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Abstract
Conversational Aspect-based Sentiment
Quadruple Analysis (DiaASQ) aims to extract
fine-grained sentiment quadruples from
dialogues. Previous research has primarily
concentrated on enhancing token-level inter-
actions, still lacking in sufficient modeling of
the discourse structure information in dialogue.
Firstly, it does not incorporate interactions
among different utterances in the encoding
stage, resulting in a limited token-level
context understanding for subsequent modules.
Secondly, it ignores the critical fact that
discourse information is naturally organized
at the utterance level and learning it solely at
the token level is incomplete. In this work, we
strengthen the token-level encoder by utilizing
a discourse structure called "thread" and
graph convolutional networks to enhance the
token interaction among different utterances.
Moreover, we propose an utterance-level en-
coder to learn the structured speaker and reply
information, providing a macro understanding
of dialogue discourse. Furthermore, we
introduce a novel Multi-granularities Integrator
to integrate token-level and utterance-level
representations, resulting in a comprehensive
and cohesive dialogue contextual understand-
ing. Experiments on two datasets demonstrate
that our model achieves state-of-the-art
performance. Our codes are publicly available
at https://github.com/SIGSDSscau/DMIN.

1 Introduction

Conversational Aspect-based Sentiment Quadruple
Analysis (DiaASQ) (Li et al., 2023) is a new com-
pound subtask of Aspect-based Sentiment Analysis
(ABSA). As shown in Figure 1, DiaASQ aims to
extract all (t, a, o, s) sentiment quadruples present
in a conversation, where the target t (the subject
of discussion), aspect a (specific attribute of tar-
get) and opinion o (attitude or evaluation towards
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Indeed, and the battery life of 
iPhone is really poor.

iPhone loses power very fast..

Agree, mine too.

I use iPhone 14. The latest 
version has a good battery life 
under the traffic data.

I use it as well. But I notice 
that the power drops rapidly.

But mine is not bad.

Type Target Aspect Opinion Sentiment
Intra-utt iPhone loses power very fast negative
Intra-utt iPhone 14 battery life good positive

Cross-utt iPhone 14 power drops rapidly negative
Cross-utt iPhone 14 power drops not bad neutral
Intra-utt iPhone battery life poor negative

A

B

A

C

D

E

Figure 1: An example dialogue (top-left), along with the
corresponding tree-like reply structure (top-right) and
sentiment quadruples (bottom), where different senti-
ment elements are highlighted in various colors, dashed
lines represent reply relationships, and letters inside cir-
cles denote different speakers.

aspect) represent substrings of dialogue, and senti-
ment s represents one of the categories of positive,
negative, or neutral. Given an example sentence,
"iPhone loses power very fast.", the correspond-
ing elements are "iPhone", "loses power", "very
fast", and "negative", respectively. Each quadruple
can be considered as a fine-grained opinion that
conveys sentiment towards a specific aspect of the
target.

As shown in Figure 1, the dialogue has a struc-
tural discourse, including multiple utterances and
corresponding speakers, and except for the root ut-
terance, each speaker’s utterance has a reply object.
Compared to aspect-based sentiment quad predic-
tion (ASQP) (Zhang et al., 2021; Mao et al., 2022),
another subtask of ABSA that extracts quadruples
from plain text, DiaASQ faces two additional chal-
lenges. On the one hand, the relatively lengthy
nature of the dialogue makes it more challenging
to establish long-term dependency relationships be-
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tween targets, aspects, and opinions. On the other
hand, the dialogue encompasses crucial reply re-
lationships and structured discourse information,
making it a challenging task to model the discourse
information of the dialogue accurately. Specifically,
the elements of the quadruples may come from dif-
ferent utterances. Taking Figure 1 as an example,
the opinion term "not bad" in Speaker-C’s utterance
is related to the target term "iPhone 14" in Speaker-
B’s utterance and the aspect term "power drops"
in Speaker-A’s utterance. Compared with intra-
utterance quadruples, such cross-utterance quadru-
ples require a more comprehensive understanding
of the interaction of the utterances and speakers.

