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Abstract
In text-conditioned image retrieval (TCIR), the
combination of a reference image and mod-
ification text forms a query tuple, aiming to
locate the most congruent target image within
a dataset. The advantages of rich image se-
mantic information and text flexibility are com-
bined in this manner for more accurate re-
trieval. While traditional techniques often em-
ploy attention-driven compositors to craft a
unified image-text representation, our paper
introduces a compositor-free framework, CF-
TCIR, which eschews the standard composi-
tor. Compositor-based methods are designed to
learn a joint representation of images and text,
but they struggle to directly capture the correla-
tions between attributes across the image and
text modalities. Instead, we reformulate the
retrieval process as a cross-modal interaction
between a synthesized image feature and its cor-
responding text descriptor. This novel method-
ology offers advantages in terms of computa-
tional efficiency, scalability, and superior per-
formance. To optimize the retrieval perfor-
mance, we advocate a tiered retrieval mecha-
nism, blending both coarse-grain and fine-grain
paradigms. Moreover, to enrich the contextual
relationship within the query tuple, we inte-
grate a generative cross-modal alignment tech-
nique, ensuring synchronization of sequential
attributes between image and text data.

1 Introduction

Text-conditioned image retrieval (Vo et al., 2019)
(Lee et al., 2021) (Wen et al., 2021) (Yang et al.,
2021) makes the retrieval system more accurate
and flexible by allowing the user to enter both a
reference image and a text description. The text
description, also known as the modification text,
describes adjustments to the attributes or layout
of the reference image. Previous works typically
fuse the reference image and modification text rep-
resentations into a joint image-text representation
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Figure 1: A comparison of our framework with current
framework. The current framework utilizes a complex
compositor to synthesize the image and text semantics,
which is prone to overfitting. In contrast, we discard
the compositor module and reformulate the retrieval
pipeline as a cross-modal interaction between the fused
image features and the text feature, which captures cross-
modal attribute correlations more clearly.

by learning an attention-based compositor. The
joint image-text representation can be directly com-
pared with the representation of any potential target
image.

However, existing compositor-based methods
do not take full advantage of the cross-modal
alignment. As shown in Fig. 1, In the task of
text-conditioned image retrieval, the modification
text serves as complementary information to the
reference image. Specifically, textual features
should emphasize areas of the image that seman-
tically diverge from the text. In contrast, multi-
modal attention-based models exhibit a tendency
to allocate higher attention values to text and im-
age features that demonstrate semantic congru-
ence. In light of this contradiction, compositor-
based (attention-based) methods attempt to aggre-
gate these distinct semantics by learning a joint
image-text representation. However, in doing so,
they overlook the attribute correlations between
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the text and image domains. Consequently, these
compositor-based methods are prone to overfitting
within the dataset and generally perform subopti-
mally when applied to out-of-domain scenarios.

Besides, while it is straightforward to learn
a joint image-text representation in existing
compositor-based methods, this does not take full
advantage of the image modality and the text
modality. In the text-conditioned image retrieval
task, both the reference image and the modifica-
tion text describe part of the attributes of the target
image. Thus, both the reference image and the mod-
ification text can be used to filter out partially dis-
similar target images, which cannot be exploited by
using the joint image-text representation directly.

To alleviate the above issues, we propose a
compositor-free framework for hierarchical text-
conditioned image retrieval (CF-TCIR). In contrast
to previous works, we discard the compositor mod-
ule and reformulate the retrieval pipeline as a cross-
modal interaction between a synthesized image
feature and its corresponding text descriptor. Our
method focuses on extracting differential informa-
tion from images prior to aligning them through
image-text attribute correlations. Our method of-
fers distinct advantages given that the majority
of modification texts in the TCIR task consist of
combinations of attributes, with a lot of similar
modification texts associated with different images.
Therefore, our method, which centers on image-
text mapping for alignment, is both a more rational
and efficient choice.

