
Findings of the Association for Computational Linguistics ACL 2024, pages 16212–16226
August 11-16, 2024 ©2024 Association for Computational Linguistics

Selective Prompting Tuning for Personalized Conversations with LLMs

Qiushi Huang1,2, Xubo Liu1, Tom Ko3, Bo Wu4, Wenwu Wang1,
Yu Zhang2* , Lilian Tang1∗

1University of Surrey, 2Southern University of Science and Technology,
3ByteDance AI Lab, 4MIT-IBM Watson AI Lab

{qiushi.huang, xubo.liu, w.wang, h.tang}@surrey.ac.uk,
{tomkocse, yu.zhang.ust}@gmail.com, bo.wu@ibm.com

Abstract

In conversational AI, personalizing dialogues
with persona profiles and contextual under-
standing is essential. Despite large language
models’ (LLMs) improved response coherence,
effective persona integration remains a chal-
lenge. In this work, we first study two com-
mon approaches for personalizing LLMs: tex-
tual prompting and direct fine-tuning. We ob-
served that textual prompting often struggles to
yield responses that are similar to the ground
truths in datasets, while direct fine-tuning tends
to produce repetitive or overly generic replies.
To alleviate those issues, we propose Selective
Prompt Tuning (SPT), which softly prompts
LLMs for personalized conversations in a se-
lective way. Concretely, SPT initializes a set
of soft prompts and uses a trainable dense re-
triever to adaptively select suitable soft prompts
for LLMs according to different input contexts,
where the prompt retriever is dynamically up-
dated through feedback from the LLMs. Addi-
tionally, we propose context-prompt contrastive
learning and prompt fusion learning to encour-
age the SPT to enhance the diversity of per-
sonalized conversations. Experiments on the
CONVAI2 dataset demonstrate that SPT sig-
nificantly enhances response diversity by up to
90%, along with improvements in other critical
performance indicators. Those results high-
light the efficacy of SPT in fostering engaging
and personalized dialogue generation. The SPT
model code is publicly available for further ex-
ploration. 1

1 Introduction

Personalization in dialogue systems enhances user
interaction by creating a coherent and customized
experience. It involves adapting conversations to
individual preferences, backgrounds, and real-time
context, ensuring each dialogue feels personally
relevant. This tailored approach fosters a deeper

* Corresponding authors.
1https://github.com/hqsiswiliam/SPT

connection between users and technology, mak-
ing interactions more intuitive and engaging. By
understanding and anticipating user needs, person-
alized dialogues can offer more than just relevant
responses; they provide a seamless, conversational
experience that mirrors human interaction, enrich-
ing the overall quality of digital communication.

PersonaChat (Zhang et al., 2018) has become a
pivotal dataset for personalization research in con-
versational AI, offering persona profiles that detail
an interlocutor’s preferences and background in
four to five sentences. These profiles guide conver-
sational agents in creating dialogues that are both
engaging and consistent with the persona’s char-
acteristics and prior conversational context. This
area has seen diverse approaches for enhancing per-
sonalization, such as attention mechanisms (Huang
et al., 2023b), reinforcement learning with multiple
rewards (Song et al., 2021; Liu et al., 2020), and
persona profile enrichment through stories (Huang
et al., 2023a), demonstrating the breadth of innova-
tion in making interactions more personalized and
meaningful.

Recently, the advent of large language models
(LLMs) (Zhang et al., 2022; Touvron et al., 2023)
has opened new avenues for dialogue generation,
offering the potential for creating conversations
that align with human preferences. However, fully
leveraging LLMs to achieve the level of person-
alization showed in PersonaChat is a promising
yet underexplored area. Currently, LLMs are pri-
marily guided by direct textual prompts or through
parameter-efficient fine-tuning like prompt tuning
(Lester et al., 2021) that only tunes a few virtual
tokens instead of whole LLMs for specific tasks.

However, designing personalized conversational
agents with LLMs faces two main challenges. The
primary issue lies in diverse settings in conversa-
tions, which encompass a wide array of dialogues,
each characterized by unique persona profiles and
varying lengths of conversation. This diversity ne-
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cessitates an understanding of the distinct conver-
sational settings within the data. Through textual
prompting, it is hard to guide the model to gener-
ate desired responses aligned with the target texts.
Simply fine-tuning LLMs through prompt tuning
without careful conversational setting analysis risks
producing responses that lack specificity and depth,
resulting in a generic and bland generation.

Secondly, another equally critical challenge
arises from the limitations inherent to the datasets
used for persona-based dialogue generation. Typi-
cally small and lacking in diversity, these datasets
can restrict the model’s exposure to a wide range
of conversational scenarios. When LLMs (e.g.,
Llama2-7B (Touvron et al., 2023)) are tuned
through trainable soft prompts on PersonaChat,
they risk overfitting to specific persona profiles.
This overfitting manifests in the model’s responses,
which become repetitive and overly aligned with
the persona, often at the cost of dynamic and con-
textually appropriate interactions. Although this
might lead to improvements in metrics such as F1
or BLEU scores, it detracts from the overall diver-
sity and engagingness of the dialogues, undermin-
ing the model’s ability to emulate authentic human
conversation.

To handle those two challenges when designing
personalized conversations with LLMs, we propose
a Selective Prompt Tuning (SPT) model. Specif-
ically, to tackle the first challenge, it is crucial to
identify inherent data patterns without explicit an-
notations. To achieve this, it is intuitive to utilize a
group of multiple soft prompts to handle different
conversational settings when tuning the model in
a parameter-efficient way. However, as previously
mentioned, the annotations for the dialogue settings
are missing and even hard to discover and anno-
tate. If we naively concurrently tune all prompts
without clear distinctions, this would yield only
marginal differences compared with tuning one
soft prompt. Therefore, to build effective multiple
prompts to discover the inherent data pattern in-
side the personalized dialogue, the proposed SPT
model utilizes a dense retriever to adaptively select
a proper soft prompt from the soft prompt group
based on the given input context. To distinguish the
effectiveness of soft prompts, we utilize the loss
from LLMs as feedback to guide the update of the
dense retriever without explicit annotations. Based
on this, the proposed SPT model could discover
patterns intrinsically associated with different dia-
logues. In this way, the retriever and soft prompt

group evolve together, benefiting from continuous
interactions that enrich their capability to discrim-
inate and generate diverse, contextually relevant
responses.