In DiaASQ, Li et al. (2023) designed a new la-
beling scheme of grid tagging (Wu et al., 2020)
and proposed the MVQPN network, which models
the discourse structure of conversations at the to-
ken level through three kinds of mask multi-head
attention mechanisms (Vaswani et al., 2017). How-
ever, the model didn’t capture the interaction of
utterances in the encoding stage. Cai et al. (2023)
tried to solve this issue by encoding the whole dia-
logue in the pretrain language models (PLMs) layer.
Lai et al. (2023) changed the parallel attentions to
continuous, deepening the network structure.

Though achieving a promising performance, the
model’s context modeling for structured conversa-
tion is incomplete and inadequate: (1) It does not
consider the influence of other utterances when en-
coding each sentence, resulting in an incomplete
contextual understanding for subsequent modules;
(2) They neglect the critical fact that discourse in-
formation is naturally organized at the utterance
level, and learning structured discourse informa-
tion solely from a token-level perspective is inade-
quate for achieving optimal results. For example,
the expression "utterance-A replies to utterance-B"
is more natural and efficient than a lot of "word-
A replies to word-B". The same goes for speaker
information.

In this work, we propose the Discourse-specific
Multi-granularity Integration Network, DMIN, to
provide a more complete contextual understanding
for structured conversation, enhancing the extrac-
tion of intra-utterance quads and cross-utterance
quads. For the first issue mentioned above, we
employ the Concrete Knowledge Encoder (CKEn-
coder) to capture syntactic and semantic informa-
tion at the token level, which leverages the dis-
course structure called "thread" to enhance the in-
teraction between different utterances. As shown in

the top-right corner of Figure 1, a dialogue can be
structured as a tree based on the reply relationships,
and the so-called "thread" refers to the subtree de-
rived from the root node of the conversation tree.
For the second issue, we learn the speaker and reply
relationships at the utterance level through a Global
Discourse Encoder (GDEncoder). The GDEncoder
offers a more natural and comprehensive structural
discourse information from a macro perspective.
Furthermore, as the two modules’ information gran-
ularity and representation dimensions are different,
direct fusion is not feasible. Therefore, we propose
a novel Multi-Granularity Integrator to effectively
combine the token-level and utterance-level infor-
mation.

In essence, DiaASQ requires the extraction of
substrings from the text, necessitating that the
model’s minimum granularity must be at the to-
ken level. However, the natural organization of
dialogue discourse structure is based on the utter-
ance level, generating representations at the utter-
ance level. Our model provides these two kinds of
complementary information and fuses them effec-
tively, yielding a more comprehensive and cohesive
contextual understanding.

Our contributions can be summarized as follows:
(1) We strengthened the token-level encoder and

introduced a global perspective to learn the struc-
tural discourse information at the utterance level,
providing a more comprehensive approach for mod-
eling the context of structured conversations.

(2) We proposed an original multi-granularity
fusion module, addressing the fusion challenge of
two different-dimensional information.

(3) Our experimental results on two datasets
demonstrated that our model achieves state-of-the-
art performance, showing a 6.72% and 3.85% im-
provement in Micro F1, respectively.

2 Related Work

2.1 Aspect-based Sentiment Analysis

DiaASQ is one of the new subtasks of ABSA. The
early research on ABSA primarily focused on plain
text with short lengths and without any structures.
Initially, studies concentrated on single-element ex-
traction tasks such as extracting aspect terms a (Li
et al., 2018) and analyzing sentiment polarity s (Li
et al., 2021). Subsequent tasks involved the analy-
sis of composite sentiment elements, for example,
the output of (a, s) for Aspect-Opinion Pair Extrac-
tion (AOPE) (Wu et al., 2021), the output of (a, o,
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Figure 2: The overall architecture of our proposed DMIN.