Besides, in order to fully leverage the advantages
of each modality and improve the efficiency of re-
trieval, we use a hierarchical retrieval method by
combining both coarse-grained and fine-grained
retrieval. Coarse-grained retrieval leverages the
similarity between target image features and text
feature to filter out obviously irrelevant target im-
ages. Fine-grained retrieval takes the target images
retrieved by coarse-grained retrieval, calculates the
corresponding fused image features with the fea-
ture of the reference image, and then returns a
ranklist in order of similarity to the text feature.
Our hierarchical retrieval method not only reduces
noise but also greatly improves retrieval efficiency.

To further capture the context information be-
tween the modification text, the reference image,
and the target image, we propose a generative cross-
modal alignment module. Specifically, we first map
the features of both the reference image and the tar-
get image to sequence image features. Then we cap-

ture the cross-modal alignment between sequence
image features and sequence text features through
the GPT-2 model. By performing generative cross-
modal alignment, our model further explores the
intrinsic relationship between the query tuple and
the target image.

Overall, our method achieves competitive per-
formance while greatly reducing model parameters
and increasing retrieval efficiency. We demonstrate
that there is no need to design a complex com-
positor and only several fully connected layers are
required to achieve superior performance for the
text-conditioned image retrieval.

2 Related Work

2.1 Image Retrieval

Traditional content-based image retrieval (Raden-
ović et al., 2018) (Ng et al., 2020) (Revaud et al.,
2019) (Gordo et al., 2017) (Teichmann et al., 2019)
takes a single image as input and extracts global or
local features for retrieval. Although query images
contain rich semantic information, it is difficult to
accurately grasp the retrieval intention. This often
leads to the intention gap problem.

The most common retrieval scenario involving
text is cross-modal retrieval, which uses a textual
description of the image as a query. The standard
approach focuses on mapping different modalities
into a common space to mitigate the domain gap
(Chen et al., 2020a) (Kuang et al., 2019) (Edwards
et al., 2021) (Fei et al., 2021) (Li et al., 2023) (Wu
et al., 2021) (Zhan et al., 2020) (Han et al., 2023).
However, the retrieval intention expressed by a
single modality is still not enough to handle all
scenarios.

To take advantage of the rich semantic informa-
tion of the image and the simplicity and flexibility
of the text, TIRG (Vo et al., 2019) first proposes
the text-conditioned image retrieval task. In this
setting, the query tuple is specified in the form
of a reference image with a modification text that
describes desired modifications to the reference
image. Previous works devote to learning a joint
expression of vision-language to retrieve the poten-
tial target images. VAL (Chen et al., 2020b) uses
multi-scale techniques to learn the composition of
image and text at both low and high semantic levels.
LBF (Hosseinzadeh and Wang, 2020) explores the
bidirectional correlation between the image domain
and text domain. JGAN (Zhang et al., 2020) uses
GCN (Kipf and Welling, 2017) to inject semantic
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Figure 2: An overview of our framework. Our model takes the query tuple (the reference image and the modification
text) and the target image as input and feeds each element into its respective encoder. For accurate and efficient
cross-modal retrieval, the fused image feature is computed directly from the semantic correlation between the query
image and the reference image, without the need for a fusion network. To further capture the context information and
explore the intrinsic relationship between the query tuple and the target image, we build a generative cross-modal
alignment loss function using the GPT-2 model during the training stage.

information from textual feature into the visual fea-
ture. MAAF (Dodds et al., 2020) feeds the spatial
image features and text embeddings as modality-
agnostic tokens into a Transformer to learn the joint
representation. ComposeAE (Anwaar et al., 2021)
propose an autoencoder-based model and use a
deep metric learning approach to learn the composi-
tion of image and text features. CoSMo (Lee et al.,
2021) modulates the content and style information
of reference image to generate robust image-text
representation. DCNet (Kim et al., 2021) leverages
both the local and global reference image features
for image-text composition. ARTEMIS (Delmas
et al., 2022) combines the Explicit Matching mod-
ule and the Implicit Similarity module, each focus-
ing on one of the modalities of the query. CLIP4Cir
(Baldrati et al., 2022) proposes a combiner network
equipped with the CLIP model to learn the joint
image-text representation. FashionVLP (Goenka
et al., 2022) leverages prior knowledge from large
image-text corpora and multiple image features,
proposing a novel attention-based approach for
learning joint image-text representations.