To address the second challenge that LLM may
overfit small-scale datasets such as PersonaChat,
the proposed SPT method integrates two comple-
mentary mechanisms: context-prompt contrastive
learning and prompt fusion learning. The context-
prompt contrastive learning mechanism ensures
diversity by encouraging the use of different soft
prompts for varied dialogue contexts, preventing
repetitive responses. Concurrently, prompt fusion
learning aggregates all prompt predictions during
back-propagation, optimizing towards a unified out-
put. This dual strategy not only preserves response
diversity across contexts but also enhances over-
all model performance, demonstrating their coop-
erative effectiveness in tackling overfitting while
maintaining the performance.

By integrating the above two parts into the SPT
method, experiments on the CONVAI2 dataset (Di-
nan et al., 2019) with LLMs (i.e., Llama2 (Tou-
vron et al., 2023) and OPT (Zhang et al., 2022))
not only demonstrate marked improvements in re-
sponse diversity and engagingness but also indicate
enhancements in other key performance metrics.
Quantitatively, the proposed SPT model consis-
tently outperforms baselines across models with
various sizes. Moreover, SPT offers profound in-
sights into different dialogue scenarios, particularly
in the model’s strategic prompt selection. Compre-
hensive ablation studies highlight the adaptability
of different prompts to specific dialogue contexts.

Overall, our contributions can be summarized as
follows.

• We present the novel SPT method by integrat-
ing a trainable dense retriever with dynamic
soft prompt selection to improve dialogue per-
sonalization and enhance both the diversity
and engagingness.

• In the proposed SPT method, we introduce the
context-prompt contrastive mechanism and
prompt fusion learning within a unified frame-
work to foster prompt diversity and adaptabil-
ity.

• Extensive experiments show the effectiveness
of the proposed SPT method.
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2 Related Work

2.1 Personalized Dialogue Generation

The CONVAI2 dataset, curated from the Per-
sonaChat dataset (Zhang et al., 2018), features a
persona profile with four to five sentences for each
interlocutor (Dinan et al., 2019). This dataset has
been established as a benchmark for personalized
dialogue generation. Building upon this dataset,
a variety of studies have explored different meth-
ods. For example, Wolf et al. (2019) extend the
GPT2 model (Radford et al., 2019) with fine-tuning
techniques specific to persona-based conversations.
Differently, Song et al. (2021) employed a tripartite
BERT architecture (Devlin et al., 2019), optimized
through reinforcement learning, to craft responses.
Similarly, Liu et al. (2020) introduces a transmitter-
receiver model by applying reinforcement learning
with custom rewards to refine the dialogue gener-
ation process. Cao et al. (2022) leverage model-
agnostic data augmentation techniques to enrich the
training dataset with pseudo-samples using models
like GPT2 and BERT. Huang et al. (2023b) develop
an adaptive attention mechanism that coherently
integrates persona and context information. Huang
et al. (2023a) propose a LAPDOG method to incor-
porate an external story corpus to enhance persona
profiles for richer response generation. In contrast
to those methods, the proposed SPT framework de-
composes the task with multiple soft prompts with-
out necessitating additional annotations or reliance
on external corpora, which enables the generation
of diverse and engaging responses while maintain-
ing the integrity of the conversational context.

2.2 Language Models and Personalization

Language models (LMs) estimate text sequence
probabilities, with recent models expanding from
millions (Radford et al., 2019; Zhang et al., 2022)
to billions of parameters (Brown et al., 2020; Zhang
et al., 2022), and training corpora now including
vast web texts and instructional data (Ouyang et al.,
2022; Touvron et al., 2023). Such advancements
have notably improved the performance of LMs on
various NLP tasks, especially in generating high-
quality text for conversational applications. While
those LMs are adept at providing user-centric re-
sponses, personalization remains a challenge. The
prevalent strategy involves appending manually
crafted hard prompts to LMs, which is overly sim-
plistic and can result in the ‘lost in the middle’
problem (Liu et al., 2023). This occurs when the

output of the LM is generically correct but lacks
personalized context, struggling to reconcile broad
training data with specific user prompts. To coun-
teract this, the proposed SPT method enables the
LLM to adapt its responses to varying personalized
contexts more effectively. As a result, SPT fosters
the generation of dialogue responses that are not
only consistent but also highly personalized, ad-
dressing the core challenge of maintaining context
relevance in user interactions.

3 Methodology

In this section, we introduce the proposed SPT
method.

3.1 Problem Settings

In persona-based dialogue sessions, a context is rep-
resented as C = {P,U}, where P = {p1, . . . , pe}
denotes the persona comprising e sentences (e.g.,
4 ≤ e ≤ 5) to provide background informa-
tion for a machine interlocutor m and U =
{uh,1, um,1, . . . , uh,n} denotes the dialogue con-
text initiated by the human h to capture the ex-
change between human h and machine m. The
goal is to generate a machine’s response r = um,n

that aligns with its persona P and the context U .

3.2 Architecture

Figure 1 illustrates the SPT framework, consist-
ing of a soft prompt group, a dense retriever, and
a frozen LLM. Within this framework, the dense
retriever selects an appropriate soft prompt from
the soft prompt group by determining the closest
match to the given context C. The chosen prompt
is then merged with C to guide the LLM to pro-
duce compelling responses. The SPT framework
restricts the soft prompt group and dense retriever
to be trainable, while maintaining the LLM in a
frozen state, which could significantly reduce the
memory footprint and optimize resource utilization
during training.

Soft Prompt Group The soft prompt group, de-
noted by SP = {sp1, ..., spK}, consists of K soft
prompts with random initialization. Each prompt
features L×D virtual tokens, where D denotes the
hidden dimension of the LLM and L denotes the
length of prompts. These prompts are fine-tuned
during training while the LLM remains frozen.

Soft Prompt Selection The soft prompt selec-
tion is done by a trainable retriever, Ret(·, ·),
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Figure 1: Selective Prompt Tuning (SPT) process for personalized dialogue generation with large language models
(LLMs). The process starts by computing similarity scores for K soft prompts given the context, followed by
LLM loss computation. The prompts are then fed into the LLM along with the context to generate multiple LLM
losses which are normalized. A dense retriever computes another set of scores for a different context to inform
the contrastive loss. The four computed losses guide the updates to the soft prompts and the retriever to enhance
response diversity and relevance.

which calculates the similarity score sC,sp =
{sC,1, ..., sC,K} between the context embedding
embC from the LLM and each candidate spi in the
soft prompt group SP . It ranks all the soft prompts
based on the computed similarity score {sC,i}Ki=1

to identify the most suitable prompt for the context.

LLMs The LLMs deployed here are the decoder-
only causal language model with frozen weights
and initialized from pre-trained models.