s) for Aspect-Sentiment-Term Extraction (ASTE)
(Chen et al., 2022), the output of sentiment quadru-
ples (a, c, o, s) for Aspect Sentiment Quad Predic-
tion (ASQP) (Zhang et al., 2021; Mao et al., 2022)
and so on. Here, ‘c’ refers to predefined categories,
with each aspect associated with a specific category.
In ASQP, recent works have utilized a generation-
based approach (Zhang et al., 2021) and specific
templates (Mao et al., 2022; Hu et al., 2022) to
extract quadruples, thereby mitigating the poten-
tial error propagation. However, these approaches
struggle to incorporate structured discourse infor-
mation (speakers and reply relationships) into the
generation-based framework naturally.

2.2 Conversational Aspect-based Sentiment
Quadruple Analysis

Unlike other conversational understanding tasks
(Cheng et al., 2023a,b), DiaASQ requires handling
explicit reply relationships. In DiaASQ, Li et al.
(2023) re-designed the labeling scheme of the grid-
tagging method (Wu et al., 2020), decomposing
the original task into Entity Boundary Prediction,
Entity Pair Prediction, and Polarity Prediction. Ad-
ditionally, they designed the speaker mask, reply
mask, and thread mask, together with the mask
multi-head attention and Rotary Position Embed-
ding (RoPE) (Su et al., 2021) to strengthen the
awareness of the dialogue discourse. Overall-QPN
(Cai et al., 2023) is a model based on MVQPN that
proposes a method for encoding the entire dialogue
at the PLMs layer. However, dialogues are often
very long and may exceed the acceptable range of
PLMs. Lai et al. (2023) modified three parallel at-
tentions of MVQPN to be consecutive and trained

the model relied on the k-fold strategy and manual
rules. They also utilized weights trained on a Chi-
nese dataset to initialize the model for training on
English datasets.

3 METHODOLOGY

The overall architecture of our proposed DMIN
is shown in Figure 2. In DiaASQ, each dialog
is represented as a training sample denoted as
D = {u1, ..., un} with the corresponding rely-
ing record r = {l1, ..., ln} and speakers s =
{s1, ..., sn}, where relying record li denotes the
i-th utterance reply to the li-th one. Each utterance
ui = {w1, ..., wmi} where mi is the length of ui.

Following the labeling scheme of grid tagging
proposed by Li et al. (2023), we decompose the
original DiaASQ task into three joint jobs, and the
model aims to predict the entity boundary labels
yent ∈ {tgt, asp, opi, other}, the entity pair labels
ypair ∈ {h2h, t2t, other} and the polarity labels
ypol ∈ {pos, neg, neu, other}, where tgt, asp, and
opi denote the token-level relations between the
head and tail of a target, aspect, and opinion term,
respectively (e.g., the label tgt between head token
"iPhone" and tail token "14" denotes a target term
"iPhone 14"). The labels h2h (head-to-head) and
t2t (tail-to-tail) are used to align the head and tail
tokens between a pair of entities in two types (e.g.,
the target’s head token "iPhone" and aspect’s head
token "battery" is connected by h2h, while the tail
token "14" and "life" is connected with t2t).

3.1 Textual Features

We observed that utterances within the same thread
generally exhibit topical solid relevance. Therefore,
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we leverage the discourse units, thread, to enhance
the contextual extraction capabilities of PLMs (De-
vlin et al., 2019). This approach strikes a balance
by staying within the maximum acceptable text
length of PLMs while effectively enhancing the in-
teraction between utterances. Additionally, in order
to obtain the speaker’s representation information,
we add the speaker’s ID after the corresponding
utterance u′i = {[cls], ui, si}, where [cls] is the
special token of PLMs.

To ensure generality, we designate u′1 as the
root utterance and include it at the beginning of
each thread. Assuming that k-th thread tk =
{u′1, u′i, u′i+1, ..., u

′
j}, the representations of it can

be defined as follows:

Ht
k = {Hu′

1 ,Hu′
i , ...,Hu′

j } = PLMs(tk), (1)

Hu′
i = {hcls

i ,Hu
i ,h

s
i}, (2)

where each utterance feature Hu
i ∈ Rmi×d con-

sists of token-level representations.