In contrast to previous works focusing on the
design of image-text compositors, we discard the
compositor module and reformulate the retrieval
pipeline as a cross-modal interaction between a syn-
thesized image feature and its corresponding text

descriptor. In this way, the cross-modal attribute
correlations are more clearly captured.

3 Methodology

Text-conditioned image retrieval uses a reference
image and a modification text as a query tuple to
retrieve the target image in the database that sat-
isfies the semantics of both the reference image
and the modification text. Let (Iq,M, It) represent
the reference image, the modification text, and a
candidate target image, respectively. Most existing
methods for the text-conditioned image retrieval
aim to learn a joint representation f(Iq,M) which
is similar to the representation ftarget(It). In our
method, we reformulate the retrieval pipeline and
perform cross-modal retrieval directly using the
image features of Iq, It and the text features of M .

In the following, we start by introducing our
framework pipeline in Sec. 3.1. Then we elaborate
our generative cross-modal alignment in Sec. 3.2
and the details of the training and inference proce-
dures in Sec. 3.3 and Sec. 3.4.

3.1 Framework

Figure. 2 shows an overview of our framework. We
build a lightweight model with only several fully
connected layers in addition to the off-the-shelf
image and text encoders. This makes our model
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highly scalable while demonstrating the soundness
of our model through its simple yet effective struc-
ture. Our model is divided into two parts, namely
the main module and the generative cross-modal
alignment module, labeled with solid and dashed
lines respectively. Remarkably, the main module
is used for both the training and inference stages,
while the generative cross-modal alignment mod-
ule is used for the training stage only. We will
introduce the main module in this section and the
generative cross-modal alignment module in the
next section.

We first extract the reference image feature Vq ∈
RD and the target image feature Vt ∈ RD using the
image encoder fimg and a fully connected layer:

Vq = FC(fimg(Iq)), (1)

Vt = FC(fimg(It)). (2)

In our implementation, we use ResNeXT-101 on IG
(WSL (Mahajan et al., 2018)), which is followed
by a pooling layer as fimg. Then, we extract the
sequence feature of modification text Tseq ∈ RL×C

using the text encoder ftext:

Tseq = ftext(M). (3)

In our implementation, we use BERT (Kenton and
Toutanova, 2019) as ftext. To facilitate the similar-
ity calculation with the image features, we obtain
the pooled text features Tpool ∈ RD as follows:

Tpool = Pool(FC(Tseq)), (4)

where Pool is implemented as GPO (Chen et al.,
2021), a well-known pooling function in cross-
modal retrieval.

To obtain the fused image feature based on the
semantic correlation between the reference image
feature Vq and the target image feature Vt, we de-
sign a non-parameter operation to fuse them. We
do not build a fusion network for Vq and Vt be-
cause coupling the Vq and Vt in the network would
make retrieval inefficient. By designing a reason-
able non-parameter operation to fuse Vq and Vt,
not only can Vq and Vt be decoupled from the net-
work thus greatly improving the retrieval efficiency,
but also competitive performance can be achieved.
The fused image feature Vf ∈ RD is obtained as
follows:

attn = 1− sigmoid(Vq ⊙ Vt), (5)

Vf = attn⊙ Vt, (6)

where ⊙ refers to element-wise product. Our in-
sight is that the fused image feature Vf should be
matched to the modification text feature Tpool, i.e.
the semantic content in the target image that differs
from the reference image should be highlighted.
Each channel in the feature reflects how well it fits
a certain pattern, so by multiplying the channels
of Vq and Vt, the channel attention that expresses
the correlation between Vq and Vt is calculated.
Thus, the reversed channel attention calculated by
1− sigmoid(Vq · Vt) will amplify channels in Vt

that are not similar to Vq and suppress channels that
are similar to Vq. Since the design of non-parameter
operation has a significant impact on experimen-
tal results, we will provide more analysis in the
appendix.