3.3 Computing Similarity between Soft
Prompts and Context

To reduce computational overhead, the dense re-
triever Ret utilizes two linear layers, i.e., linC and
linsp, for computing the similarity scores {sC,i}.
Those similarity scores are calculated using the
context embedding embC ∈ RM×D obtained by
the LLM’s word embedding layer LLMemb and the
soft prompt representation in RL×D. The similarity
score is computed as

embC = LLMemb(C),

vC = linC(embC),

vsp,i = linsp(spi),

v̄C = Avgdim=0(vC),

v̄sp,i = Avgdim=0(vsp,i),

srawc,i =
v̄C · v̄sp,i

∥v̄C∥2 · ∥v̄sp,i∥2
,

sC,i = Softplus(srawC,i ),

(1)

where Avgdim=0(·) denote the averaging opera-
tion along the length dimension to address the se-
quence length discrepancy between embC and spi,
Softplus(·) denotes the softplus activation function
to ensure that sC,i remains in the range [0, 1] and
enhance the numerical stability during training, and
sC,i represents the normalized similarity score be-
tween the context C and the soft prompt spi.

3.4 Learning Prompt Selection

Navigating the lack of explicit annotations in com-
plex dialogue scenarios poses a challenge in accu-
rately guiding the retriever to assess the similarity
between the context and each soft prompt. A naive
method, which independently fine-tunes the entire
soft prompt group and then selects candidates based
on the similarity score during decoding, might lead
to sub-optimal performance, akin to tuning a single
soft prompt. To address this, we leverage context-
driven losses from soft prompts, refining similarity
score computations and enabling informed retriever
decisions during training, as introduced in the next
two subsections.

3.4.1 Soft Prompt Loss

For simplicity, consider the case with a single con-
text. Given a context cn from persona and dialogue
history and its corresponding ground truth response
targetn, we calculate the negative log-likelihood
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loss for each soft prompt as

predi,n = LLM(concat(spi, cn)),

LLLM
i = NLL(predi,n, targetn), (2)

where concat(·, ·) denotes the concatenation opera-
tion, LLM(·) denotes the LLM’s forward operation,
which takes a text sequence as the input and re-
turns the predicted token probability distribution as
the output, and NLL(·, ·) denotes the negative log-
likelihood loss. This process generates K losses
LLLM = {LLLM

1 , ...,LLLM
K } to measure the pre-

dictive ability of each soft prompt.

3.4.2 Prompt Selection Loss
In the absence of explicit annotations for conver-
sational settings, updating the retriever to identify
the most effective soft prompt for a given context
is challenging. However, by using soft prompts
in LLMs with the same context, the loss from dif-
ferent prompts can serve as a guide to determine
which soft prompt is most suitable. Based on this
consideration, we use the soft prompt loss (i.e.,
LLLM defined in Eq. (2)) to gauge each candidate
spi in the soft prompt group SP within cn. Align-
ing the LLM’s performance evaluation with the
retriever’s similarity scores is achieved by using
the KL divergence between the negative language
model loss (as guidance) and similarity scores. By
denoting by Scn,SP = [Scn,sp1 , . . . , Scn,spK ] the
similarity scores between cn and each spi in SP ,
the prompt selection loss is formulated as

LLLM
normed = Softmax(−LLLM/τg),

Lselection = KL(Scn,SP ,LLLM
normed),

(3)

where Softmax(·) denotes the softmax function,
τg is a temperature hyper-parameter, and KL(·, ·)
denotes the KL divergence.This loss is pivotal in
ensuring the selections of the dense retriever are
informed and coherent with the LLM, effectively
mirroring the performance of soft prompts in gener-
ating contextually relevant and engaging responses.

3.5 Context-Prompt Contrastive Learning
While the aforementioned losses aid in training,
there is a risk that the retriever often retrieves a sin-
gle prompt and stagnates in such sub-optimal states.
To alleviate this and foster prompt diversity to re-
trieve more prompts, we propose a context-prompt
contrastive loss. This loss refines prompt selection
by adjusting similarity scores based on the textual
similarity of distinct contexts, thereby preventing

to always select a single soft prompt and promoting
varied selections. Specifically, the context-prompt
contrastive loss dynamically recalibrates the simi-
larity scores between pairs of context contents, con-
sidering their textual resemblance. Mathematically,
the context-prompt contrastive loss is formulated
as

Lcon(sci , scj ) =

{
1− cos(sci , scj ) if M(ci, cj) > Γ

max(0, cos(sci , scj )) otherwise
(4)

where M(·, ·) denotes a distance function such as
BLEU (Papineni et al., 2002), Γ denotes a thresh-
old, sci denotes a vector of cosine similarity scores
between a context ci and soft prompts in the soft
prompt group, and cos(·, ·) denotes the cosine sim-
ilarity.

The function Lcon amplifies the cosine similarity
for similar context pairs (i.e., M(ci, cj) > Γ) and
dampens it for dissimilar pairs (i.e., M(ci, cj) ≤
Γ). This contrastive strategy not only ensures the
retriever’s alignment with the LLM’s evaluations
but also fosters a rich diversity and distinctiveness
among different dialogue contexts, significantly
bolstering the framework’s overall adaptability.

3.6 Prompt Fusion Learning

To optimize the effectiveness of the soft prompts,
we introduce a prompt fusion learning loss. This
loss averages the predictive probabilities from all
the soft prompts in the soft prompt group, aiming
to aggregate a unified outcome that closely aligns
with the desired output. The averaging operation
in this loss smooths out variances and biases from
individual prompts, thus improving the overall pre-
diction accuracy and reliability. Formally, this loss
is formulated as

pfused =
1

K

K∑

i=1

LLM(concat(spi, cn))

Lfusion = NLL(pfused, targetn). (5)

By utilizing the collective strengths of diverse
prompts, this loss enhances the model’s ability to
generate context-appropriate responses.

3.7 Overall Objective Function

The SPT framework hinges on the harmonious inte-
gration of the aforementioned loss functions, where
each addresses a distinct aspect. The soft prompt
loss (i.e., LLLM ) ensures the LLM fidelity, the
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prompt selection loss (i.e., Lselection) aligns the re-
triever’s similarity assessment with the LLM’s out-
put, the context-prompt contrastive loss (i.e., Lcon)
promotes diversity in prompt selection, and the
prompt fusion learning loss (i.e., Lfusion) enhance
the overall performance for all the soft prompts.
The overall objective of the SPT method is to min-
imize a composite loss function that encapsulates
these individual components. Formally, the overall
objective function LTotal for the SPT framework
is formulated as

LTotal =
K∑

i=1

LLLM
i + λ1

K∑

i,j=1
i ̸=j

Lcon(sci , scj )

+ λ2Lselection + λ3Lfusion, (6)

where λ1, λ2, and λ3 are hyperparameters that con-
trol the relative contribution of each loss compo-
nent. In our experiments, we simply set λ1, λ2, and
λ3 to be 1, which could achieve good performance.