3.2 Concrete Knowledge Encoder
DiaASQ requires extracting specific entities from
dialogue, necessitating a profound understanding
of token-level knowledge and information. We
thus propose a CKEncoder to enhance the token
features for the subsequence module by incorpo-
rating two dedicated modules to learn syntactic
knowledge and semantic information, respectively.
Both modules are based on Graph Convolutional
Networks (GCNs) (Kipf and Welling, 2017; Chen
et al., 2022), which is capable of effectively model-
ing relationships and dependencies between nodes.
Assuming that the graph contains n nodes and the
activation function is denoted by σ, the representa-
tion of the ith node in the lth layer of GCN can be
formulated as follows:

hl
i = σ

(∑n
j=1AijW

lhl−1
j + bl

)
, (3)

where A represents the adjacency matrix, W and
b is learnable parameters and bias.
Syntactic GCN. In many previous works of ABSA
(Zhang et al., 2022; Chen et al., 2022), dependency
parsing trees have been proven to have the ability to
establish dependency relationships between aspect
words and opinion words. We thus use GCNs to
learn syntactic information from the dependency
tree1. However, dependency parsers are generally
only applicable to short texts and cannot be directly

1We use the spaCy as dependency parser: https://spacy.io

applied to dialogue texts. For this, we have made
some adaptive improvements by establishing de-
pendency relationships for each utterance and then
linking their root token nodes to each other based
on the utterance reply relationships within the same
thread. Specifically, we construct a syntactic adja-
cency matrix for k-th thread as follows:

Asyn
k,ij =





1, if words wi, wj contain
dependency relationship,

0, otherwise.

(4)

The input for the first layer of GCNs is Asyn

and thread text feature Ht, and the syntactic repre-
sentation Hsyn = GCNs(Asyn,Ht) is obtained
from GCNs using Eq.(3).
Semantic GCN. We further learn the semantic
information from the self-attention mechanism
(Vaswani et al., 2017), enhancing utterance inter-
action in thread range. The semantic adjacency
matrix can be formulated as:

Asem = Atten(HtWQ,HtWK), (5)

Atten(Q,K) = softmax(
QKT

√
d

). (6)

where d is the dimension of thread text features
Ht. Similar to Syntactic GCN, the semantic repre-
sentation Hsem = GCNs(Asem,Ht) is obtained
by Eq.(3) using Asem and Ht as input.
Feature Fusion. By employing residual connec-
tions (He et al., 2016) and layer normalization op-
erations, denoted as LN, we combine Hsyn and
Hsem with text feature Ht to obtain the token-
level concrete representation for each thread:

Htok = LN(Ht +Hsyn +Hsem). (7)

3.3 Global Discourse Encoder
Discourse information such as speaker and reply
relationships is naturally organized at the utterance
level. We first designed the TopK Aggregator to
obtain sentence representation and speaker informa-
tion and then learned structured reply relationships
through GCNs. Particularly, root utterance Hu

1 is
obtained by avg-pooling at the first as it is repeated
in each thread.
TopK Aggregator. Here we calculate each utter-
ance’s token score Su = {su1 , . . . , sun} and then
get the index of maximum κ tokens:

sui = Hu
i ·W s + bs, (8)
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idxu
i = argmax(Su

i , κ), (9)

where parameter W s ∈ Rd×1, i-th utterance’s to-
ken scores sui ∈ Rmi×1, κ = mi ∗λ and λ ∈ (0, 1]
is a hyperparameter. Then the weighted represen-
tation can be obtained by taking the element-wise
product of the corresponding tokens and scores:

Hwu
i = softmax(Su

i [idx
u
i ])⊙Hu

i [idx
u
i ]. (10)

We use the concatenation operator "||" and a
linear layer to combine the max features, average
features, and speaker information, getting the over-
all representation ho

i ∈ R1×d of utterance :

ho
i =MLP(max(Hwu

i )|| avg(Hwu
i )||hs

i ). (11)

Discourse GCN. To acquire the reply relationships
of the entire dialogue, we construct a discourse
adjacency matrix Adsc:

Adsc
ij =





1, if utterances ui, uj contain
replying relationship,

0, otherwise.