3.2 Generative Cross-modal Alignment

To further capture context information and explore
the intrinsic relationship between Iq, It, and M ,
we propose a generative cross-modal alignment
loss function. First, we map both the reference
image feature Vq and the target image feature Vt

to sequence features Vqseq ∈ RN×C and Vtseq ∈
RN×C , where N is a hyper-parameter indicating
the sequence length of the image sequence features:

Vqseq = MLP (Vq), (7)

Vtseq = MLP (Vt), (8)

where MLP is implemented as a cascade of two
fully connected layers. We then concatenate the ref-
erence image sequence feature Vqseq with the text
sequence feature Tseq to obtain the query sequence
feature Qseq ∈ R(L+N)×C :

Qseq = [Vqseq ⊕ Tseq], (9)

where ⊕ indicates concatenate operation. We then
feed Vtseq and Qseq into the GPT-2 model sepa-
rately and adapt the output of the last hidden state
of the GPT-2 model as the output feature. The ra-
tionale for this procedure is to effectively capture
the context information pertaining to the reference
image and the modification text. By using GPT-
2 to map the image sequence feature and query
sequence feature to the text domain, we not only
mitigate the domain gap but also further explore
the intrinsic relationship between the query tuple
and the target image. To formulate the generative
cross-modal alignment function, we pass the out-
put of the last hidden state of the GPT-2 model
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through the GPO pooling layer (Chen et al., 2021)
to obtain the target image feature Tgpt and query
tuple feature Qgpt, respectively.

Notably, in addition to using GPT-2, we also
investigated the feasibility of using randomly ini-
tialized transformers as an alternative. However,
the efficacy of this substitute method pales in com-
parison to that of GPT-2.

3.3 Training Procedures

Training. In the training stage, the whole frame-
work is trained with the cross-modal ranking loss
and our proposed generative cross-modal align-
ment loss. Given a training minibatch B contain-
ing K triplets, each triplet consists of (Iqi ,Mi, Iti),
which represents the i-th reference image, modi-
fication text, and corresponding target image, re-
spectively. Remarkably, all features used below are
normalized before feeding into the loss function.
Cross-modal Ranking Loss. For ease of expres-
sion, we use Vfij to represent the fused image fea-
ture for the reference image Iqi and a candidate
target image Itj , which should be similar with the
modification text feature Tpooli when j equals i.
Following TIRG, we consider the batch-based clas-
sification loss as the ranking loss. The batch-based
classification loss takes into account all negative
samples in a mini-batch and learns from both easy
and difficult negative samples. The batch-based
classification loss is formulated as follows:

Lrank =
1

K

K∑

i=1

−log{ κ(Vfii , Tpooli)∑K
j κ(Vfij , Tpooli)

},

(10)
where κ is an arbitrary similarity kernel function.
We implement κ as the dot product similar to pre-
vious works.
Generative Cross-modal Alignment Loss. We
aim to capture the context information between
image sequence features and text sequence fea-
tures through generative cross-modal alignment
loss. And by aligning the features of the query tu-
ple and target images output by GPT-2, our model
can better capture the intrinsic relationship between
them.

For ease of expression, we use Qgpti to repre-
sent the query tuple feature for the reference image
Iqi and the modification text Iti , which should be
similar with the target image feature Tgpti . The gen-
erative cross-modal alignment loss is formulated

as follows:

Lalign =
1

K

K∑

i=1

−log{| κ(Qgpti , Tgpti)∑K
j κ(Qgpti , Tgptj )

|},

(11)
where κ is implemented as the dot product. The
generative cross-modal alignment loss is only en-
abled during the training stage. As the GPT-2
model is frozen, the generative alignment loss func-
tion encourages mapping the image feature and the
text feature to the same domain and learning more
robust and discriminative image and text features.

The overall loss for training is formulated as
follows:

L = Lrank + λ ∗ Lalign (12)

where λ is a learnable parameter and initialized to
1.

