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Abstract

This paper introduce a novel thought prompt-
ing approach called “Everything of Thoughts”
(XOT) for Large Language Models (LLMs) to
defy the law of “Penrose triangle ” of ex-
isting thought paradigms, to achieve three key
perspectives in thought generation simultane-
ously: performance, efficiency, and flexibility.
XOT leverages pretrained reinforcement learn-
ing and Monte Carlo Tree Search (MCTS) to
incorporate external domain knowledge and
planning capability into thoughts, thereby en-
hancing LLMs’ decision-making capabilities.
Through the MCTS-LLM collaborative thought
revision framework, XOT autonomously pro-
duces high-quality comprehensive cognitive
mappings with minimal LLM interactions. Ad-
ditionally, XOT empowers LLMs to utilize flex-
ible cognitive mappings for solving problems
with multiple solutions.
We evaluate XOT on several challenging
problem-solving tasks, including Game of 24,
8-Puzzle, and Pocket Cube. Our results demon-
strate that XOT significantly outperforms ex-
isting approaches in various dimensions, show-
casing its remarkable proficiency in addressing
complex problems across diverse domains. The
data and code are available at https://github.
com/microsoft/Everything-of-Thoughts-XoT.

1 Introduction

Recent advancements in Large Language Models
(LLMs) have greatly advanced problem solving
in diverse domains such as mathematical reason-
ing (Frieder et al., 2023), knowledge reasoning
(Omar et al., 2023), root cause analysis (Chen
et al., 2023) and causal inference (Kıcıman et al.,
2023), etc.. This progress can be largely attributed
to the technique of decomposing intricate prob-
lems into smaller language sequences referred to
as “thoughts”. Through a step-by-step inference
process involving the use of prompts, each thought
functions as an intermediate stage, contributing to

*Work done during an internship at Microsoft.

Table 1: Comparisons of different prompting paradigms.
Paradigm Performance Efficiency Flexibility
IO % ! %

CoT ! %

CoT-SC %

ToT ! %

GoT ! % !

XOT ! ! !

the simplification of tackling complex problems to
fulfill the problem’s ultimate objective.

Effective design of thought toward complex
problem-solving, whether for humans or LLMs,
should prioritize three crucial aspects, namely:

• Performance. Performance is the accuracy of
the solution to a problem, including the precision
of each thought at intermediate stages. This holds
paramount importance for problem-solving.

• Efficiency. Efficiency relates to the number of
LLM inference calls required to solve a single
problem. Minimizing this is crucial due to the
high cost associated with LLM inference.

• Flexibility. Flexibility in thought topology refers
to the diverse thought structures that can be em-
ployed by LLMs for problem-solving. These may
include chains, trees, or even graphs, mirroring
human thought processes. Enabling more flexi-
ble thought structures enhances LLMs’ divergent
and creative thinking capability, especially those
with multiple potential solutions.

There exist several thought paradigms, such as
Chain-of-Thought (CoT) (Wei et al., 2022), Tree-
of-Thought (ToT) (Yao et al., 2023), and Graph-of-
Thought (GoT) (Besta et al., 2023) , etc.. However,
these paradigms each have their limitations and
cannot simultaneously achieve all the three desired
attributes, as illustrated in Table 1. Specifically,
direct Input-Output (IO) prompting is suitable pri-
marily for simple problem-solving scenarios with
single-step processes, lacking both in performance
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and flexibility. CoT and self-consistency CoT (CoT-
SC) enable step-by-step problem solving, resulting
in modest performance improvements, but they are
confined to linear thought structures, limiting their
flexibility. In contrast, ToT and GoT permit more
versatile thought topologies, accommodating tree-
like or graph-like structures. However, they re-
quire the evaluation of intermediate thought steps
through LLM itself, incurring significant compu-
tational costs due to multiple LLM calls. These
paradigms are constrained by a law analogous to
the “Penrose triangle ”, wherein they can achieve
a maximum of two of the attributes, and none of
them can simultaneously attain all three.

We propose a novel solution called “Everything
of Thoughts” (XOT) to address the limitations of
conventional thought frameworks, enhancing es-
sential attributes of thought generation, including
performance, efficiency, and flexibility for LLM
inference. XOT leverages reinforcement learn-
ing (RL) (Li, 2017) and MCTS (Silver et al.,
2017), in conjunction with lightweight policy and
value networks, to pretrain on specific tasks for
thought searching and generalize to new prob-
lems. This pretraining effectively integrates ex-
ternal domain knowledge and planning capability
into the “thoughts” provided to LLMs, expanding
their problem-solving capabilities, and thereby sig-
nificantly improving Performance.

Once trained, XOT efficiently performs thought
searching using MCTS with cost-effective pol-
icy and value networks for exploration and au-
tonomously generates complete cognitive map-
pings and inject external knowledge to LLMs.
It then employs a MCTS-LLM collaborative
thought revision process to further improve the
thought quality while minimizing LLM interac-
tions, as will be illustrated in Sec. 3.4 and Fig. 3.
This eliminates the need for LLMs to explore and
evaluate thoughts themselves, as required by ToT
and GoT, enhancing XOT’s Efficiency. Further-
more, MCTS demonstrates remarkable Flexibility
as it can explore various thought topologies akin
to those employed in human mind mapping pro-
cesses (Faste and Lin, 2012; Jamieson, 2012). This
enables diverse and creative thinking for LLMs,
making it particularly valuable when dealing with
complex thought structures or tasks featuring multi-
ple potential solutions. By concurrently achieving
superior performance, efficiency, and flexibility,
XOT challenges the constraints posed by the “Pen-
rose triangle ” law, significantly surpassing the

capabilities of other thought generation paradigms.
We evaluate XOT across three challenging

problem-solving tasks, namely Game of 24, 8-
Puzzle, and Pocket Cube. Our experimental results
consistently show XOT’s superior performance,
and its capacity to provide multiple solutions to
problems efficiently with just a few LLM calls.
These establish XOT as an effective thought gener-
ation approach, paving the way for new avenues in
LLMs’ problem-solving capabilities.

2 Background

Thought for LLMs. Addressing complex prob-
lems often entails breaking down the overarching
objective into multiple intermediary steps. The
cognitive processes associated with each step are
thoughts, which can be expressed as linguistic se-
quences for LLMs’ problem-solving. Structures
of these thought may take various forms, includ-
ing chains, trees, or graphs, depending on how the
thoughts are organized towards a solution.
Input-Output (IO) Prompting (Fig. 1 (a)). The
IO method is the most straightforward approach
to instruct LLMs to address a problem without the
provision of any intermediate thought processes.
Chain-of-thought (CoT) (Wei et al., 2022) (Fig. 1
(b)). CoT decomposes problem-solving into a se-
quential chain of thoughts, allowing LLMs to ap-
proach complex problems step by step.
Self-consistency CoT (CoT-SC) (Wang et al.,
2023) (Fig. 1 (c)). CoT-SC utilizes multiple in-
stances of the CoT to produce multiple outputs
from LLMs. It selects the best results from these
outputs, providing more robust and consistent in-
ference than the standard CoT.
Tree-of-thought (ToT) (Yao et al., 2023) (Fig. 1
(d)). ToT organizes thoughts in a tree structure,
using search algorithms for solution finding. How-
ever, it requires multiple LLM inference calls, mak-
ing it costly and inefficient.
Graph-of-thought (GoT) (Besta et al., 2023)
(Fig. 1 (e)). GoT extends ToT by allowing graph-
like thought structures through thought consolida-
tion during search phases. Despite its flexibility,
it needs multiple LLM inference calls, leading to
high computational costs.

3 XOT: Everything of Thoughts

XOT serves as an LLM-MCTS collaborative frame-
work designed to enhance the thought generation
process, thereby assisting LLMs in resolving com-
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Figure 1: Comparison of XOT versus other prompting paradigms.

plex problems. It leverages MCTS for proficient
and efficient thought exploration while harnessing
the capabilities of LLMs to refine and amend the
thoughts derived from MCTS. This synergistic in-
teraction creates a mutually beneficial arrangement,
ultimately enabling the successful resolution of in-
tricate problems characterized by high levels of
performance, efficiency, and flexibility.

3.1 XOT in a Nutshell

We present an overview of the architecture of XOT
in Fig. 1 (f). XOT comprises two key components:
(i) a MCTS module guided by policy/value net-
works; and (ii) an LLM solver for thought revision
and inference.