By minimizing LTotal during training, the SPT
framework effectively balances the fidelity to the
LLM, the accuracy of the retriever, and the diversity
in prompt selection, leading to an adaptive dialogue
generation system.

3.8 Inference
During inference, the dense retriever selects the
most appropriate soft prompt from the soft prompt
group based on the given context. This selected
prompt, along with the context, is then fed into the
LLM to decode the final result. Formally, for a
given context C, soft prompt group SP , and dense
retriever Ret, the inference process proceeds as

i∗ = argmax
1≤i≤K

Ret(C, SP ),

pred = LLM(concat(spi∗ , C)),
(7)

where spi∗ denotes the selected soft prompt with
index i∗ and pred denotes the response generated
by the LLM.

4 Experiments

In this section, we empirically evaluate the pro-
posed SPT model.

4.1 Dataset
We conduct experiments on the ConvAI2 dataset
(Dinan et al., 2019), a benchmark for personal-
ized dialogue generation. It comprises 8,939 train-
ing and 1,000 validation multi-turn conversations

sourced from crowdworkers. Each dialogue in-
cludes persona profiles, each of which has four to
five sentences to describe the background of each
speaker, and the conversational history between the
two interlocutors. By following (Liu et al., 2020;
Huang et al., 2023a), our experiments employ a
self-persona setting where only the speaking in-
terlocutor’s persona is revealed, maintaining the
other’s persona as obscured.

4.2 Experimental Setup

All experiments are based on two LLMs, including
OPT (Zhang et al., 2022) and Llama2 (Touvron
et al., 2023) of different sizes, which serve as the
foundation model for the proposed SPT method.
We randomly initialize soft prompts using a stan-
dard Gaussian distribution. For OPT models, we
set the soft prompt token length to 8, and for the
Llama2 model, we use a token length of 1. The
soft prompt group consists of K = 4 candidates.
Learning rates of different LLMs are recorded in
Table 6 in the Appendix. The threshold Γ in Eq. (4)
is set to 20.

4.3 Evaluation Metrics

We evaluate our model using a suite of estab-
lished metrics for persona-based dialogue gener-
ation, including Unigram F1, BLEU, ROUGE,
BERT Score, and textual unigram/bigram distinct-
ness (denoted by DIST-1 and DIST-2). Unigram F1
measures the harmonic mean of precision and re-
call at the token level. BLEU (Papineni et al., 2002)
and ROUGE (Lin, 2004) evaluate the overlap of
n-grams between the generated text and target ref-
erence. BERT score (Zhang et al., 2019), using the
deberta-xlarge-mnli model2 as recommended for
its improved performance over roberta-large, cap-
tures the semantic similarity of text pairs. Unigram
and bigram distinctness (denoted by DIST-1 and
DIST-2) gauge the diversity of the generated text,
where DISTAV G denotes the average of DIST-1
and DIST-2.

4.4 Results

Table 1 illustrates that the proposed SPT consis-
tently outperforms the baseline models across var-
ious metrics. Notably, the OPT-2.7B-SPT and
Llama2-7B-SPT models exhibit significant perfor-
mance improvements (i.e., 33.04% and 26.26%,
respectively). Those improvements affirm the effec-

2https://github.com/Tiiiger/bert_score
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Model F1 BLEU ROUGE-1 ROUGE-2 ROUGE-L BERTF1 BERTP BERTR DIST-1 DIST-2 AVG↑
OPT-125M-PT 10.79 1.61 14.36 2.67 13.25 53.15 53.90 52.91 3.94 13.67 -
OPT-125M-SPT 11.06 2.22 16.45 3.60 15.42 54.86 56.23 53.91 4.87 17.38 16.60%
OPT-1.3B-PT 8.16 1.82 11.48 2.22 10.29 55.31 57.12 53.93 4.87 17.19 -
OPT-1.3B-SPT 9.94 2.66 13.74 3.24 12.38 56.34 58.08 54.99 4.93 17.76 16.43%
OPT-2.7B-PT 8.67 1.77 11.84 2.30 10.61 56.25 58.48 54.49 5.18 18.61 -
OPT-2.7B-SPT 12.23 3.11 16.97 4.37 15.61 57.96 59.92 56.45 5.84 20.76 33.04%
Llama2-7B-PT 17.12 1.99 15.74 4.07 13.72 52.30 48.57 57.11 2.80 12.91 -
Llama2-7B-SPT 17.49 2.80 17.02 4.48 15.24 54.66 53.02 57.14 5.69 22.86 26.62%

Table 1: Performance comparison of different LLMs across different model sizes. BERTF1, BERTP , and BERTR

denote the BERT Score F1, Precision, and Recall. AVG↑ indicates the average improvement over the corresponding
baseline method. Models appended with ‘-SPT’ indicate the combination of the proposed SPT method with the
corresponding LLM, while ‘-PT’ indicates the conventional prompt tuning method. The best performance in each
metric is in bold.

Model F1 BLEU ROUGE-L BERTF1 DISTAV G

Llama-7B-SPT 17.49 2.80 15.24 54.66 14.27
w/o CL 15.95 2.00 13.17 52.80 14.23
w/o FUSION 16.02 1.90 13.24 52.89 14.69
w/o SL 16.39 1.93 13.71 53.75 13.06

Table 2: The ablation study on the training losses. ‘w/o
CL’, ‘w/o FUSION’, and ‘w/o SL’ denote no context-
prompt contrastive loss, no prompt fusion learning loss,
and no prompt selection loss, respectively.

tiveness of the proposed SPT method in fostering
more diverse and personalized responses.

For baseline models, we can see that there ex-
ists a common trade-off between linguistic quality
and diversity. Specifically, the Llama2-7B model
scores 17.12 in F1 and 1.99 in BLEU, but its di-
versity seems not so good (i.e., 2.80 in DIST-1 and
12.91 in DIST-2). This is in contrast to the OPT-
125M model, which has lower linguistic scores (i.e.,
10.79 in F1 and 1.61 in BLEU) but higher distinct-
ness (i.e., 3.94 in DIST-1 and 13.67 in DIST-2).
Different from those models, the proposed SPT
method significantly enhances both diversity and
linguistic quality, thereby avoiding the common
compromise between linguistic enhancement and
diversity.

5 Ablation Studies

In this section, we conduct ablation studies for the
proposed SPT method.