3.4 Hierarchical Retrieval Stage
In the inference stage, we propose a hierarchical
search strategy by combining both coarse-grained
retrieval and fine-grained retrieval.
Coarse-grained Retrieval. In each query itera-
tion, the user inputs a query tuple consisting of a
reference image and a modification text. As the
modification text is a partial description of the tar-
get image, our model first extracts the normalized
modification text feature Tpool to filter out obvi-
ously dissimilar target images by computing dot
product with each normalized target image feature
Vt. We then pass the filtered target images with
the query tuple to fine-grained retrieval. The fil-
tering threshold is a hyper-parameter that will be
analyzed in our ablation study.
Fine-grained Retrieval. For each filtered target
image, we fuse them with the reference image to
obtain fused image features Vf as mentioned above.
As the fused image features capture semantic dis-
crepancy between the reference image and target
images, we retrieve the fused image features us-
ing the modification text feature Tpool and return a
ranklist based on the similarity score.

4 Experiments

To verify the effectiveness of our method, we con-
duct experiments on three benchmarks on fashion
domain including FashionIQ (Guo et al., 2019),
Shoes (Berg et al., 2010) and Fashion200k (Han
et al., 2017). In this section, we introduce the im-
plementation details, the experimental results on
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different datasets and ablation studies in Sec. 4.1,
Sec. 4.2 and Sec. 4.3, respectively.

4.1 Implementation Details
Our model is a lightweight model, consisting of
only the image encoder, the text encoder and sev-
eral fully connected layers. We conduct the experi-
ments in Pytorch (Paszke et al., 2019). For image
encoder, we adopt the output from layer 4 of the
backbone networks followed by a GEM pooling
(Radenović et al., 2018) as image feature. The both
image encoder and text encoder is followed by a
single linear layer that project the output feature
to a 1024-dimensional vector. To map the image
features to the image sequence features, the MLP
we used consisting of two linear layers with hid-
den sizes of L

2 ∗ 768 and L ∗ 768 (L indicates the
sequence length and is set to 10), respectively.

In the training stage, we use the Adam optimizer
with a base learning rate of 0.0001, which decays
once after 10 epochs by a factor of 10 and the batch
size K is set to 32. And the GPT-2 model is freezed
during training.

4.2 Experimental Results
FashionIQ Dataset. FashionIQ is a natural
language-based interactive fashion product re-
trieval dataset. It contains 77,684 images, covering
three categories: Dress, Toptee and Shirt. There are
18,000 image pairs in the 46,609 training images
and each training tuple consisting of a reference
image and two relative captions produced by two
different human annotators.

Table 1 shows our results on FashionIQ. It is ob-
served from the table that our simple but effective
method achieves a competitive performance with
FashionVLP that uses additional side information.
Our proposed method obtain a 3.61% performance
improvement in terms of the AvgRecall@50 met-
ric compared to CLIP4Cir, which use the powerful
CLIP model as the image and text encoder. This
proves that our reformulated retrieval pipeline is
more natural and achieves better performance.
Shoes Dataset.The Shoes dataset is originally pro-
posed for attribute discovery. It consists of 10,000
training queries and 4,658 validation examples.
Guo et al. (Guo et al., 2018) tagged the images
with captions in natural language for fashion image
retrieval.

According to Table 2, our method outperforms
ARTEMIS (Delmas et al., 2022) on Recall@1 and
Recall@10, respectively. This further validates our

motivation that reformulated retrieval pipeline is
effective.
Fashion200K Dataset. Fashion200K is a diverse
dataset consisting of about 200K clothes images
of various styles. It contains around 172k images
for training and 33,480 test queries for evaluation.
Each image is equipped with some tags describ-
ing attributes. Notably, the modification text of
this dataset is automatically generated rather than
human-annotated. To be specific, when generating
training triplets, if the tags of two fashion images
differ by one word, we choose them as the reference
image and the target image, and the modification
text is formulated as “change A to B”.