During training, MCTS is harnessed to explore
potential thought structures for a specific task
through simulated scenarios. This process entails
the recording of states, values, and the visitation
frequencies of thought nodes in each simulation.
These recorded data are subsequently employed
to iteratively train the policy and value estimation
model, enabling it to assimilate domain knowledge
and comprehend the world model. Once trained,
the estimated policy and value are utilized to guide
the MCTS to search for a thought trajectory to aid
LLMs in problem-solving. Note that these thoughts
do not provide LLMs with definitive or error-free
answers, as they may contain inaccuracies or subop-
timal solutions. LLMs are responsible for review-
ing and refining these thoughts when they seem
erroneous or require adjustments. They continue
MCTS the search process if needed and eventually
formulate the final answers by integrating these
external thoughts with their internal knowledge.

3.2 Thought Searching Formulation

The fundamental objective of employing the
thought generation paradigm for LLMs is to iden-
tify the optimal decomposition of a complex prob-
lem into several manageable sub-steps. Each sub-
step aims to alter the current status of the problem,

eventually culminating in the successful resolution
of the overarching problem. This approach, as seen
in ToT and GoT, hinges on well-defined state tran-
sitions and clear final objectives. Consequently, it
is natural to conceptualize the thought-searching
process as a Markov Decision Process (MDP) (Put-
erman, 1990), in which:

• State st: Represents the current status of the
problem. The initial state s0 corresponds to
the original problem, while intermediate states
are characterized by either decomposed sub-
problems or the results of their resolution.

• Action at: Signifies the one-step solution or ac-
tion associated with tackling a problem, leading
to a transition to a new state.

• Reward r: Reflects the comprehensive evalua-
tion of the solution to the original problem, as-
sessing whether it has been effectively resolved
through the process of problem decomposition.

• Thought τ : A one-step thought is a combina-
tion of one-step state and action, i.e., τ = {s, a}.
This formulation encapsulates the process of de-
composing a complex problem into multiple sub-
tasks and their respective outcomes.

The detailed definitions of state, action, reward
and thought for each task are shown in Table 9,
Appendix A. The generation of complete thoughts
T = {τ1, · · · , τN}, can be construed as the en-
deavor to discover a thought trajectory to maximize
the accumulated reward to address the problem.

3.3 Thoughts Searching with MCTS
The formulation above naturally aligns the thought
within LLM as a state-action pair. This approach
facilitates the effective exploration of its optimal
trajectory using a combination of MCTS and RL.
This adheres to an iterative simulation cycle that
encompasses three key phases: selection, expan-
sion & evaluation, and backpropagation. It heavily
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Figure 2: An illustration of phases in MCTS for thought searching ((a)-(c)) and thought inference (d).

depends on the utilization of neural networks fθ,
which simultaneously estimate the value and ac-
tion probability for a given state st. The aim is to
reduce the number of rollouts and accelerate the
search process, similar to the approach employed
in AlphaGo Zero (Silver et al., 2017). We provide a
visual representation of an iteration of the MCTS in
Fig. 2 (a)-(c) by taking Pocket Cube as an example
and detail each process below.
Selection. In the selection phase, the algorithm
initiates at the root node and proceeds to choose
an action a∗ from the available set A(s) for single-
step thought generation in the current state s. This
process continues until a leaf node within the cur-
rent tree is reached. The selection is guided by the
PUCT algorithm (Rosin, 2011), aiming to maxi-
mize the Upper Confidence Bound (UCB) (Gariv-
ier and Moulines, 2011), as follows:

a∗ = argmaxa∈A(s)

[
Q(s, a) + w · Pθ(s, a)

√
N(s)

1+N(s,a)

]
.

(1)

Here, Q(s, a) denotes the Q-value of a state-action
pair (s, a), which estimates the quality of a particu-
lar action in a given state. The higher the Q-value,
the better the action is considered to be. Pθ(s, a)
denotes the predicted prior probability of selecting
action a given the state s obtained from a neural
network fθ, and N(s, a) represents the count of
times action a has been chosen in state s. The
parameter w controls the trade-off between explo-
ration and exploitation. The selection process will
continue until an unexplored node is encountered.
Evaluation and Expansion. Upon reaching a pre-
viously unselected leaf node, we expand to the
state s for the next step for new thought explo-
ration. This expansion involves the evaluation of
its value and action probability on the state, which
are modeled by neural networks parameterized by
θ, i.e., (Pθ(s), vθ(s)) = fθ(s). Here Pθ(s) is the
prior probabilities for all actions on s, and vθ(s)

denotes its predicted state value. These two values
are retained and stored for backup purposes, and
state s is masked as “visited”.
Backpropagation. Following the expansion of a
leaf node in the above phases, which could be either
an unexplored or terminal state, the algorithm pro-
ceeds to update all the Q(s, a) values via backprop-
agation. For unexplored nodes, this update involves
computing the mean of its estimated value vθ, while
for terminated nodes, it’s based on the true reward
r. These updates occur as information is backprop-
agated along the trajectory to subsequent nodes.
The visit count for each state-action pair is also
incremented as follows: N(s, a) = N(s, a) + 1.

A simulation is completed after a sequence of
selection, evaluation, expansion, and backpropaga-
tion steps. After conducting multiple simulations,
we proceed to the next step by selecting an action
at state s using a probability distribution defined
as εa ∝ N(s, a)1/γ , where γ is a temperature con-
stant that regulates the level of exploration.
Policy and Value Networks Training. The simula-
tions described above allow us to compile a dataset
for each sample state s containing (s, ε(s), v(s)),
where ε(s) = {εa | a ∈ A(s)}, and v(s) repre-
sents the ground truth value obtained by accumulat-
ing rewards along the trajectory starting from state
s. Subsequently, we can train a combined policy
and value network fθ to minimize the discrepancy
between the predicted value vθ(s) and the actual
value v(s), while also maximizing the alignment
between the action probabilities produced by the
neural network Pθ(s) and the search probabilities
ε(s). This can be achieved by minimizing the fol-
lowing loss function:

L = (v(s)− vθ(s))
2 + ε(s)T logPθ(s)). (2)

This training iterates alongside the simulation pro-
cess to continually enhance the performance of fθ,
resulting in progressive improvements in thought
searching capabilities.
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3.4 Thought Inference with MCTS

Once trained, we utilize the fθ to guide the MCTS
in generating a thought for a new problem, which
assists the LLM in solving it. Specifically, MCTS is
utilized to perform K simulations aimed at thought
searching and problem-solving, as illustrated in
Fig.2 (d). In each simulation, fθ is employed
to guide the MCTS in its search for a thought
trajectory. Throughout the training process, fθ
incorporates external information related to the
state and action quality. This information helps
LLMs understand the world model, enhancing
their long-term reasoning and planning abilities,
which are areas they may not excel in (Stechly
et al., 2023; Valmeekam et al., 2023), thereby ensur-
ing the performance of thought generation. Once
the simulation concludes, we record the visiting
count N(s, a) and the thought trajectory is ob-
tained based on the number of solutions required:

• Single solution. Starting from s, the action with
the highest visiting count N(s, a) is selected.

• Multiple solution. We sample M thought tra-
jectories following the probability distribution
εa ∝ N(s, a) and remove duplicates.

This results in one or multiple thought trajectories
T ∗ that consist of a sequence of state-action pairs
for problem-solving. The trajectories for multi-
solution problems may intertwine and converge
at the same goal state, resulting in a graph-like
thought structure. This demonstrates that XOT
is capable of generating thought structures with
flexibility. These trajectories are then transformed
into text sequences that are concatenated to form
a new prompt sequence provided to LLMs, even
in the case of problems with multiple solutions.
Therefore, we only require a single LLM inference
call at this stage. Given that the fθ network is
lightweight, this ensures the efficiency of XOT.
Thought-to-Prompt Parsing. Once the thought
trajectories T ∗ are extracted from MCTS, we con-
vert them into a textual format necessary for LLM
inference. In this conversion process, we transform
both the state and action at each step of the thought,

i.e., τ = {s, a} in T ∗, into text. This conversion
aims to provide a comprehensive state transition,
facilitating LLMs in better understanding the task
step by step. In the case of multi-solution scenar-
ios, multiple trajectories are concatenated. This
format remains consistent across all baselines, and
the resulting prompt text is then fed to LLMs for
inference or thought revision.

Thought Revision. Note that that MCTS may not
always provide the globally optimal thought trajec-
tory to directly solve the problem flawlessly. There-
fore, the thoughts extracted from MCTS serve as
a reference thinking process for the problem, aid-
ing LLMs in a supportive capacity. The LLMs
will leverage their internal knowledge to review
the extracted thought, identify errors in the thought
trajectory, and then ground its knowledge in collab-
oration with the MCTS to revise the thought. In
this context, LLM plays a role akin to a participant
to guide MCTS to enhance its performance.