5.1 Training Losses

Table 2 reveals the impact of different training
losses on performance. Omitting the prompt fu-
sion loss slightly increases the prediction diversity
in terms of DISTAV G but reduces the overall perfor-
mance in terms of F1, BLEU, ROUGE, and BERT
Score. One possible reason is that the prompt fu-
sion loss contributes to the linguistic quality at the
cost of the diversity. Excluding the context-prompt
contrastive loss leads to a decline in all the evalu-
ated metrics, which shows the effectiveness of the

Figure 2: Analysis of the usage of each soft prompt
cross the conversational process, where the horizontal
axis represents the index of the conversational turn and
the vertical axis denotes the times that each soft prompt
is chosen.

I love cats and have two cats.
My favorite season is winter. 
I won a gold medal in the 1992

Olympics. 
I've a hat collection of over 1000 hats.

I have a turtle his name is
Speedy. Kitties are nice too,
tho!

😻🐱 I have two cats, fluffy
and mittens. They are
adorable! 

System
 Persona

How old are you? I turned four
on my birthday!

Selected Idx: 2

34 years old. I won a gold
medal in the 1992 summer
Olympics. 

Long Turns
Short Turns

Selected Idx: 3

Figure 3: The varied response styles of the Llama2-
7B-SPT model, highlighting its tendency to incorporate
emojis into responses during initial conversational turns.

context-prompt contrastive loss. The absence of
the prompt selection loss significantly affects the
prediction diversity, causing the model to favor a
single soft prompt, akin to utilizing a single prompt.
The above results underscore the importance of
each loss in enhancing the model performance and
response diversity.

5.2 Prompt Usage in Varied Contexts

To see the prompt usage during the conversational
process, we plot in Figure 2 the times each soft
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K F1 BLEU ROUGE-L BERTF1 DISTAV G

1 17.76 1.76 15.21 54.86 14.15
2 17.71 2.55 15.63 55.52 14.29
3 17.34 2.45 15.09 55.31 15.23
4 17.49 2.80 15.24 54.66 14.27
5 16.07 2.42 12.88 47.12 13.99
6 17.46 2.21 14.94 54.43 15.12
7 17.76 2.42 15.42 54.96 13.51
8 17.48 2.32 15.29 54.87 13.89

Table 3: The effect of the size of the soft prompt group
(i.e., K) to the performance of Llama2-7B-SPT.

prompt is chosen during the entire conversation.
According to Figure 2, we can see that in the OPT-
1.3B-SPT model, prompt sp3 is predominantly uti-
lized for the initial stage in the conversation, sp2
for the middle stage of the conversation, and sp1 for
the later stage of the conversation. For the Llama2-
7B-SPT model, we have similar observations, in-
dicating that soft prompts have functionalities in
different stages of the conversation.

Moreover, Figure 3 explores the stylistic aspects
of responses generated by different prompts, i.e.,
emojis in the generated responses. In the Llama2-
7B-SPT model, sp2, which is often used in the
initial stage of the conversations, tends to generate
emojis in the generated response. Differently, sp3,
often used in the late stage of the conversation,
tends to generate few emoji in decoded responses.
This phenomenon suggests a strategic use of emojis
at different stages of the conversation.

5.3 Number of Soft Prompt Candidates

Table 3 shows the effect of the number of soft
prompts (i.e., K) to the model performance in
terms of different metrics. Though the best per-
formance occurs at different K’s for different per-
formance metrics, the best performance for differ-
ent metrics usually occurs when K ≤ 4, which is
likely due to the sizes of both the CONVAI2 dataset
and the LLM used. Hence, in all the experiments,
K is set to be 4 by default.

5.4 Comparison to Longer Prompt Tuning

As shown in Table 4, the SPT method with four
single-token soft prompts outperforms the four-
token prompt tuning method, highlighting effective-
ness of the proposed SPT method. Moreover, SPT
excels the eight-token prompt tuning method in
terms of BLEU, ROUGE, and DISTAV G, showing
its effectiveness despite fewer trainable parameters.

Model F1 BLEU ROUGE-L BERTF1 DISTAV G

Llama2-7B-SPT 17.49 2.80 15.24 54.66 14.27
Llama2-7B-4-PT-TOKEN 16.47 1.78 13.64 52.65 9.52
Llama2-7B-8-PT-TOKEN 17.64 2.13 14.69 55.85 13.33
Llama2-7B-LoRA 15.61 2.20 11.66 47.46 10.21
GPT-3.5-ICL 6.78 0.77 0.09 47.96 23.24

Table 4: Performance comparison across varying
prompt token lengths as well as LoRA and In-Context
Learning on GPT-3.5 Turbo. ‘-SPT’ denotes the pro-
posed SPT model with a single token length per prompt,
while Llama2-7B-4-PT-TOKEN and Llama2-7B-8-PT-
TOKEN have token lengths of 4 and 8, respectively.

Model BLEU BLEU-1 BLEU-2 BLEU-3 BLEU-4
Llama2-7B-PT 8.79 43.42 20.44 13.51 10.06
Llama2-7B-SPT 2.07 41.99 16.62 10.48 6.95

Table 5: Comparison of text overlapping between the
prediction of different models and the persona.

5.5 Comparison to LoRA

As LoRA (Hu et al., 2022) is another type of
parameter-efficient finetuning method and has
shown to be effective to utilize LLMs for differ-
ent applications, we compare the proposed SPT
method with it based on the Llama2-7B model
under the condition that they have comparable
numbers of trainable parameters. As shown in Ta-
ble 4, LoRA exhibits improvements in the BLEU
score and DISTAV G but has lower ROUGE-L,
BERTF1, and F1 scores compared with the four-
token prompt tuning method. Moreover, the pro-
posed SPT method surpasses LoRA across all the
evaluation metrics, highlighting its superior per-
formance and affirming its effectiveness under the
condition of comparable numbers of trainable pa-
rameters.

5.6 Comparison to In-Context Learning

To compare the performance with In-Context
Learning (ICL) on LLMs, we compare the SPT
method with the zero-shot GPT-3.5 turbo with in-
structions. According to results shown in Table 4,
we can see that ICL gains a higher diversity score
(i.e., DISTAV G) but lower scores in terms of other
metrics. This implies that simply prompting a more
powerful LLM without proper tuning is hard to gain
comparable performance to tuning methods.