As shown in Table 3, we achieve competitive
results with ComposeAE. In the experiments, we
found that Fashion200K is a sensitive dataset and
that small changes in parameters or settings can
have a significant impact on the results. For a
fair comparison, we repeat each experiment five
times and report the mean results. The perfor-
mance of this dataset differs obviously from the
other datasets. We believe the reason for that is
the modification text in the Fashion200K dataset is
automatically generated with only two meaningful
words. This makes cross-modal alignment more
dependent on the correspondence of attributes be-
tween the image domain and the text domain. The
experimental results demonstrate the good gener-
alization ability of our method, which consistently
achieves good results on all three datasets.

4.3 Ablation Studies

In this subsection, we conduct ablation studies to
analyze the effect of the design of non-parameter
operation, the generative cross-modal alignment
module and the proportion of coarse retrieval. For
a fair comparison, we conduct experiments on Fash-
ionIQ and use the same evaluation metric as before.
Effect of the Design of Non-parameter Opera-
tion. In our method, we design a non-parameter
operation to obtain fused image feature Vf based
on the semantic correlation between the reference
image feature Vq and the target image feature Vt,
as in Eq. (5) and (6). We now study variants of this
design. For ease of the following discussion, we
use Vf1-Vf4 to denote the original design and these
variants, where Vf1 corresponds to the original de-
sign.

Vf1 = (1− sigmoid(Vq · Vt)) · Vt, (13)
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Method Dress Toptee Shirt Avg
R@10 R@50 R@10 R@50 R@10 R@50 R@10 R@50

TIRG (Vo et al., 2019) 14.87 34.66 19.08 39.62 18.26 37.89 17.40 37.39
TIRG† (WSL+BERT) 29.11 57.24 32.09 60.74 27.88 53.13 29.69 57.03
VAL (Chen et al., 2020b) 21.12 42.19 25.64 49.49 21.03 43.44 22.60 45.04
MAAF (Dodds et al., 2020) 23.80 48.60 27.90 53.60 21.30 44.20 24.30 48.80
RTIC (Shin et al., 2021) 27.37 52.95 27.33 53.60 22.03 45.29 25.58 50.61
RTIC-GCN (Shin et al., 2021) 27.71 53.50 29.63 56.30 22.72 44.16 26.69 51.32
ComposeAE (Anwaar et al., 2021) 11.99 31.38 11.01 27.48 11.04 26.49 11.34 28.45
TRACE (Jandial et al., 2020) 26.13 52.10 31.16 59.05 26.20 50.93 27.83 54.02
TRACE w/ BERT (Jandial et al., 2020) 26.52 51.01 32.70 61.23 28.02 51.86 29.08 54.70
CIRR (Liu et al., 2021) 17.45 40.41 21.64 45.38 17.53 38.81 18.87 41.53
CoSMo (Lee et al., 2021) 25.64 50.30 29.21 57.46 24.90 49.18 26.58 52.31
CoSMo† (WSL+BERT) 29.20 56.48 33.15 63.90 28.47 53.89 30.27 58.09
DCNet (Kim et al., 2021) 28.95 56.07 30.44 58.29 23.95 47.30 27.78 53.89
CLVC-Net (Wen et al., 2021) 29.85 56.47 33.50 64.00 28.75 54.76 30.70 58.41
ARTEMIS (Delmas et al., 2022) 27.16 52.40 29.20 54.83 21.78 43.64 26.05 50.29
CLIP4Cir (Baldrati et al., 2022) 31.63 56.67 38.19 62.42 36.36 58.00 35.39 59.03
FashionVLP⋆ (Goenka et al., 2022) 32.42 60.29 38.51 68.79 31.89 58.44 34.27 62.51
AACL (Tian et al., 2023) 24.82 48.85 30.88 56.85 29.89 55.85 28.53 53.85

CF-TCIR 31.97 58.37 40.64 70.00 32.39 59.56 35.00 62.64

Table 1: Retrieval performance on the FashionIQ official validation set under VAL evaluation protocols. † means
our re-implementation. ⋆ denotes the use of additional side information (e.g. landmark detection) during training.
The “Avg” column refers to the average results on three categories. Overall 1st/2nd in black/blue
.

