R@1k

Zero-shot Retriever
BM25 30.1 50.6 75.0 28.6 48.0 78.6
LameRbm25 (zero-shot) 47.2 69.1+18.5 89.9 45.6 64.8+16.8 88.7
Contriever 24.0 44.5 74.6 24.0 42.1 75.4
LameRContriever (zero-shot) 41.1 64.3+19.8 87.3 38.3 58.2+16.1 85.5

Fully-supervised Retriever
ContrieverFT 41.7 62.1 83.6 43.6 63.2 85.8
DPR 36.5 62.2 76.9 41.8 65.3 81.4
ANCE 37.1 64.5 75.5 40.8 64.6 77.6
SimLM - 71.4 - - 69.7 -
E5base - 74.3 - - 70.7 -

LLM-augmented Fully-supervised Retriever
HyDEContrieverFT - 67.4 - - 63.5 -
Q2DDPR - 68.7 - - 67.1 -
Q2DSimLM - 72.9+1.5 - - 71.6+1.9 -
Q2DE5base - 74.9+0.6 - - 72.5+1.8 -
LameRSimLM† 54.9 76.5+5.1 91.1 55.7 75.8+6.1 89.5

Table 7: Results on DL19/20. †Equipping with our implemented SimLM (Wang et al., 2022a). We mark the ‘absolute
improvement over base retriever’ in superscript for key methods. Ref: DPR (Karpukhin et al., 2020) and E5 (Wang et al., 2022b).

LameR with its counterpart, HyDE, equipped with
zero-shot dense retriever. As in Figure 5, bene-
fiting from highly-efficient BM25, LameR, with
much higher zero-shot retrieval performance, wins
in both retrieval latency and index size.

5.5 LameR meets Dense Retriever
Given promising results w/ a simple BM25, we ex-
plore replacing the 2nd-stage BM25 w/ an encoder
for dense retrieval. Compared to Eq.(5), the em-
bedding of an augmented query is derived by q̄ =
1/N ·∑l∈[1,N ](Enc(q; θ

(den))+Enc(aql ); θ
(den))/2,

where θ(den) parameterizes Enc(·).
Consistency across Paradigms. Recall the re-
sults in §2: Applying HyDE leads to inconsistent
improvement on zero-shot dense retrieval (i.e., Con-
triever) and term-based retriever (i.e., BM25). So,
we’d like to check if LameR can overcome this is-
sue by considering in-domain demonstrations. As
listed in Table 7(top), applying LameR to Con-
triever and BM25 results in similar improvement,
verifying its effectiveness in query augmentation
by demonstrating in-domain knowledge.

LameR w/ SoTA Retriever. To exploit the per-
formance extreme of LameR, we incorporate a
SoTA dense retriever, SimLM (Wang et al., 2022a).
As shown in Table 7(bottom), LameRSimLM signifi-
cantly improves the SoTA performance on DL19
and DL20 and achieves the best effectiveness.
Meantime, compared to Q2DSimLM, our LameR
brings significantly higher improvement to SimLM

than Q2D (by 3.6% and 4.2% on DL19 and DL20,
respectively), not to mention Q2D relying on few-
shot demonstration.

6 Conclusion

We propose a retrieval method based merely on an
LLM and a simple BM25 algorithm, without any
dependence on learnable retrieval models. As such,
all the operations are performed in the consistent
interface of natural language (i.e., language-based
query augmentation and lexicon-overlap retrieval
relevance), without the performance bottleneck of a
fragile self-supervised model-based retriever. Our
evaluations verify the effectiveness of the proposed
LameR, supporting the LLM can solely serve as a
strong retriever without any in-domain annotated
query-document pairs.

Limitation

i) Instruction sensitivity: Identical to other prompt-
based LLM applications, this work would also be
sensitive to the instructions with different LLMs,
which may consume a lot of human effort on
prompt writing. ii) Computation Overheads: As
stated in 5.4, although the 2-stage retrieval proce-
dure in LameR is very fast by inheriting BM25,
LameR is constrained by calling the LLM for an-
swer generation in terms of computation overheads.
To overcome these limitations, in the future we will
explore specializing in a relatively smaller LLM
for query-augmentation purposes.
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A More Related Work