The revision process is iterative in nature, as
shown in Fig. 3. Initially, upon obtaining the ex-
tracted thought, we instruct the LLM to detect any
errors in the thought generated by MCTS using its
internal knowledge. If the LLM identifies an error,
it results in an error state denoted as se within the
thought. If no error is found, the thought remains
unchanged. Starting from the parent state of se,
MCTS conducts an additional L simulations, ulti-
mately yielding a revised thought for the LLM. In
scenarios involving multiple solutions, each solu-
tion undergoes this process individually. Upon the
completion of the revision, we supply the LLMs
with the revised thoughts for problem-solving. The
revision process can be repeated several times to
enhance the reliability of the answer.

Since LLMs are solely utilized for identifying er-
rors during the revision process with only one call,
the efficiency of XOT is maintained. The collabora-
tive revision framework harnesses the strengths of
both MCTS and LLMs. The thoughts generated by
MCTS serve as reference or external knowledge,
expanding the capabilities of LLMs into new do-
mains. Simultaneously, LLMs leverage their inter-
nal knowledge to revise the extracted thoughts from
MCTS. This takes effect as generating the entire
thought path challenging, while identifying mis-
takes aligns better with the capabilities of LLMs.
This dynamic interaction positions the LLM as
an active participant in the game-solving process,
guiding MCTS towards improved performance.

1642



4 Experiment

Experiment Setting. We conduct an extensive
evaluation of our XOT approach in comparison to
several baseline methods across three challenging
tasks: the Game of 24, the 8-Puzzle (with a 3× 3
grid), and the 2 × 2 Pocket Cube. Detailed illus-
tration of these tasks is provided in Appendix A.
These tasks are characterized by their complexity,
requiring multiple steps for completion and po-
tentially having multiple solutions. To assess the
effectiveness of XOT, we compare it against IO,
CoT, CoT-SC, ToT, GoT, and single MCTS without
LLMs for inference and revision. We also finetune
LLaMA-2-13B(Touvron et al., 2023) for compari-
son, using the same training data and ground truth
labels. We employ both GPT-3.5 (Ouyang et al.,
2022) and GPT-4 (OpenAI, 2023) for these evalua-
tions. The setup of XOT and baselines can be found
in Appendix B, and the configuration of the Policy
/ Value Network used is provided in Appendix C.
Evaluation Metric. For each task, we assess the
accuracy of each approach on the test set. Addi-
tionally, we track the number of LLM invocations
required for all approaches to solve a problem, as
well as the number of times fθ is invoked in the
case of XOT. Note that fθ is a considerably smaller
model compared to LLMs. In the context of multi-
solution scenarios, we employ Multi-solution Ac-
curacy (MultiAcc.) calculated as the average per-
centage of correctness across all solutions offered.
Furthermore, we capture the total count of distinct
solutions provided by each approach, regardless of
their correctness, represented as #Sol. Note that we
set the maximum solution number to 3 for all prob-
lems in multi-solution scenarios. All resulted are
obtained from a single run. In Table 2 to Table 7,
the number of thought revision is denoted by r.

4.1 Game of 24
The Game of 24 presents a arithmetic challenge
wherein the goal is to employ four numbers within
the range of 1 to 13, with basic arithmetic opera-
tions, (i.e., +, −, ×, ÷), to attain a final result of 24.
This game may possess multiple valid solutions.

4.1.1 Results
Table 2 displays the overall performance of all
methods on this task. Notably, XOT consistently
outperforms other baselines on both GPT-3.5 and
GPT-4, achieving an accuracy of 79.56% and
74.45% respectively, with 1-time revision. How-
ever, after 3-time revision process, XOT’s accuracy

Table 2: Performance comparison on Game of 24.

Model GPT-3.5 GPT-4
Acc. [%] LLM

invoked
fθ

invoked
Acc. [%] LLM

invoked
fθ

invoked
IO 6.57 1.00 - 10.22 1.00 -
CoT 2.19 1.00 - 4.38 1.00 -
CoT-SC 2.19 10.00 - 4.38 10.00 -
ToT (b=1) 5.84 22.11 - 34.31 23.50 -
ToT (b=3) 10.22 43.96 - 60.58 39.83 -
GoT (k=1) 2.92 7.00 - 10.95 7.00 -
LLaMA-2-13B 2.19 - - 2.19 - -
MCTS 62.77 - - 62.77 - -
XoT (w/ 1 r) 79.56 1.39 92.15 74.45 1.38 88.20
XoT (w/ 2 r) 88.32 1.58 93.87 83.94 1.57 89.63
XoT (w/ 3 r) 90.51 1.72 95.94 85.40 1.78 92.48

Table 3: Performance comparison on Game of 24 in the
multi-solution scenario.

Model GPT-3.5 GPT-4
Multi
Acc. #Sol LLM

invoked
fθ

invoked
Multi
Acc. #Sol LLM

invoked
fθ

invoked
IO 4.87 2.88 1.00 - 8.27 2.99 1.00 -
CoT 1.22 2.77 1.00 - 7.79 2.94 1.00 -
CoT-SC 1.70 2.76 10.00 - 8.03 2.99 10.00 -
ToT (b=3) 3.41 2.99 43.96 - 39.90 2.78 39.83 -
GoT (k=3) 8.03 1.93 7.00 - 10.46 1.39 7.00 -
XoT (w/ 1 r) 62.90 2.29 3.51 116.34 76.25 2.36 2.31 109.64

substantially improves to 90.51% and 85.40% for
GPT-3.5 and GPT-4 respectively. This underscores
the impressive performance of XOT, and demon-
strates that the revision process significantly en-
hances performance, with only a limited increase
in the utilization of LLM and fθ. Interestingly, the
revision process in XOT mitigates the performance
gap attributable to the modeling ability in this task.
As we observe that XOT with GPT-3.5 achieves
higher accuracy after revision compared to GPT-4.

Moreover, XOT consistently outperforms the
use of MCTS solely. The performance advantages
exhibit growth with the number of revision iter-
ations, underscoring the complementary roles of
LLM and MCTS, emphasizing their joint neces-
sity in achieving superior results. The fine-tuned
LLaMA-2-13B is only successful on 2.19% of the
test data. This performance is lower than the IO
method, indicating that the finetuning method is
not be suitable for planning tasks like the Game of
24. The best-performing prompting baseline, ToT
(b=3) on GPT-4, attains an accuracy of 60.58%.
However, it demands a substantial number of LLM
invocations (39.83), which results in inefficiency.
In contrast, XOT only requires less than 1.8 calls
with revision. Although XOT requires some in-
ference calls for fθ, the model is significantly less
complex than LLM, making it a much more effi-
cient approach.

Table 3 presents the performance of different
methods in the multi-solution scenario. Over-
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all, XOT remains the best-performing approach
in terms of MultiAcc, significantly outperforming
other baselines. Although XOT does not gener-
ate the most number of answers compared to other
baselines, it generates more accurate answers, as
its MultiAcc significantly outperforms other ap-
proaches. Notably, generating multiple solutions
does not significantly increase XOT’s complexity,
as it only requires 2.31 LLM calls with GPT-4 and
around 100 calls for a smaller fθ, making it remain
efficient. Overall, the remarkable performance of
XOT in the multi-solution scenario demonstrates
its ability to generate complex thoughts.

4.2 8-Puzzle

The 8-Puzzle is a classic sliding puzzle game that
consists of a 3× 3 grid with eight numbered tiles
and one empty space. Its objective is to rearrange
the tiles from an initial configuration into a target
state. This task may also have multiple solutions.

4.2.1 Results
The inherent spatial complexity of the 8-Puzzle,
the need for long-term planning, and the presence
of invalid actions create a significant challenge for
LLMs, which rely solely on textual data as input.
This challenge is starkly evident in the poor per-
formance of the baselines on both GPT-3.5, where
its IO prompting achieve a mere 0% success rate.
XOT successfully addresses this issue by supplying
thoughts acquired from MCTS, thereby infusing
external knowledge into the problem-solving pro-
cess. This augmentation empowers LLMs to tackle
problems that were previously insurmountable. In
summary, when using GPT-4, XOT achieves an
accuracy of 93.28% with 1 revision and 95.80%
with 3 revisions in the 8-Puzzle task, outperform-
ing the best prompting baseline, ToT (b=3), which
only achieves 13.45% accuracy. Additionally, XOT
demonstrates efficiency, as it only requires approx-
imately 1.6 LLM calls for 3-time revision setting.
The poor performance of finetuned LLaMA-2-13B
(0%) revealed a significant issue with hallucination.
This underscores the inefficiency and ineffective-
ness of finetuning approaches for tasks necessitat-
ing long-term planning, while also bringing to light
the heightened costs associated with its use.

The multi-solution performance presented in Ta-
ble 5 confirms that the XOT method continues to
outperform other baselines for both GPT-3.5 and
GPT-4 models in terms of MultiAcc, whether or
not revision is applied. The revision process of

Table 4: Performance comparison on 8-Puzzle.