(12)

We learn the utterance-level structured context
and speaker information from the GCNs and finally
get the discourse features:

Hdsc=LN(GCNs(Adsc,Ho) +Ho), (13)

where Ho = {ho
1, ...,h

o
n} is the utterance-level

representations.

3.4 Multi-Granularity Integrator
We have acquired the token-level representation
from CKEncoder and learned the utterance-level
discourse structure information from GDEncoder.
However, these two representations have different
dimensions and cannot be directly fused. There-
fore, we propose a Multi-Granularity Integrator
to solve this issue, yielding a complete contextual
representation.
Multi-Granularity Attention. Specifically, the in-
tegrator addresses the challenge through unique
attention score matrix (Vaswani et al., 2017),
namely Token to Token Attention Score Stok-tok ∈
RN×N , Token to Utterance Attention Score
Stok-utt ∈ RN×n Utterance to Token Attention
Score Sutt-tok ∈ Rn×N :

Stok-tok=Atten(W 1Qtok,W 2Ktok), (14)

Stok-utt=Atten(W 1Qtok,W 3Kutt), (15)

Sutt-tok=Atten(W 4Qutt,W 2Ktok), (16)

where n and N respectively represent the overall
number of utterances and tokens in the dialogue,
Qtok, Ktok, and V tok in the Eq.(14) ∼ Eq.(18)
are representations obtained by concatenating all
the token features of Htok in the order they appear
in the conversation, Qutt and Kutt represent the
utterance-level discourse feature learned from the
GDEncoder.

By combining these two different granularities
of attention, together with token level feature, we
obtain the integrated representation H itg ∈ RN×d:

Aitg = Stok-utt · Sutt-tok + Stok-tok, (17)

H itg = softmax(Aitg ⊙M th) · V tok, (18)

where M th refers to the thread mask proposed by
Li et al. (2023), M th

ij = 1 if i-th and j-th token
within the same thread.

Finally, we conduct a Feedforward layer and a
LayerNorm over the representations, followed by a
tag-wise MLP layer to yield the feature representa-
tion vγ

i for each token:

Hf = LN(FFN(H itg) +H itg), (19)

vγ
i = MLP(hf

i ), (20)

where γ ∈ {yent∪ypair∪ypol} indicates a specific
label.
Rotary Position Embedding (RoPE). RoPE (Su
et al., 2021) can guide a better understanding of
dialogue context. Following Li et al. (2023), the
model fuses RoPE into token representations uγ

i =
R(θ, i)vγ

i , where R(θ, i) is a positioning matrix
parameterized by θ and the absolute index i of vγ

i .

3.5 Quadruple Decoding and Learning
According to the grid tagging method (Li et al.,
2023), the score sγij indicating the probability of re-
lation label γ between wi and wj can be calculated
as sγij = (uγ

i )
Tuγ

j . Then we put a softmax layer
over all elements to determine the relation label γ.

The training loss L of all subtasks can be defined
as:

Lϵ = − 1

G ·N2

G∑

g=1

N∑

i=1

N∑

j=1

αϵyϵij log(p
ϵ
ij), (21)

L = Lent + Lpair + Lpol , (22)

where ϵ ∈ {ent, pair, pol} indicates the subtask,
N is the total token length in a dialogue, G is total
training instances, yϵij is ground-truth label, pϵij is
the prediction, αϵ are weighting hyperparameters.
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4 EXPERIMENT