Method Shoes
R@1 R@10 R@50

TIRG (Vo et al., 2019) 7.89 26.53 51.05
VAL (Chen et al., 2020b) 16.49 49.12 73.53
RTIC (Shin et al., 2021) – 43.66 72.11
RTIC-GCN (Shin et al., 2021) – 43.38 72.09
ComposeAE (Anwaar et al., 2021) 3.46 20.84 52.58
TRACE (Jandial et al., 2020) 18.11 52.41 75.42
CoSMo (Lee et al., 2021) 16.72 48.36 75.64
DCNet (Kim et al., 2021) – 53.82 79.33
CLVC-Net (Wen et al., 2021) 17.64 54.39 79.47
ARTEMIS (Delmas et al., 2022) 18.72 53.11 79.31
FashionVLP⋆ (Goenka et al., 2022) – 49.08 77.32

CF-TCIR 18.95 53.17 79.59

Table 2: Retrieval performance on the Shoes dataset. ⋆

denotes the use of additional side information during
training. Overall 1st/2nd in black/blue

.

Method Fashion200k
R@1 R@10 R@50

TIRG (Vo et al., 2019) 14.1 42.5 63.8
JGAN (Zhang et al., 2020) 17.3 45.2 65.7
LBF (Hosseinzadeh and Wang, 2020) 17.8 48.4 68.5
VAL (Chen et al., 2020b) 21.2 49.0 68.8
MAAF (Dodds et al., 2020) 18.9 – –
ComposeAE (Anwaar et al., 2021) 22.8 55.3 73.4
CoSMo (Lee et al., 2021) 23.3 50.4 69.3
DCNet (Kim et al., 2021) – 46.9 67.6
CLVC-Net (Wen et al., 2021) 22.6 53.0 72.2
FashionVLP⋆ (Goenka et al., 2022) – 49.9 70.5
AACL (Tian et al., 2023) 19.64 52.3 71.0

CF-TCIR 23.5 52.7 72.5

Table 3: Retrieval performance on the Fashion200K
dataset. ⋆ denotes the use of additional side information
during training. Overall 1st/2nd in black/blue

.

Vf2 = (1−sigmoid(Vq·Vt))·Vt+sigmoid(Vq·Vt)·Vq,
(14)

Vf3 = 2(sigmoid(|(Vq − Vt)|)− 0.5) · Vt, (15)

Vf4 = ReLU(Vt)−ReLU(Vq), (16)

Method AvgR@10 AvgR@50

Vf4
30.09 54.62

Vf3
32.50 58.79

Vf2
31.28 58.14

Vf1
35.00 62.64

Table 4: Ablation study on effect of the design of non-
parameter operation. We use Vf1 -Vf4 to denote the orig-
inal design and these variants, where Vf1 corresponds
to the original design

As shown in Table 3, the design of non-
parameter operation matters a lot in our method.
Our core idea is to amplify channels in Vt that are
not similar to Vq and suppress channels that are
similar to Vq. Vf2 additionally retains part of the
Vq on top of Vf1 , and the performance drop 3.75%
in terms of AvgR@10. Since there is no semantic
overlap between modification texts and reference
images in the FashionIQ dataset, this result meets
our expectations. For Vf3 and Vf4 , performance de-
creased by 2.50% and 4.91% in terms of AvgR@10
respectively, which further shows the importance of
choosing an appropriate non-parameter operation.
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Effect of Generative Cross-modal Alignment
Module. In our method, we propose a generative
cross-modal alignment module to further capture
context information and explore the intrinsic rela-
tionship between the reference image, the target
image and the modification text. We make an abla-
tion experiment to study on its impact.

Method Lalign AvgR@10 AvgR@50

CF-TCIR × 33.52 60.98
CF-TCIR ✓ 35.00 62.64

Table 5: Ablation study on generative cross-modal align-
ment module. × denotes the absence of generative cross-
modal alignment module while ✓ is opposite.