Model GPT-3.5 GPT-4
Acc. [%] LLM

invoked
fθ

invoked
Acc. [%] LLM

invoked
fθ

invoked
IO 0.00 1.00 - 1.68 1.00 -
CoT 0.00 1.00 - 7.56 1.00 -
CoT-SC 0.84 10.00 - 8.40 10.00 -
ToT (b=1) 5.88 31.76 - 3.36 27.49 -
ToT (b=3) 6.72 55.86 - 13.45 54.13 -
GoT (k=1) 3.36 19.00 - 3.36 19.00 -
LLaMA-2-13B 0.00 - - 0.00 - -
MCTS 51.26 - - 51.26 - -
XoT (w/ 1 r) 59.66 1.50 41.09 93.28 1.48 55.66
XoT (w/ 2 r) 59.66 1.92 42.18 94.96 1.55 58.91
XoT (w/ 3 r) 63.03 2.29 42.60 95.80 1.61 62.22

Table 5: Performance comparison on 8-Puzzle in the
multi-solution scenario.

Model GPT-3.5 GPT-4
Multi
Acc. #Sol LLM

invoked
fθ

invoked
Multi
Acc. #Sol LLM

invoked
fθ

invoked
IO 0.00 2.47 1.00 - 0.84 2.97 1.00 -
CoT 1.43 2.05 1.00 - 7.84 1.21 1.00 -
CoT-SC 1.54 1.90 10.00 - 6.58 2.08 10.00 -
ToT (b=3) 2.52 2.98 55.86 - 5.60 2.97 54.13 -
GoT (k=3) 3.36 2.96 24.18 - 16.61 2.70 22.76 -
XoT (w/ 1 r) 27.45 2.85 4.19 52.06 76.33 1.52 4.30 66.66

XOT is particularly beneficial for GPT-4, as it im-
proves the MultiAcc from 51.26% to 76.33%, com-
pared to single MCTS. These results again demon-
strate that XOT can effectively generate complex
thought structures for multi-solutions with high
performance and efficiency, making it particularly
suitable for this task.

4.3 Pocket Cube

The 2×2 Pocket Cube is a simplified variant of the
classic Rubik’s Cube puzzle. Its objective is to re-
store all of its faces to a uniform color by executing
rotations. This task may possess multiple solutions
is known to be challenging to LLMs (cub).

4.3.1 Results
The Pocket Cube task, similar to the 8-Puzzle,
poses a challenge that demands spatial imagination
skills, making it difficult for LLMs to excel. As ex-
pected, most of the baselines show very poor perfor-
mance in this task, with some baselines achieving
0% accuracy. The best prompting baseline, ToT
(b=3) with GPT-4, only attains a success rate of
19.57%. In contrast, XOT can achieve over 77.60%
accuracy with 1-time revision and over 80% ac-
curacy with 3-time revision, establishing itself as
an expert in solving this task. This is attributed to
the injection of external knowledge from MCTS,
enabling LLMs to solve problems that they would
struggle with on their own. On the other hand,
XOT improves accuracy by 30% compared to a
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Table 6: Performance comparison on Pocket Cube.

Model GPT-3.5 GPT-4
Acc. [%] LLM

invoked
fθ

invoked
Acc. [%] LLM

invoked
fθ

invoked
IO 1.09 1.00 - 1.09 1.00 -
CoT 0.00 1.00 - 1.09 1.00 -
CoT-SC 0.00 10.00 - 1.09 10.00 -
ToT (b=1) 7.65 16.50 - 11.48 16.39 -
ToT (b=3) 17.49 58.72 - 19.57 56.58 -
GoT (k=1) 1.64 8.93 - 18.03 8.55 -
LLaMA-2-13B 0.00 - - 0.00 - -
MCTS 46.44 - - 46.44 - -
XoT (w/ 1 r) 74.32 1.55 64.63 77.60 1.54 75.51
XoT (w/ 2 r) 80.33 1.81 96.46 79.32 1.79 146.52
XoT (w/ 3 r) 84.70 2.01 103.22 83.61 2.00 84.63

Table 7: Performance comparison on Pocket Cube in
the multi-solution scenario.

Model GPT-3.5 GPT-4
Multi
Acc. #Sol LLM

invoked
fθ

invoked
Multi
Acc. #Sol LLM

invoked
fθ

invoked
IO 0.27 2.00 1.00 - 1.09 1.98 1.00 -
CoT 0.55 1.05 1.00 - 0.82 1.91 1.00 -
CoT-SC 0.18 2.90 10.00 - 0.82 2.92 1.00 -
ToT (b=3) 5.83 2.99 58.72 - 6.52 2.99 56.58 -
GoT (k=3) 1.09 2.99 14.76 - 16.85 2.77 13.36 -
XoT (w/ 1 r) 48.72 2.20 4.13 115.73 77.41 1.72 4.08 122.54

single MCTS with one-time revision. This demon-
strates the effectiveness of integrating MCTS and
LLMs. Notably, XOT maintains high efficiency
in this task, requiring only approximately 2 LLM
inference calls for both GPT-3.5 and GPT-4. Again,
the finetuned LLaMA-2-13B struggles with the
Pocket Cube task (0%), due to significant halluci-
nation issues. This comparison further validates the
potential of XOT in contexts demanding extensive
planning and decision-making accuracy.

In the case of the multi-solution scenario, the per-
formance of the XOT method remains remarkable,
achieving over 77% MultiAcc with GPT-4. The re-
vision process continues to play an important role,
significantly improving the performance of XOT
with both GPT models. The closest competitor
in this setting is GoT (k=3) with GPT-4, which
achieves a MultiAcc of 16.85%, but it requires a
significantly higher number of LLM invocations
compared to XOT (13.36 vs. 4.08) and much lower
MultiAcc. Overall, XOT retains its position as the
best solution for the Pocket Cube.

5 Computational Training Costs of
MCTS

The number of training and testing policy/value
model calls for XoT are listed in Table 8. We train
this model through three iterations, each compris-
ing 10 self-play episodes for MCTS. Offline pre-
training serves as a one-time solution that reduces

Table 8: Number of policy/value model calls in training
and testing per iteration for different tasks.

Game of 24 8-Puzzle Pocket Cube

Training 1044.70 834.70 787.00
Testing 88.20 55.66 75.51

the computational burden of testing by integrating
external knowledge. Methods like ToT and GoT,
which rely solely on the LLMs’ internal knowledge,
do not require pretraining but necessitate frequent
calls to LLM during testing. For example, the aver-
age number of LLM invocations for three tasks in
ToT are 39.83, 54.13, and 56.58, averaging 50.18
times per test problem. The computational cost
of these recurring calls during testing exceeds the
pretraining cost of the policy/value model in XoT.

Futhermore, it’s worth highlighting that GPT-3.5
boasts 175 billion parameters, and GPT-4 is esti-
mated to have an astonishing over 1 trillion param-
eters. In contrast, the total number of parameters
in the Policy/Value Network for all three tasks is
approximately 1e6. This deliberate design choice
results in a model significantly smaller than LLMs,
ensuring efficiency even with additional calls dur-
ing training.

6 Case Study in Multi-Solution Scenarios

In Fig. 4, we provide examples of thought struc-
tures generated by XOT for all three tasks in the
multi-solution scenario. Owing to the multiple so-
lutions required, the generated thoughts intertwine
during intermediate steps and converge towards the
final goal state. This results in a naturally woven
thought structure resembling a graph, showcasing
the remarkable flexibility achieved by XOT. Upon
closer examination of each example, in the case
of the Game of 24, there are multiple solutions to
reach the goal of 24. XOT effectively predicts these
trajectories, indicating its ability to grasp complex
thought structures. In the 8-Puzzle example, we ob-
serve instances of reflection in the thought structure,
with back-and-forth recurrent state transitions. This
demonstrates XOT’s capacity for self-reflection, a
crucial attribute for LLMs, as discussed in (Shinn
et al., 2023). In the case of the Pocket Cube, XOT
identifies four distinct pathways to reach the goal
state, leading to successful problem-solving across
multiple solutions.

Overall, these cases highlight how XOT encapsu-
lates the flexibility required in thought generation,
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Figure 4: Examples of thought structures generated by XOT for all three tasks in the multi-solution scenario.

fostering diverse and creative thinking for LLMs.
This enables them to produce multiple high-quality
answers to a single problem effectively.
Supplementary Insights. We further conduct abla-
tion study to assess the impact of thought revisions,
the revision success rate, and the sensitivity to the
completeness of the provided thoughts, presented
in Appendix D.