5.7 Text Overlap Between Prediction and
Persona

Table 5 presents BLEU scores between the model’s
predictions and the system’s persona descriptions
for different models. We can see that the prompt
tuning method exhibit larger text overlap with the
system’s persona, often leading to repetitive re-
sponses aligned with the persona. In contrast, the
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proposed SPT method has lower linguistic similari-
ties to the persona, which results in more diverse
and effective responses. This suggests that the pro-
posed SPT method effectively balances the persona
consistency and response diversity, avoiding the
pitfalls of over-repetition.

6 Conclusion

In this paper, we introduce SPT, a strategic
approach for personalized dialogue generation
through selective prompt tuning. By jointly train-
ing a soft prompt group and a dense retriever, SPT
adeptly navigates various conversational scenarios
automatically, enriching response diversity while
improving both linguistic and neural-based metrics.
Experiments on the CONVAI2 dataset highlights
the capacity of SPT to identify intrinsic conversa-
tional settings, showing its effectiveness in generat-
ing contextually appropriate dialogues.
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Limitations

This paper has introduced the selective prompt tun-
ing in personalized dialogue generation. Through
diverse prompting, the LLMs can generate more di-
verse and engaged responses when compared with
single prompt tuning. However, despite the context-
prompt contrastive mechanism and prompt selec-
tion loss, there is still a risk for the retriever to fall
into a narrow selection of soft prompts (e.g., given
K = 4 in Llama2-7B, there is still one soft prompt
that is selected only once during inference). This
limitation may caused by a larger K used, making
the determination of K important. Meanwhile, in
the context-prompt contrastive loss, simply using
BLEU to measure text similarity may not be suf-
ficient to distinguish the difference between two
dialogues, which could be enhanced by neural met-
rics powered by LLMs that could distinguish texts
from both semantic and linguistic perspectives. Ad-
ditionally, in the decoded text of Llama2-7B, the ex-
istence of emoji is not designed in the PersonaChat
dataset, which is worth further investigation.
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This research confines the use of personal data to
fictional persona profiles in the CONVAI2 dataset,

avoiding the handling or storage of real personal
data. All the soft prompts within the SPT are
vector-based parameters without directly encoding
or representing any individual’s personal informa-
tion. When applying to real-world applications,
it is vital to prioritize data privacy, ensuring that
personal information for personalized dialogues is
ethically sourced and used with informed consent.
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A Appendix

A.1 Complete Training Procedure

The full training procedure is described at Algo-
rithm 1.

A.2 Detailed Settings for SPT Training

Shared Parameters
HyperParameter Value
K 4
Optimizer Adam
τg 1
λ1 1
λ2 1
λ3 1
λ4 1

Llama2-7B-SPT
Prompt Length 1
Learning Rate 0.01

OPT-2.7B
Prompt Length 8
Learning Rate 0.001

OPT-1.3B
Prompt Length 8
Learning Rate 0.01

OPT-125M
Prompt Length 8
Learning Rate 0.01

Table 6: The hyper-parameters for the SPT training.

Table 6 lists the detailed hyper-parameters for
training SPT. The share parameters are used for
all model training. Meanwhile, the Llama2-7B-
SPT, OPT-2.7B, OPT-1.3B, and OPT-125M indi-
cate the specific hyper-parameters used in the spe-
cific model training. We trained the SPT models
on eight Tesla-V100 32GB GPUs. For each SPT
model except OPT-125M-SPT, we train one epoch
and then do the evaluation. For OPT-125M-SPT,
we train for 15 epochs until it converges.

A.3 Details for Ablation Study

Table 8 details our ablation study’s findings. Se-
lective Prompt Tuning (SPT) with four one-token
soft prompts demonstrates superior performance
over both the traditional four-token and eight-token
soft prompt tuning approaches, highlighting our
method’s effectiveness. In a comparative analysis
with LoRA under a similar parameter setup, SPT
outperforms in all evaluated metrics, reinforcing

its efficiency. Furthermore, compared to GPT-3.5
Turbo’s In-Context Learning (ICL), SPT shows
significant improvements in F1 and BLEU scores,
indicating challenges with ICL’s alignment to tar-
get responses despite its higher diversity in textual
outputs.

Persona Consistency Dialogue Consistency Engageness
Llama2-7B-SPT 1.89 1.29 1.34
Llama2-7B-PT 1.33 1.13 1.29

Table 7: Human evaluation over Llama2-7B-SPT and
Llama2-7B-PT.

A.4 Human Evaluation

We conducted human evaluation on three metrics,
persona consistency, context consistency, and en-
gagingness. Each metric is ranked for three scores:
0, 1, 2. For persona consistency, 0 means con-
tradicts the persona, 1 means not relevant to the
persona, and 2 means consistent to the persona.
For context consistency, 0 means contradicts pre-
vious dialogue history, 1 means not relevant to the
previous dialogue, and 2 means consistent to the
previous dialogue. For engagingness, 0 means a
boring response, 1 means a safe but bland response,
and 2 means an interesting response. We randomly
sampled 100 responses from Llama2-7B-SPT and
Llama2-7B-PT. The results are displayed in Ta-
ble 7. Our proposed SPT outperforms PT over all
three metrics, indicating the effectiveness of our
approach in both three perspectives.

A.5 Experimental Results on Larger Dataset

To further evaluate the efficiency and scalability
of the SPT framework. We conducted additional
experiments on the DailyDialog dataset, a more
extensive and complex dialogue dataset than Per-
sonaChat. Notably, the DailyDialog dataset lacks
explicit persona descriptions in its entries, present-
ing a unique challenge for personalization tech-
niques. The results of the DailyDalog are shown as
Table 9.

Result Analysis : The experimental setup in-
volved executing four separate runs using both soft
prompt tuning (PT) and SPT strategies on the Dai-
lyDialog dataset. The empirical evidence clearly
demonstrates the superiority of the SPT framework
over the conventional PT approach across all evalu-
ated metrics. Specifically, the SPT method exhibits
significant performance improvements, showcas-
ing its adaptability and effectiveness in handling
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Algorithm 1 SPT Training

Input: Input context C = {c1, .., cN}, Input context batch Cbatch = {ci, .., ci+batchsize} ⊂ C, ground
truth response Y = {y1, ..., yN}, a soft prompt group SP = {sp1, .., spK}, a dense retriever Ret,
textual similarity threshold Γ, a text similarity metric M , and a large language model LLM

Output: A tuned soft prompt group SP and a tuned dense retriever Ret
1: for Cbatch in C do
2: Initialize batch soft prompt loss LLLM

batch = 0, batch prompt selection loss Lbatch
selection = 0,

3: Initialize batch prompt fusion loss Lbatch
fusion = 0, batch context-prompt contrastive loss Lbatch

con = 0
4: for Input Context cn in Cbatch do
5: Compute one soft prompt LLLM

i = NLLLoss(concat(spi, cn), yn)
6: Obtain K soft prompt loss LLLM = {LLLM

1 , ...,LLLM
K } with above computation

7: Normalized negative soft prompt loss LLLM
normed = Softmax(−LLLM/τg) for retriever update