A.1 Zero-Shot Large-scale Retrieval
In the last years, many research efforts have been
dedicated to zero-short retrieval due to its inde-
pendence of labor-intensive query-document an-
notations. In contrast to zero-shot transfer that
supervisedly trains a retriever in one domain and
then evaluates it in another domain (Thakur et al.,
2021), we focus on an extremer scenario where
no supervised data but the raw target collection is
accessible. To handle this scenario, previous works
construct pseudo query-document pairs from a tar-
get retrieval collection, such as inverse cloze task
(Lee et al., 2019), hyperlink prediction (Zhou et al.,
2022a), bottlenecked autoencoder (Shen et al.,
2022), etc. Given the mined pseudo pairs, they
train a retriever upon pre-trained language models,
e.g., BERT and RoBERTa, via contrastive learn-
ing with stochastic negatives. However, the self-
supervised retrievers are only comparable to the
lightweight non-parametric term- or lexicon-based
retrievers, e.g., BM25 (Robertson and Zaragoza,
2009). Even equipped with LLM-based augmen-
tation (Gao et al., 2022), the self-supervised re-
trievers still lag behind the retrievers fine-tuned
on supervised data. In this work, we discard the
inferior self-supervised retrievers but choose the
highly generalizable non-parametric retrievers, and
propose a brand-new method that integrates LLMs
into zero-shot retrieval.

A.2 In-context Learning (ICL)
LLMs can be adapted to new tasks by learning
input-label pairs (a.k.a. demonstrations) provided
in context, without updates of parameters, which
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is dubbed in-context learning (Brown et al., 2020).
Furthermore, some works seek better in-context
demonstrations through retrieval, based on an ob-
servation that the demonstrations close to the test
input help ICL more effectively (Liu et al., 2022;
Rubin et al., 2022). Empirically, ICL, with sev-
eral demonstrations, remarkably outperforms zero-
shot methods across a broad spectrum of tasks,
however of a prerequisite for mandatory few-shot
examples. Fortunately, recent works (Xie et al.,
2022; Razeghi et al., 2022; Min et al., 2022) sug-
gest ICL demonstrations are mainly used to specify
input-label domains and formats of the target task,
rather than supervision signal only. Sharing a simi-
lar inspiration with these works, especially Z-ICL
(Lyu et al., 2022), we leverage a retriever for un-
supervised demonstrations from a huge collection
to specify the domain, intent, and unit. However,
we stand with a clean-cut motivation: as we ex-
actly target the retrieval task, the retrieved demon-
strations are potential labels (answers), orthogonal
to retrieving inputs in previous works (Lyu et al.,
2022; Wang et al., 2023). As such, the demonstra-
tions are likely to help generate correct answers by
correction or/and summarization with a boosting
inspiration.

A.3 Retrieval & Rerank Pipeline
Our two-stage procedure is similar to the retrieval
& rerank pipeline (Cai et al., 2021). The retrieval
& rerank pipeline first employs a high-efficient re-
triever to fetch top candidates from a collection and
then uses a heavy but effective ranker to rerank the
candidates for more precise ranking outputs (Gao
and Callan, 2022; Zhou et al., 2022b). But, besides
requiring supervised data to train both modules, the
rerank module is constrained by the upstream re-
trieval module. In contrast, LameR always lets its
retrieval module direct interact with the collection,
free of constraint.

B All Prompts

We did not carefully craft the prompts in this work
but directly adapted the prompts in (Gao et al.,
2022). We write our prompts of LameR for all the
datasets in Table 8.
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Prompt for DL19 and DL20.

Give a question “{q}” and its possible answering passages (most of these
passages are wrong) enumerated as: \n 1.{cq1} \n 2.{cq2} \n 3.{cq3} . . .
please write a correct answering passage.

Prompt for scifact.

Give a question “{q}” and its possible scientific paper passages (most of
these passages are wrong) enumerated as: \n 1.{cq1} \n 2.{cq2} \n 3.{cq3} . . .
please write a correct scientific paper passage.

Prompt for arguana.

Give a question “{q}” and its possible counter-argument passages (most of
these passages are wrong) enumerated as: \n 1.{cq1} \n 2.{cq2} \n 3.{cq3} . . .
please write a correct counter-argument passage.

Prompt for trec-covid.

Give a question “{q}” and its possible scientific paper passages (most of
these passages are wrong) enumerated as: \n 1.{cq1} \n 2.{cq2} \n 3.{cq3} . . .
please write a correct scientific paper passage.

Prompt for fiqa.

Give a question “{q}” and its possible answering financial article passages
(most of these passages are wrong) enumerated as: \n 1.{cq1} \n 2.{cq2} \n 3.{cq3}
. . .
please write a correct answering financial article passage.

Prompt for dbpedia.

Give a question “{q}” and its possible answering passages (most of these
passages are wrong) enumerated as: \n 1.{cq1} \n 2.{cq2} \n 3.{cq3} . . .
please write a correct answering passage.

Prompt for trec-news.

Give a question “{q}” and its possible relevant passages (most of these
passages are wrong) enumerated as: \n 1.{cq1} \n 2.{cq2} \n 3.{cq3} . . .
please write a correct relevant passage.

Table 8: Our prompts for all datasets.
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