7 Related Work

Decision Making & Planning with LLMs. The
utilization of LLMs for decision-making and plan-
ning has become a prominent area of research. Sim-
ilar to human problem-solving, the process involves
breaking down complex problems into sub-tasks.
Various frameworks, such as CoT (Wei et al., 2022),
ToT (Yao et al., 2023), and GoT (Besta et al., 2023),
have been designed to facilitate problem decom-
position in different structural forms, leading to
enhanced solutions derived from LLMs. Exten-
sions of these frameworks have also been explored
across different domains and modalities (Zhang
et al., 2022, 2023; Ning et al., 2023; Turpin et al.,
2023; Long, 2023). Our approach XOT distin-
guishes itself from the aforementioned work by
concurrently achieving superior performance, effi-
ciency, and flexibility, embodying the concept of
comprehensive thought generation.
Augmenting LLMs with MCTS. MCTS is inte-
grated with LLMs to enhance both training and
inference processes. Hao et al., propose “Reason-
ing via Planning”, utilizing LLMs as a world model
and reasoning agent, while combining MCTS as

a strategic explorer to enhance LLMs’ reasoning
and planning abilities (Hao et al., 2023). Liu et
al., incorporate MCTS and PPO (Schulman et al.,
2017) to devise a value-guided decoding algorithm,
thereby enhancing the preferability of generated
text by LLMs (Liu et al., 2023). Additionally, Feng
et al., employ MCTS to augment LLMs’ decoding
and, consequently, their reasoning and planning ca-
pabilities (Feng et al., 2023). These studies under-
score the significant potential of integrating MCTS
with LLMs to improve their overall capabilities.

8 Conclusion

The XOT framework presented in this paper sig-
nifies a significant progression in thought gener-
ation for LLMs aimed at solving complex tasks.
It challenges the constraints of the “Penrose Tri-
angle ” by concurrently achieving performance,
efficiency, and flexibility, a feat unattainable by
existing prompting paradigms. This is achieved
through the integration of MCTS with pretrained
low-cost policy and value networks, by injecting
domain knowledge and planning capability into
LLMs, offloading thought searching, and facilitat-
ing unconstrained free-style thought exploration.
The collaborative thought revision framework in-
volving MCTS and LLM further enhances the qual-
ity of thought generation. Experimental evalua-
tions conducted across three real-world problems,
namely the Game of 24, 8-Puzzle, and Pocket Cube,
show that our XOT framework significantly outper-
forms existing prompting paradigms, particularly
in scenarios involving multi-solution problems.
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9 Limitations

Generalization to other tasks. While XOT is
presently utilized for reasoning and search prob-
lems capable of garnering rewards from real-world
scenarios, its applicability can be extended to a
broader spectrum of problem domains character-
ized by decomposable tasks with well-defined ob-
jectives. The main challenge in expanding the ap-
plication of XoT to a broader range of tasks is
the design of rewards, especially when explicit re-
wards are not directly obtainable from real-world
environments. To address this, some studies have
turned to using LLMs to get reward. The strat-
egy of using LLMs for reward design is becoming
increasingly popular and is a topic of ongoing re-
search(Kwon et al., 2023). Therefore, it’s impor-
tant to note that, in addition to the tasks employed
in this paper, many other tasks can be formulated
as MCTS searching problems, using LLMs to get
rewards and rendering XoT applicable to a broader
range of scenarios.
Additional Training Costs. We also note that the
implementation of XOT necessitates the training
of additional policy and value models to expedite
the inference process. This training process re-
quires the acquisition of datasets from real-world
environments, introducing supplementary costs and
efforts. However, note that these policy and value
models are considerably smaller and more compu-
tationally efficient than the underlying LLMs, as
discussed in Section 5. Consequently, the incurred
costs are deemed low, particularly in the context
of tasks featured in this study, where the thought
steps and objectives are well-defined. In future re-
search endeavors, we intend to explore methods
to enhance the efficiency of the training process
for XOT in scenarios where the objectives are less
straightforward, such as multi-agent planning and
code generation tasks (Talebirad and Nadiri, 2023;
Vaithilingam et al., 2022). This endeavor will ex-
pand the applicability of the proposed XOT frame-
work to a broader range of applications.
Potential Risks. XOT is susceptible to the MCTS
module providing incorrect intermediate thoughts,
which may result in an inaccurate final answer or
hallucination. Changes in the environment could
lead to inaccuracies in MCTS and subsequently in
the thoughts provided to LLMs. However, LLMs
have proven effective in revising thoughts by lever-
aging their internal knowledge, mitigating the risk
associated with inaccuracies in the initial thought

generation. Additionally, LLMs may make mis-
takes and sometimes deviate from the thoughts gen-
erated by the MCTS module, leading to errors. This
aspect should be taken into consideration when em-
ploying the approach.
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A Task Setup

An overview of these tasks is provided in Table 9.

A.1 Game of 24

We collect a dataset from (4nu), comprising 1,362
games ranked by human solving time, spanning a
range of difficulty levels from easy to hard. For our
testing phase, we randomly selected 137 games, en-
suring coverage of various difficulty intervals. The
remaining 1,225 problems were used to train the
policy/value networks with MCTS. In the context
of this task, as outlined in Table 1, the thoughts
refer to the three intermediate equations, while the
state encompasses the available numbers (ranging
from 1 to 4) for creating the equations. Actions
involve the selection of two numbers and an oper-
ator to form an equation, and the reward is set to
1 if the final equation is both valid and results in
the number 24, utilizing each of the input numbers
exactly once, otherwise it is set to -1. Performance
is measured by calculating the success rate across
the 137 test games.

A.2 8-Puzzle

We randomly generated 419 solvable 8-puzzle prob-
lems, with 300 instances allocated for training
and 119 instances for testing. All generated prob-
lems are solvable within 9 steps. The action space
encompasses four directions: [Up, Down, Left,
Right]. Note that the legal action space for each
problem state may vary due to the dynamic posi-
tion of the empty space. As shown in Table 1, the
thoughts refer to the step-by-step move, and the
puzzle state after the move.

A.3 Pocket Cube

We initially set all faces of the cube to a uniform
color and then randomly apply 5 actions sequen-
tially selected from the 27 legal actions of the Ru-
bik’s Cube. This process resulted in the creation of
1,000 training samples and 183 testing samples. All
generated problems can be solved within 4 steps.
To simplify the action space, we reduced the 27
legal operations to 9 actions, namely: {U, U’, U2,
R, R’, R2, F, F’, F2}, which are used in our ex-
periments with both baselines and XOT. As shown
in Table 1, the thoughts pertain to the step-by-step
rotation, and the cube state after the move.

B Baselines & XOT Setup

GPT-3.5 / GPT-4. We note that temperature and
top_p are set to 0.0 for all LLM invoked to mini-
mize inference variance.
LLaMA-2-13B (finetuned). To evaluate the po-
tential of directly distilling knowledge from sim-
ulations into a smaller model to possibly avoid
using a large model like GPT-4 during testing, we
fine-tuned the LLaMA-2-13B model. Our experi-
ments were carried out on eight V100 GPUs, each
with 80GB of memory, and lasted approximately 5
hours. The training setup involved 5 epochs, a train
batch size of 32, an evaluation batch size of 1, and
a single step for gradient accumulation. The evalua-
tion and save strategies were set to "no" and "steps"
respectively, with saving occurring every 20 steps
and a limit of one saved model. The learning rate
was 2e-5, with no warmup steps and logging every
2 steps. We employed a cosine learning rate sched-
uler. By using ground truth labels—considered
more accurate than labels from MCTS simula-
tions—we aimed to convert an optimization or
search problem into a more straightforward pre-
diction or supervised learning challenge, using a
training dataset of <question, answer> pairs.

B.1 Game of 24

The IO prompt is supported by five in-context ex-
amples. In the case of CoT, we augment each input-
output pair by including three intermediate equa-
tions. As for ToT, we solicit one-step thought can-
didates from the LLM at each step, subsequently
instructing the LLM to categorize each thought
candidate for intermediate selection. For experi-
mental comparison, we conduct experiments on
both the top-1 candidate (with b=1) and the top-3
candidates (with b=3) being retained, where b indi-
cates the branches retained for exploration at each
step. For GoT, we employ LLM to generate one-
step thought candidates in the same manner as ToT,
then we direct the LLM to select the top-1 thought
from all candidates for merging the thoughts. We
also examine a CoT-SC baseline, which derives
the majority output from 10 CoT samples. For
XOT, we perform 200 simulations for each action
taken, and this count is increased to 500 during the
thought revision process.

In the multi-solution scenario, the IO, CoT, and
CoT-SC prompts each include 5 examples, with
each problem having 1 to 3 different solutions. For
ToT, the top-3 candidates (with b=3) at the final
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Table 9: An overview of tasks employed in this study.

Game of 24 8-Puzzle Pocket Cube

Objective

Use four numbers on
playing cards to make the
number 24 through +, −,

×, or ÷.