As shown in Table 5, the Lalign consistently im-
proves the performance of our model. This val-
idates the effectiveness of our generative cross-
modal alignment module.
Effect of the Proportion of Coarse Retrieval.
As our hierarchical retrieval strategy consists of
coarse-grained retrieval and fine-grained retrieval,
the coarse-grained retrieval filters out obviously dis-
similar target images and retains a certain propor-
tion of the target images for fine-grained retrieval.
We now investigate the effect of the proportion of
retained target images on accuracy.

Proportion AvgR@10 AvgR@50

1.0 34.57 62.20
0.8 34.42 61.98
0.5 34.76 62.15
0.3 34.89 62.33
0.1 34.85 62.39
0.05 35.00 62.64

Table 6: Ablation study on the proportion of coarse
retrieval. The proportion column means the proportion
of target images retained by coarse-grained retrieval.

As shown in Table 6, different coarse-retrieval
proportions hardly affect retrieval accuracy. We
finally set the proportion to 0.05, which maintains
both accuracy and retrieval speed.
Attention Visualization.

In Figure 3, we provide some attention visualisa-
tion heatmaps by calculating the similarity of tar-
get image feature maps to reference image feature
maps and modification text features. Specifically,
we aodpt the image activations at the last convolu-
tional layer of the third blocks of WSL (Mahajan
et al., 2018) as image feature maps. The “img2img
attention” denotes the heatmaps calculated from

the reference image feature map to the target im-
age feature map. The “img2txt attention” denotes
the heatmaps calculated from the modification text
feature to the target image feature map.

It appears obviously that the modification text fo-
cus on contents of the target image that correspond
to specific attributes while the reference image fo-
cus more on the subject content in the target image
and less on the detail differences.

Concretely, as shown in the “img2txt attention”
column of Figure 1, when the modification text
contains “short sleeves”, the cuff of the target im-
age is highlighted. And when the modification text
contains “white background”, the background ar-
eas of the target image are highlighted instead of
the floral area. When the modification text con-
tains “graphic”, patterns in the target image are
highlighted while other parts receive less attention.
When the modification text contains “checkered
button”, the button and nearby areas in the target
image receive more attention. Besides, as shown
in the “img2img attention” column of Figure 1, all
parts of the target image that are related to clothing
are highlighted.

Since our insight is to distinguish the semantic
information of the target and reference images from
the channel weights and thus align the fused fea-
ture with the modification text, these visualization
results meet our expectations.

5 Conclusions

We propose a compositor-free framework for hi-
erarchical text-conditioned image retrieval (CF-
TCIR). In contrast to previous works that design
an attention-based compositor to learn the joint
image-text representation, we discard the compos-
itor module and reformulate a more natural and
efficient retrieval pipeline. In our framework, we
utilize the semantic correlation of the query im-
age and the target image and then perform cross-
modal interaction with the modification text feature.
Through extensive experiments, it is demonstrated
that our method achieves competitive performance,
which can greatly reduce the model parameters and
also increase retrieval efficiency.

6 Limitations

Our method is highly scalable and will be more
dependent on the performance of the image and text
encoders due to the small number of parameters.
Therefore, it is necessary to choose powerful image

16322



“ Has shorter 
sleeves <AND> a 
lighter color and is 

short sleeve”

Query tuple Target image Img2img 
attention

Img2txt
 attention

“ Is white <AND> 
has a white 

background”

“ Is darker and 
more sporty 

<AND> is darker 
and is graphic”

“ Is less casuall 
<AND> and white 
checkered button 

up shirt ”

Figure 3: Attention visualization of our method. The “img2img attention” denotes the heatmaps calculated from the
reference image to the target image. The “img2txt attention” denotes the heatmaps calculated from the modification
text to the target image. It is observed that the modification text focus on contents of the target image that correspond
to specific attributes while the reference image focus more on the subject content in the target image.

and text encoders with our CF-TCIR framework
for real-world applications.
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