4.1 Datasets
We evaluate our proposed model on Chinese dataset
ZH (Li et al., 2023) and English dataset EN (Li
et al., 2023), which are closely related to electronic
products collected from social media. The dataset
ZH contains 1000 dialogues and 5742 sentiment
quadruples in total, while the dataset EN contains
5514 quadruples. The ratio of training, validation,
and testing sets for two datasets is 8:1:1. In the
trainsets, there are 1013 quadruples in ZH (about
21.99%) and 972 quadruples in EN (about 22.02%)
are cross-utterance quadruples, where the elements
(aspect, target, and opinion) in one quadruple are
extracted from more than one utterance. More de-
tails about datasets can be found in Appendix A.

4.2 Baselines
As few prior methods are designed for DiaASQ,
we compare with several strong-performing sys-
tems closely related to the task, which have been
adjusted to support DiaASQ by Li et al. (2023). Ad-
ditionally, considering the powerful zero-shot and
few-shot capabilities of the current popular large-
scale language models (LLMs), we conducted
some experiments on ChatGPT to validate its per-
formance on DiaASQ:

• Three-stage model. CRF-Extract-Classify
(Cai et al., 2021) is an end-to-end system with
extraction, filter, and combination stages for
quadruple ABSA.

• Span-based models. Span-ASTE (Xu et al.,
2021) and SpERT (Eberts and Ulges, 2020)
are span-based approach for entities and rela-
tions joint extraction.

• Generative model. ParaPhrase (Zhang et al.,
2021) is a generative seq-to-seq model for the
quadruple ABSA.

• LLM. ChatGPT-3.5-turbo2 is a large-scale
language model based on GPT3 (Brown et al.,
2020). We set the temperature parameter of
ChatGPT to 0 to obtain stable outputs.

We also compared some models specifically de-
signed for DiaASQ:

• MVQPN is a grid-tagging-based model (Li
et al., 2023) for DiaASQ and it strengthens
the discourse awareness of dialogues at the
token level. Our DMIN is based on it.

2https://chat.openai.com/chat

• Overall-QPN3 (Cai et al., 2023) is based on
MVQPN, and models the overall dialogue
with PLMs at the encoding stage. Overall-
QPN was the second-place solution in the
DiaASQ competition organized by NLPCC
2023 4. To ensure a fair comparison, we fol-
lowed Li et al. (2023) and standardized the use
of chinese-roberta-wwm-ext-base (102 mil-
lion parameters) (Cui et al., 2021) for the ZH
dataset, instead of Erlangshen-DeBERTa-v2-
320M-Chinese (320 million parameters) (He
et al., 2020).

4.3 Implementation Details

Settings. For dataset EN and ZH, we use Roberta-
Large (Liu et al., 2019) and Chinese-Roberta-wwm-
ext-base (Cui et al., 2021) as the PLMs layer and set
the ratio λ of top-k as 0.5 and 0.8, respectively. The
layer numbers of Syntatic GCN and Semantic GCN
are set to 3, while Discourse GCN is 2. The batch
size and the dropout rate are set to 2 and 0.1. We
set the learning rate as 1e-4, except for the PLMs,
which is 1e-5. The results of our implemented
models are based on an average of 5 random runs
on the test set. More experimental details can be
found in Table 4.
Metrics. Following Li et al. (2023), we use the ex-
act F1 as the metric. We adopt Micro F1 and Iden-
tification F1 (Barnes et al., 2021) to measure the
performance of quadruple extraction, which is the
most important and challenging task of DiaASQ.
Micro F1 measures the whole quadruple, while
identification F1 does not distinguish the polarity
and is more suitable for evaluating the model’s
boundary prediction and element-matching abil-
ity. To further analyze the performance, we detect
the F1 scores of the span pair, i.e., Target-Aspect,
Aspect-Opinion, and Target-Opinion, denoted as
T-A, T-O, and A-O, respectively.