Rearrange the tiles in the
3× 3 puzzle from an

scrambled state to a goal

state
- 1 2
3 4 5
6 7 8 .

Rotating the faces of a
2× 2 pocket cube until

each face of the cube is a

uniform color .

Input 4 numbers ranging from 1
to 13, e.g., (4, 6, 10, 10).

A scrambled 3× 3 digital

puzzle, e.g.,
- 4 7
5 3 8
6 2 1 .

A scrambled 2× 2 pocket

cube, e.g., . Colors
represented as numbers for

LLMs.

Output
An equation to reach 24,

e.g.,
4× 6 + 10− 10 = 24.

The slide sequence of the
“-” tile, e.g., (Up, Down,

Left, Right · · · ).

The rotation move
sequence of the cube, e.g.,

(F, R2, U’ · · · ).

Thought 3 intermediate equations.
The step-by-step sliding,
and the puzzle state after

the move.

The step-by-step rotation,
and the cube state after the

move.

State The remaining 1-4
numbers.

The current number layout
of the puzzle.

Colors of each face of the
pocket cube.

Action
Picking two number and a
operation to compose an

equation.

The one-step moving
action of the “-” tile.

The one-step rotation
action of cube.

Reward
1 if the number of the final

number is equal to 24
otherwise -1.

The negative minimum
step on solving the current

puzzle state toward the
goal state.

The negative minimum
moving step on solving

current cube state toward
the goal state.

step are considered as different solutions. Rather
than keeping only the top-1 thought, GoT is in-
structed to select between 1 to 3 thoughts from all
candidates at each step to generate a wider range
of solutions. As for XOT, after performing simula-
tions on MCTS, we sample 500 thought trajectories
as for exploration and remove deplicates. The top-3
thoughts with the highest counts are preserved.

B.2 8-Puzzle

The IO prompt is extended with three in-context
examples. In the CoT approach, each input-output
pair is enriched by incorporating intermediate legal
action sets, the current action, and the current state.
In ToT, at each stage, a set of one-step thought
candidates are derived from the LLM, from the cur-
rent set of legal actions. We impose a maximum
step limit of 9 since all generated problems can
be solved within this range. The 8-puzzle’s rules
are conveyed through a system message, including
detailed explanations of each action’s execution.
Similarly, we perform 20 simulations for each ac-
tion taken with XOT, and increase this number to
50 for thought revision processes.

In the multi-solution scenario, all of the IO, CoT,

and CoT-SC prompts consist of four examples.
Each problem is presented with one to three dis-
tinct solutions. For ToT (b=3) and GoT (k=3), the
maximum number of steps is increased to 12, as
correct solutions may not always be optimal and
could exceed 9 steps. In the case of XOT, after
conducting simulations with MCTS, we sample 50
thought trajectories for exploration and select the
top-3 thoughts with the highest counts.

B.3 Pocket Cube

The IO prompt is augmented with a single in-
context example. In CoT, we enrich each input-
output pair by including intermediate actions and
states. In ToT, we retrieve one-step thought candi-
dates from the LLM at each stage and instruct the
LLM to classify each candidate for intermediate
selection. A maximum step limit of 4 is imposed,
as all generated problems can be resolved within
this range. The cube’s rules are conveyed through
a system message, which includes the definition of
the action space and illustrations of the execution
of each action. For XOT, we conduct 20 simula-
tions for each action taken and increase it to 500
for revision.
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Figure 5: Accuracy, LLM and fθ invoked comparison on XOT w.r.t. the number of revisions.

In the multi-solution setup, the IO, CoT, and
CoT-SC prompts each include 3 examples, and
each problem within these prompts offers 3 unique
solutions. As for ToT (b=3) and GoT (k=3), the
maximum number of steps allowed is extended to
7. In the case of XOT, after conducting MCTS
simulations, we gather 50 thought trajectories, and
we keep the top 3 thoughts with the highest counts.

C Policy / Value Networks Configurations

The policy and value networks in our model utilize
a shared multi-layer perceptron (MLP) architec-
ture with two layers and hidden units arranged as
(128, 256). Two heads connected to the MLP are re-
sponsible for predicting vθ(s) and Pθ(s) separately.
The total number of parameters in the Policy/Value
Network for all three tasks is approximately 106.
This design results in a considerably smaller model
compared to LLM, making it much more efficient.
We train this model through three iterations, with
each iteration comprising 10 self-play episodes for

MCTS.

D Ablation Study

In our ablation study, we consider two aspects: the
impact of the number of revisions on the perfor-
mance and efficiency of XOT and the sensitivity of
performance to the completeness of the provided
thoughts. These angles allow us to gain insights
into how XOT’s performance can be improved and
understand the importance of providing complete
thoughts in complex problem-solving tasks.

D.1 Number of Revisions

It’s important to highlight that the performance of
each task can be further improved through multiple
revisions of the thought using the MCTS-LLM col-
laborative framework. In Fig. 5, we compare the
performance of GPT-3.5 and GPT-4 models using
the XOT method with varying numbers of revisions,
ranging from 0 to 3, across all three tasks.

In the Game of 24 task, as the number of re-
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Table 10: Performance comparison on three tasks with incomplete thoughts.

Task Model GPT-3.5 GPT-4
Acc. [%] LLM invoked fθ invoked Acc. [%] LLM invoked fθ invoked

Game of 24
ToT (b=1) 3.65 17.15 - 40.88 18.55 -
GoT (k=1) 2.19 5.00 - 9.49 5.00 -
XoT (w/o revise) 17.52 1.00 68.73 43.07 1.00 68.70

8-Puzzle
ToT (b=1) 0.00 32.60 - 6.72 26.98 -
GoT (k=1) 0.00 18.63 - 3.36 19.00 -
XoT (w/o revise) 2.52 1.00 36.66 40.34 1.00 36.24

Pocket Cube
ToT (b=1) 0.55 16.48 - 2.19 16.39 -
GoT (k=1) 0.00 8.96 - 1.64 8.68 -
XoT (w/o revise) 5.46 1.00 18.85 6.01 1.00 18.89

visions increases, both models exhibit improved
performance. Notably, GPT-3.5 consistently out-
performs GPT-4 in terms of accuracy. After three
revisions, GPT-3.5 achieves an accuracy of 90.51%,
while GPT-4 reaches 85.40%. This improved per-
formance comes at the cost of increased inference
times and model calls, primarily driven by the need
for more interactions to generate revised thoughts.
For the 8-Puzzle task, the trend of increasing accu-
racy with more revisions remains valid. However,
in this task, GPT-4 significantly outperforms GPT-
3.5. After one revision, GPT-4 achieves an accu-
racy of 93.28%, which increases to 95.80% after
the third revision. In contrast, GPT-3.5 only attains
an accuracy of 63.03% after the third revision. In
the Pocket Cube task, the performance trend is sim-
ilar. The accuracy of both models improves with
an increase in the number of revisions. GPT-3.5
starts at an accuracy of 45.36% without revision
and improves to 84.70% after three revisions. GPT-
4 begins with an accuracy of 45.90% and reaches
83.61% after three revisions. Inference times and
model calls are comparable between the two mod-
els, with GPT-4 showing a substantial increase in
model calls after the third revision.

Note that the number of LLM invocations does
not increase dramatically with additional revisions,
even though fθ is called more times to guide sim-
ulations. Considering the significant disparity in
inference costs between LLM and fθ, increasing
the number of revisions to achieve better perfor-
mance appears to be a favorable trade-off.

Table 11: Revision Success Rate for GPT-3.5.

Revisions Game of 24 8-Puzzle Pocket Cube
XoT (w/ 1 r) 47.17% 20.00% 53.00%
XoT (w/ 2 r) 69.81% 21.31% 63.64%
XoT (w/ 3 r) 75.93% 26.67% 72.00%

We also focus on the efficacy of the revision
process within the XOT framework across three

Table 12: Revision Success Rate for GPT-4.

Revisions Game of 24 8-Puzzle Pocket Cube
XoT (w/ 1 r) 32.69% 85.96% 58.59%
XoT (w/ 2 r) 55.10% 89.47% 60.00%
XoT (w/ 3 r) 60.00% 91.38% 70.00%

distinct tasks. The Revision Success Rate is calcu-
lated as the ratio of successfully detected errors to
the number of failed cases without revision, thereby
providing insight into the effectiveness of revisions.
The results for both GPT-3.5 and GPT-4 are pre-
sented in Table 11 and Table 12.

Our observations reveal a high revision success
rate in the XoT framework, which increases with
the number of revisions. This underscores the ef-
fectiveness of LLMs in the revision process, posi-
tioning it as a highly efficient approach to thoughts
revision.