8: Compute retriever score between context cn and soft prompt spi as scn,spi = Ret(spi, cn)
9: Obtain K retriever scores by scn,SP = {scn,sp1 , ..., scn,spK}

10: Compute prompt selection loss using KL Divergence by Lselection = KL(scn,SP ,LLLM
normed)

11: Aggregate K predictions from LLM given cn and SP as pfused
12: Compute prompt fusion loss as Lfusion = NLL(pfused, yn)
13: Sum soft prompt loss, prompt selection loss, and prompt fusion loss to their batch opponents
14: LLLM

batch = LLLM
batch +LLLM , Lbatch

selection = Lbatch
selection +Lselection, Lbatch

fusion = Lbatch
fusion +Lfusion

15: end for
16: for Input Context ci, cj in Cbatch do
17: Compute textual similarity T = M(ci, cj)
18: Compute retriever score for ci, cj as sci,SP , scj ,SP
19: Compute context-prompt contrastive loss:
20: if thenT > Γ
21: Lcon = 1− cos(sci,SP , scj ,SP )
22: else
23: Lcon = max(0, cos(sci,SP , scj ,SP ))
24: end if
25: Sum context-prompt contrastive loss to batch context-prompt contrastive loss
26: Lbatch

con = Lbatch
con + Lcon

27: end for
28: Sum all objective together: LTotal = LLLM

batch + Lbatch
selection + Lbatch

fusion + Lbatch
con

29: Update soft prompts and retriever via back-propagation with LTotal

30: end for

more complex and extensive datasets. The evalu-
ation metrics are summarized in the table below,
where we observe notable enhancements in key ar-
eas such as F1 score, BLEU, ROUGE, and BERT-
based metrics, underlining SPT’s potential applica-
bility across diverse conversational tasks.

A.6 Comparison to RAG (Retrieval
Augmented Generation)

Conceptual Differences: RAG and SPT funda-
mentally differ in their approaches. RAG enhances
inputs by incorporating external information from
a database, focusing on the value of external data.
In contrast, SPT focuses on selecting the optimal
soft prompt based on given context input. While

they operate differently, they aren’t inherently con-
flicting and could be seen as complementary since
SPT can treat the retrieval-augmented input as con-
text as a whole. SPT has the potential to integrate
RAG’s enriched inputs comprehensively. The ex-
ploration of combining RAG and SPT falls beyond
the scope of this work and is reserved for future
research.

RAG Experimentation: We experimented with
the RAG framework under the Llama2-7B model
to compare SPT with RAG. We observed that the
choice of K (number of retrieval contents) is cru-
cial due to the RAG’s reliance on the training set for
retrieval. A large K value can lead to the concate-
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Model F1 BLEU ROUGE-1 ROUGE-2 ROUGE-L BERTF1 BERTP BERTR DIST-1 DIST-2
Llama-7B-SPT 17.49 2.80 17.02 4.48 15.24 54.66 53.02 57.14 5.69 22.86
Llama2-7B-4-PT-TOKEN 16.47 1.78 15.74 3.74 13.64 52.65 49.09 57.18 3.35 15.70
Llama2-7B-8-PT-TOKEN 17.64 2.13 16.49 4.01 14.69 55.85 54.98 57.34 4.75 21.91
LoRA 15.61 2.20 13.09 2.95 11.66 47.46 47.78 47.48 3.35 17.08
GPT-3.5-ICL 6.78 0.77 0.00 0.00 0.09 47.96 46.73 49.77 8.03 38.45

Table 8: Detailed results for the ablation study.

Model F1 BLEU ROUGE1 ROUGE2 ROUGEL BERT F1 BERT Precision BERT Recall DIST-1 DIST-2
Llama2-7B-PT-LR=0.001 18.03 0.18 15.66 4.41 14.13 55.90 55.97 56.99 7.71 35.40
Llama2-7B-PT-LR=0.01 17.06 0.21 14.46 4.09 13.00 54.58 54.71 55.60 7.41 34.83
Llama2-7B-SPT-LR=0.001 18.38 0.31 15.87 4.49 14.37 56.95 57.21 57.73 7.97 36.89
Llama2-7B-SPT-LR=0.01 17.40 0.08 15.04 4.57 13.68 53.72 53.73 55.16 7.53 34.68

Table 9: Detailed results for DailyDialog.

nated content overwhelming the context window
size, thus significantly increasing computational
resource demands.

Efficient Training Setup for RAG: For effi-
ciency, we set K = 1 for our RAG experiment,
focusing on retrieving the most semantically sim-
ilar dialogue to augment the current context. The
retriever used is the Contriever from Facebook,
which is known for its ability to retrieve highly
relevant content based on textual semantics. This
setup allowed us to directly compare the efficiency
and scalability of RAG and SPT under similar com-
putational constraints.

Comparative Results: The training time for an
epoch under the RAG setup was approximately 14
hours, compared to 7 hours for SPT. This under-
scores SPT’s efficiency and scalability, especially
in resource-constrained environments. Detailed
results are displayed in the table 10. In terms of
performance, SPT outperformed RAG in nearly all
the metrics. This shows that SPT is not only faster
but can also produce better results. The only area
where RAG did slightly better was in creating more
diverse responses (DIST-1 and DIST-2 metrics).
This comparison shows that SPT is more efficient
and often more effective than RAG. However, these
two approaches do not necessarily contradict each
other. Instead, combining these two methods could
lead to even better performance. We might create
more accurate and engaging dialogues by using
RAG to get the proper context and SPT to fine-tune
the response. This approach has a lot of potential
for improving conversational AI systems.

A.7 SPT Stability Experiment

To evaluate the stability of the SPT, we further con-
ducted additional experiments designed to test the

system’s resilience to disruptions. Specifically, we
introduced Gaussian noises with the mean as 0 and
the standard deviation as 1 to the similarity scores
during inference to simulate the effect of inaccura-
cies in the soft prompt selection process. Addition-
ally, we add a parameter α to control the strength of
the noise. Formally, the disrupted selection score
would become score = score + α ∗ noise. The
objective of this experiment is to observe the stabil-
ity of our retriever under less-than-ideal conditions.
Detailed results of these experiments will be in-
cluded in our revision.