D.2 Incomplete Thought

In this ablation study, we explore the performance
of LLMs when provided with incomplete thoughts,
specifically omitting the last step of the thought
trajectory. This simulates scenarios where MCTS
might supply inaccurate or incomplete thoughts.
The aim is to test whether LLMs can indepen-
dently solve problems or rely on their own rea-
soning, rather than solely relying on the thought
from MCTS as answers. We present the perfor-
mance comparison for all three tasks in Table 10.
Note that we only compare ToT and GoT since
other baselines do not support this comparison by
their nature.

The results clearly show that incomplete
thoughts lead to a significant performance drop in
all three tasks. GPT-3.5 is more affected than GPT-
4, with GPT-3.5 achieving 0% accuracy on several
baselines. In contrast, XOT with GPT-4 attains
satisfactory performance on the Game of 24 and
8-Puzzle, achieving over 40% accuracy. However,
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the performance of XOT is dramatically affected
in the Pocket Cube task, with accuracy dropping
to 6%. This demonstrates that for very complex
tasks, LLMs are highly sensitive to the complete-
ness of the thoughts provided. Missing steps in
the thought can lead to a substantial drop in perfor-
mance, highlighting the importance of providing
complete thoughts for such tasks.

E Use of AI Assistants

We acknowledge the utilization of ChatGPT for
refining the paper and assisting in the coding pro-
cess. However, it is imperative to clarify that none
of the content within the paper was generated by
ChatGPT.

F Prompt Example

Prompts 1-3 display example CoT prompts utilized
for Game of 24, 8-Puzzle, and Pocket Cube. These
templates are applicable to CoT, ToT, GoT, and our
XOT in the final inference process. Each thought
step includes the action taken and the resulting new
state.

Instruction: Game of 24

Use numbers and basic arithmetic opera-
tions (+ - * /) to obtain 24.

Prompt: Game of 24

Input: 2 9 10 12
Steps:
12 * 2 = 24 (left: 9 10 24) Expression: 9,
10, (12) * (2)
10 - 9 = 1 (left: 24 1) Expression: (12) * (2),
(10) - (9)
1 * 24 = 24 (left: 24) Expression: ((10) -
(9)) * ((12) * (2))
Answer: (12 * 2) * (10 - 9) = 24

Revision: Game of 24

Using the given [input] numbers and basic
arithmetic operations (+, -, *, /), follow the
steps strictly to achieve a result of 24.
All the [input] numbers can reach 24 by
basic arithmetic operations (+, -, *, /).
If the final answer is not exactly 24, then
the corresponding [Steps] is considered
[wrong]. Please help me identify the exact

wrong step based on its left number, among
[Step 1, Step 2, Step 3]. If you are uncer-
tain about which step is wrong, please begin
your analysis with [Step 1] for better under-
standing.
Input: 2 9 10 12
Steps:
[Steps 1] 12 * 2 = 24 (left: 9 10 24) Expres-
sion: 9, 10, (12) * (2)
[Steps 2] 24 - 10 = 14 (left: 9 14) Expres-
sion: 9, ((12) * (2)) - (10)
[Steps 3] 9 + 14 = 23 (left: 23) Expression:
(9) + ((12) * (2)) - (10)
The Steps are wrong. Because it can not
reach 24 in the end. To be specific,
23 is not equal to 24. [Steps 2] is wrong.
Because it is impossible to reach 24 from
the step 2. After Step 2, left numbers are 9,
13.
9 + 13 = 22
9 * 13 = 111
9 - 13 = -4
It is impossible to reach 24 from [Steps 2].

Instruction: 8-Puzzle

You are a virtual expert in solving a 8-puzzle
problrm. Please follow the instructions and
rules below to complete the solving. Your
goal is to reach the goal state with valid
moves.
[The goal state]
0 1 2
3 4 5
6 7 8
[Instructions]
The 8-puzzle consists of a 3x3 grid contain-
ing 8 numbered tiles (from 1 to 8) and one
empty space (denoted by 0). Only 0 can
be moved horizontally or vertically, and the
objective is to reach the goal state from a
given initial state. The goal state is typically
the numbers ordered sequentially, with the
0 in the first position:
[The goal state]
0 1 2
3 4 5
6 7 8
[Rules]
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1. Only 0 can be moved horizontally or
vertically.
2. Each move is chosen from the following
set of options:
- ’Left’: move 0 to the left
- ’Down’: move 0 downward
- ’Right’: move 0 to the right
- ’Up’: move 0 upward
For example:
Before move:
1 2 3
4 0 6
7 8 5
After move ’Left’:
1 2 3
0 4 6
7 8 5
Before move:
1 2 3
4 0 6
7 8 5
After move ’Down’:
1 2 3
4 8 6
7 0 5
Before move:
1 2 3
4 0 6
7 8 5
After move ’Right’:
1 2 3
4 6 0
7 8 5
Before move:
1 2 3
4 0 6
7 8 5
After move ’Up’:
1 0 3
4 2 6
7 8 5
3. The next move must be chosen from the
valid move set depending on the position of
’0’.
For example:
p1 p2 p3
p4 p5 p6
p7 p8 p9
(1) If ’0’ is located at position ’p1’, the valid
move set is [’Right’, ’Down’].

(2) If ’0’ is located at position ’p2’, the valid
move set is [’Left’, ’Right’, ’Down’].
(3) If ’0’ is located at position ’p3’, the valid
move set is [’Left’, ’Down’].
(4) If ’0’ is located at position ’p4’, the valid
move set is [’Right’, ’Up’, ’Down’].
(5) If ’0’ is located at position ’p5’, the valid
move set is [’Left’, ’Right’, ’Up’, ’Down’].
(6) If ’0’ is located at position ’p6’, the valid
move set is [’Left’, ’Up’, ’Down’].
(7) If ’0’ is located at position ’p7’, the valid
move set is [’Right’, ’Up’].
(8) If ’0’ is located at position ’p8’, the valid
move set is [’Left, ’Right’, ’Up’].
(9) If ’0’ is located at position ’p9’, the valid
move set is [’Left’, ’Up’].
4. Diagonal moves are not allowed.
5. The objective is to return the moves
which can reach the goal state.

Prompt: 8-Puzzle

All given problems can be solved within 1
to 9 steps. The next move must be chosen
from the valid move set. The maximum step
number you can take is 9. Try to reach the
goal state using the least number of steps
(≤9). **DO NOT exceed 9 steps.**
[Initial State]:
3 1 2
6 4 5
7 8 0
[Process]:
3 1 2
6 4 5
7 8 0
Step 1: Choose one valid move from: [Left,
Up]
Move: Left
Current State:
3 1 2
6 4 5
7 0 8
Step 2: Choose one valid move from: [Left,
Right, Up]
Move: Left
Current State:
3 1 2
6 4 5
0 7 8
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Step 3: Choose one valid move from:
[Right, Up]
Move: Up
Current State:
3 1 2
0 4 5
6 7 8
Step 4: Choose one valid move from:
[Right, Up]
Move: Up
Current State:
0 1 2
3 4 5
6 7 8
Finished.
[Moves]:
Left, Left, Up, Up

Revision: 8-Puzzle

The given [Process] is not correct since it
does not reach the goal state in the end.
If the final answer does not reach the goal
state, then the corresponding [Process] is
considered [wrong]. Please help me identify
the exact wrong step based on its left num-
ber, among [Step 1, Step 2, Step 3, ...]. If
you are uncertain about which step is wrong,
please begin your analysis with [Step 1] for
better understanding.
Please help me identify the exact step num-
ber that is wrong. You must provide one
wrong step.
[Initial State]:
3 1 2
6 4 5
7 8 0
[Process]
3 1 2
6 4 5
7 8 0
Step 1: Choose one valid move from: [Left,
Up]
Left
3 1 2
6 4 5
7 0 8
Step 2: Choose one valid move from: [Left,
Right, Up]
Left
3 1 2

6 4 5
0 7 8
Step 3: Choose one valid move from:
[Right, Up]
Up
3 1 2
0 4 5
6 7 8
Step 4: Choose one valid move from:
[Right, Up]
Right
3 1 2
4 0 5
6 7 8
Finished.
The given [Process] is not correct because
number 3, 4, 0, 5 are not their goal posi-
tions in the end. The puzzle has failed on
reaching its goal state.
Now please help me identify the exact step
number that is wrong. You must provide
one wrong step. If you can not provide an
exact step number, please consider that it
could be "all steps are wrong".
[Step 4] is wrong, with Move: Right.

Instruction: Pocket Cube

You are a virtual expert in solving a 2x2
Pocket Cube. Your task is to restore a scram-
bled 2x2 Rubik’s Cube to its original state.
All the given problems can be solved in 1
to 4 moves. You cannot exceed more than
11 moves. Provide the sequence of moves
required for the restoration. Please follow
the instructions and rules below to complete
the solving:
1. A 2x2 Pocket Cube has six faces, namely:
[Upper, Front, Bottom, Left, Right, Back]
Each consisting of a 2x2 grid of squares,
with each square having its own color.
2. Colors in the Cube are represented in
numbers: [0, 1, 2, 3, 4, 5]
3. The Cube’s state is represented into a
facelets expanding graph, for instance:
Upper:
0 0
0 0
Front:
5 5
2 2
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Down:
3 3
3 3
Left:
1 1
4 4
Right:
4 4
1 1
Back:
2 2
5 5
4. A restoration of a Pocket Cube is to move
squares in each face to have same numbers.
Some example Restored States are:
[Restored State]
Upper:
0 0
0 0
Front:
2 2
2 2
Down:
3 3
3 3
Left:
4 4
4 4
Right:
1 1
1 1
Back:
5 5
5 5
Or
[Restored State]
Upper:
2 2
2 2
Front:
0 0
0 0
Down:
3 3
3 3
Left:
1 1
1 1
Right:
4 4

4 4
Back:
5 5
5 5
You must make move to the Cube to achieve
a Restored State, not limited to the above
one. Note that we just need each face to
have same numbers, no matter which face
has which color.
5. You are only allowed to use following
moves [U, U’, U2, R, R’, R2, F, F’, F2].
["U": Turn the Upper face of the cube 90 de-
grees clockwise. For instance, after taking
move U:
Upper:
0 0
0 0
Front:
2 2
2 2
Down:
3 3
3 3
Left:
4 4
4 4
Right:
1 1
1 1
Back:
5 5
5 5
will become
Up:
0 0
0 0
Front:
1 1
2 2
Down:
3 3
3 3
Left:
2 2 4 4
Right:
5 5
1 1
Back:
4 4 5 5
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"U’": Turn the Upper face of the cube 90 de-
grees counterclockwise (or anti-clockwise).
For instance, after taking move U’:
Upper:
0 0
0 0
Front:
2 2
2 2
Down:
3 3
3 3
Left:
4 4
4 4
Right:
1 1
1 1
Back:
5 5
5 5
will become
Upper:
0 0
0 0
Front:
4 4
2 2
Down:
3 3
3 3
Left:
5 5
4 4
Right:
2 2
1 1
Back:
1 1
5 5
"U2": Turn the Upper face of the cube 180
degrees (a half turn). For instance, after
taking move U2:
Upper:
0 0
0 0
Front:
2 2
2 2
Down:

3 3
3 3
Left:
4 4
4 4
Right:
1 1
1 1
Back:
5 5
5 5
will become
Up:
0 0
0 0
Front:
5 5
2 2
Down:
3 3
3 3
Left:
1 1
4 4
Right:
4 4
1 1
Back:
2 2
5 5
"R": Turn the Right face of the cube 90 de-
grees clockwise. For instance, after taking
move R:
Upper:
0 0
0 0
Front:
2 2
2 2
Down:
3 3
3 3
Left:
4 4
4 4
Right:
1 1
1 1
Back:
5 5
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5 5
will become
Upper:
0 2
0 2
Front:
2 3
2 3
Down:
3 5
3 5
Left:
4 4
4 4
Right:
1 1
1 1
Back:
0 5
0 5
"R’": Turn the Right face of the cube 90 de-
grees counterclockwise. For instance, after
taking move R’:
Upper:
0 0
0 0
Front:
2 2
2 2
Down:
3 3
3 3
Left:
4 4
4 4
Right:
1 1
1 1
Back:
5 5
5 5
will become
Upper:
0 5
0 5
Front:
2 0
2 0
Down:
3 2

3 2
Left:
4 4
4 4
Right:
1 1
1 1
Back:
3 5
3 5
"R2": Turn the Right face of the cube 180
degrees. For instance, after taking move R’:
Upper:
0 0
0 0
Front:
2 2
2 2
Down:
3 3
3 3
Left:
4 4
4 4
Right:
1 1
1 1
Back:
5 5
5 5
will become
Up:
0 3
0 3
Front:
2 5
2 5
Down:
3 0
3 0
Left:
4 4
4 4
Right:
1 1
1 1
Back:
2 5
2 5
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"F": Turn the Front face of the cube 90 de-
grees clockwise. For instance, after taking
move F:
Upper:
0 0
0 0
Front:
2 2
2 2
Down:
3 3
3 3
Left:
4 4
4 4
Right:
1 1
1 1
Back:
5 5
5 5
will become
Up:
0 0
4 4
Front:
2 2
2 2
Down:
1 1
3 3
Left:
4 3
4 3
Right:
0 1
0 1
Back:
5 5
5 5
"F’": Turn the Front face of the cube 90 de-
grees counterclockwise. For instance, after
taking move F’: Upper:
0 0
0 0
Front:
2 2
2 2
Down:
3 3

3 3
Left:
4 4
4 4
Right:
1 1
1 1
Back:
5 5
5 5
will become
Upper:
0 0
1 1
Front:
2 2
2 2
Down:
4 4
3 3
Left:
4 0
4 0
Right:
3 1
3 1
Back:
5 5
5 5
"F2": Turn the Front face of the cube 180
degrees. For instance, after taking move F2:
Upper:
0 0
0 0
Front:
2 2
2 2
Down:
3 3
3 3
Left:
4 4
4 4
Right:
1 1
1 1
Back:
5 5
5 5
will become
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Upper:
0 0
3 3
Front:
2 2
2 2
Down:
0 0
3 3
Left:
4 1
4 1
Right:
4 1
4 1
Back:
5 5
5 5

Prompt: Pocket Cube

All the given problems can be solved in 1 to
4 moves. **You cannot exceed more than
11 moves.** Please complete [Process] and
return the [Restoration Moves].
[Initial Cube State]:
Upper:
4 5
4 4
Front:
5 1
5 0
Down:
0 0
2 0
Left:
1 1
3 2
Right:
2 2
4 3
Back:
3 3
1 5
[Process]:
[Step 1]
[Move] R
[Current Cube State]
Upper:
4 0
4 0

Front:
5 5
0 1
Down:
0 1
2 2
Left:
1 1
3 3
Right:
2 2
4 3
Back:
4 3
5 5
[Step 2]
[Move] U’
[Current Cube State]
Upper:
0 0
4 4
Front:
0 1
0 1
Down:
2 2
2 2
Left:
1 1
3 3
Right:
4 3
4 3
Back:
5 5
5 5
[Step 3]
[Move] F’
[Current Cube State]
Upper:
0 0
0 0
Front:
1 1
1 1
Down:
2 2
2 2
Left:
3 3
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3 3
Right:
4 4
4 4
Back:
5 5
5 5
Finished.
Now strictly follow the above process to
form Restoration Moves.
[Restoration Moves]:
R U’ F’

Revision: Pocket Cube

The given [Process] is not correct since it
does not reach the goal state in the end.
If the final answer does not reach the goal
state, then the corresponding [Process] is
considered [wrong]. Please help me identify
the exact wrong step based on its left num-
ber, among [Step 1, Step 2, Step 3, ...]. If
you are uncertain about which step is wrong,
please begin your analysis with [Step 1] for
better understanding.
Please help me identify the exact step num-
ber that is wrong. You must provide one
wrong step.
[Initial Cube State]:
Upper:
4 5
4 4
Front:
5 1
5 0
Down:
0 0
2 0
Left:
1 1
3 2
Right:
2 2
4 3
Back:
3 3
1 5
[Process]:
[Step 1]
[Move] R
[Current Cube State]

Upper:
4 0
4 0
Front:
5 5
0 1
Down:
0 1
2 2
Left:
1 1
3 3
Right:
2 2
4 3
Back:
4 3
5 5
[Step 2]
[Move] U’
[Current Cube State]
Upper:
0 0
4 4
Front:
0 1
0 1
Down:
2 2
2 2
Left:
1 1
3 3
Right:
4 3
4 3
Back:
5 5
5 5
[Step 3]
[Move] F2
[Current Cube State]
Upper:
0 0
1 1
Front:
2 2
2 2
Down:
4 4
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3 3
Left:
4 0
4 0
Right:
3 1
3 1
Back:
5 5
5 5
Finished.
After finishing all the moves: The Upper
face still has 2 differnet colors. The Down
face still has 2 differnet colors. The Left
face still has 2 differnet colors. The Right
face still has 2 differnet colors.
The given [Process] is not correct because
not every face has the same numbers in the
end. The cube has failed on restoring to its
original state. Now please help me identify
the exact step number that is wrong. You
must provide one wrong step. If you can not
provide an exact step number, please con-
sider that it could be "all steps are wrong".
[Step 3] is wrong, with Move: F2.
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