Result Analysis : The results presented in Ta-
ble 11 demonstrate the impact of noise on retrieval
performance. The introduction of mild noise (e.g.,
0.01 to 0.1) results in negligible performance degra-
dation, with some metrics showing slight improve-
ments. However, as noise levels increase to 1.0, a
deterioration in performance is observed despite
a noticeable increase in DIST-2. This pattern sug-
gests that while our SPT framework exhibits good
stability to minor disturbances, its performance is
adversely affected by severe interference.

A.8 Retriever Stability Experiment

To evaluate the robustness of our dense passage re-
trieval system, we introduced Gaussian noise with
standard deviation. Specifically, we apply noise
with a varying strength α, choosing from [0.001,
0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0],
to the LLLM

normed loss during the retriever’s training
phase. Therefore, the disrupted LLLM

normed will be-
come LLLM

normed + α ∗ noise. This approach aimed
to simulate potential disruptions in the soft prompt
selection process, thereby testing the stability and
resilience of our retriever under adversarial condi-
tions.
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Model F1 BLEU ROUGE-1 ROUGE-2 ROUGE-L BERT-F1 BERT-Precision BERT-Recall DIST-1 DIST-2
RAG-Contriever-LR=0.01 14.93 2.18 9.36 2.03 8.55 45.01 45.87 44.72 4.95 24.47
RAG-Contriever-LR=0.001 12.66 2.59 9.66 2.48 8.89 40.72 41.60 40.35 5.13 24.81
RAG-Contriever-LR=0.0001 15.16 2.53 11.53 2.86 10.56 50.52 50.70 51.12 5.75 26.83
Llama2-7B-SPT 17.49 2.80 17.02 4.48 15.24 54.66 53.02 57.14 5.69 22.86

Table 10: The comparison between RAG and SPT.

Model F1 bleu rouge1 rouge2 rougel BERT f1 BERT precision BERT recall dist-1 dist-2
SPT (Noise=0) 17.49 2.80 17.02 4.48 15.24 54.66 53.02 57.14 5.69 22.86
Noise=0.01 17.42 2.97 16.93 4.49 15.18 54.70 53.45 56.71 5.42 22.55
Noise=0.05 17.41 2.98 16.91 4.48 15.16 54.68 53.41 56.71 5.41 22.56
Noise=0.1 17.42 2.93 16.91 4.44 15.17 54.75 53.46 56.78 5.46 22.86
Noise=0.5 17.41 2.99 16.92 4.49 15.16 54.93 53.56 57.03 5.61 24.04
Noise=1.0 17.43 2.76 16.72 4.32 15.03 54.82 53.38 57.00 5.56 24.15

Table 11: The experiment on the stability of the SPT.

Model F1 BLEU ROUGE-1 ROUGE-2 ROUGE-L BERT f1 BERT precision BERT recall DIST-1 DIST-2
SPT (Noise=0) 17.49 2.80 17.02 4.48 15.24 54.66 53.02 57.14 5.69 22.86
Noise=0.001 17.69 2.75 17.11 4.46 15.38 54.94 53.41 57.19 5.54 23.83
Noise=0.01 1.0 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

Table 12: The experiment on dense retriever stability.

Adversarial Noise Impact on Retriever Robust-
ness: The introduction of Gaussian noise served
as a means to disturb the updating process of the
retriever, allowing us to observe its behaviour and
adaptability in the interference. Specifically, we
add the noise the LLLM

normed to make the KL Diver-
gence update become noisy. The varying levels
of noise strength were chosen to represent a wide
spectrum of potential adversarial impacts, from
mild to severe disruptions, i.e., [0.001, 0.01, 0.1,
0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]

Results and Insights: According to the Table 12,
introducing the mildest level of noise (0.001)
yielded improved performance across several key
metrics, including F1, ROUGE-1, ROUGE-L,
BERT Score, and DIST-2. This improvement sug-
gests that slight perturbations may act as a benefi-
cial regularizer within the training process, thereby
enhancing performance. In contrast, levels of noise
beyond the mildest introduced numerical instability
(manifesting as overflow or underflow, particularly
as we utilize fp16 for SPT training). This instability
disrupts the training process, leading to outcomes
marked as NaN (Not a Number).

A.9 Case Study

Figure 4 shows a comparison between SPT and a
prompt-tuned model. SPT uniquely incorporates
horror-related emojis in a conversation about hor-
ror movies, while the prompt-tuned model tends to
repeat persona profile content. This trend contin-

ues in subsequent dialogues. In the last case, SPT
adeptly weaves persona details into its responses,
offering a more engaging and personalized conver-
sational experience compared to the more generic
replies of the prompt-tuned model.
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I read twenty books a year. 
I'm a stunt double as my second

job. 
I only eat kosher. 

I was raised in a single parent
household.

I just got done watching a
horror movie

Hello, what are doing today? 

I am good, I just got off work
and tired, I have two jobs. 

PT

I don't watch horror movies, I
am a stunt double and I only
eat kosher food. 

D
ialogue H

istory
System

 Persona

SPT

😱👻🕷 💀😱 what did you
think of it?

G
enerated R

esponse

I read twenty books a year. 
I'm a stunt double as my second

job. 
I only eat kosher. 

I was raised in a single parent
household.

I just got done watching a
horror movie

Hello, what are doing today? 

I am good, I just got off work
and tired, I have two jobs. 

PT

I do too, I love the fall. I'm a
stunt double for movies and I
only eat kosher food.

D
ialogue H

istory
System

 Persona

SPT

I do too, I love reading in the
fall. 

G
enerated R

esponse

Wow! I do love a good horror
movie . loving this cooler
weather.

I rather read, i've read about
20 books this year. 

I have a pet turtle. 
I like to play with my dolls. 

I don't pick up my toys. 
My best friend lives next door.

My turtle and myself love to
grill outside

Hey, I enjoy mowing lawns in
the summer.

Hello. How are you? My pet
turtle and I are sitting here. 

PT

i have a pet turtle and i like to
play with my dolls . i don't pick
up my toys . my best friend
lives next door.

D
ialogue H

istory
System

 Persona

SPT

😂🐢 that's so cute. do you
have any dolls? 

G
enerated R

esponse

I also work as a custodian to help
pay the bills. 

I play the piano and guitar and sing. 
My favorite type of music to sing is

folk music. 
I'm a musician and hope to make it

big some day.

Hello, how are you doing?

PT

I'm doing well, thanks for
asking! How about you? 

D
ialogue H

istory
System

 Persona

SPT

I'm doing well, thanks for
asking! I've been busy with
work and music lately. How
about you? 

G
enerated R

esponse

Figure 4: Four case studies, where PT denotes the prompt tuning method (Lester et al., 2021).
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