4.4 Main Results

The main experimental result is shown in Table 1.
There are some notable observations:

(1) As our strong baseline method, we observe
MVQPN already surpasses previous models by
a large margin. Thanks to our token-level and
utterance-level encoders, in terms of the most im-
portant metric, Micro F1, DMIN can effectively

3https://github.com/terence1023/NLPCC2023-DiaASQ.
4We did not compare with the first-place solution (Lai et al.,

2023) because it relied on manual rules.
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Dataset Model
Pair Extraction(F1) Quadruple(F1)

T-A T-O A-O Micro Ident.

ZH

ChatGPTzero-shot 23.86 10.55 15.81 13.77 18.15
ChatGPTone-shot 29.90 17.48 25.59 18.26 20.56

CRF-Extract-Classify (Cai et al., 2021) 32.47 26.78 18.90 8.81 9.25
SpERT (Eberts and Ulges, 2020) 38.05 31.28 21.89 13.00 14.19
ParaPhrase (Zhang et al., 2021) 37.81 34.32 27.76 23.27 27.98
Span-ASTE (Xu et al., 2021) 44.13 34.46 32.21 27.42 30.85
Overall-QPN (Cai et al., 2023) 52.86 50.98 53.33 37.77 43.56

MVQPN (Li et al., 2023) 48.61 43.31 45.44 34.94 37.51
Ours DMIN 57.62 51.65 56.16 44.49 47.50

EN

ChatGPTzero-shot 23.26 16.07 14.34 10.98 12.99
ChatGPTone-shot 26.18 20.33 21.20 13.20 14.67

CRF-Extract-Classify (Cai et al., 2021) 34.31 20.94 19.21 11.59 12.80
SpERT (Eberts and Ulges, 2020) 28.33 21.39 23.64 13.07 13.28
ParaPhrase (Zhang et al., 2021) 37.22 32.19 30.78 24.54 26.76
Span-ASTE (Xu et al., 2021) 42.19 30.44 45.90 26.99 28.34
Overall-QPN (Cai et al., 2023) 50.70 49.46 50.31 35.37 39.73

MVQPN (Li et al., 2023) 47.91 45.58 44.27 33.31 36.80
Ours DMIN 53.49 52.66 52.09 39.22 42.31

Table 1: The overall performance of different baseline models and our proposed DMIN, where ‘T/A/O’ represents
Target/Aspect/Opinion, respectively. All the scores are averaged values over five runs under different random seeds.

improve the performance of MVQPN by 9.55% on
the ZH dataset and 5.91% on the EN dataset. As
for Overall-QPN, the current best baseline, DMIN
also achieves a notable improvement of 6.72% and
3.85%. This showcases our better performance in
extracting complete quadruples.

(2) Regarding identification F1, DMIN outper-
forms Overall-QPN by 3.94% and 2.58% on the
ZH and EN, respectively. This demonstrates the
superior performance of DMIN in entity extraction
and target-aspect-opinion relationship matching.

(3) DMIN achieves improvements on all metrics
in Pair Extraction compared with Overall-QPN,
indicating that it has excellent ability in pairing bi-
nary relationships. Taking the EN dataset as an ex-
ample, DMIN achieved the largest improvement in
the T-O metric, 3.2%, while obtaining a relatively
smaller improvement in the A-O metric, 1.78%.

(4) Regarding the LLM experiments, we ob-
served that the ChatGPT-3.5-turbo model did not
perform well in the zero-shot and one-shot settings
on the DiaASQ task. When compared to another
supervised generative model called ParaPhrase, it
showed a difference of approximately 5% in perfor-

mance. This could be because ChatGPT-3.5-turbo
lacks an understanding of the structural informa-
tion within the dialogue. To further investigate
this, we conducted an experiment where we did not
provide any information about the reply relation-
ships or speaker identities. As a result, ChatGPT’s
predicted F1 scores exhibited minimal fluctuations.
The prompts used in the experiment are presented
in the Appendix C.

4.5 Ablation Study

As DMIN is focused on structured context un-
derstanding, we additionally observed the perfor-
mance of Micro F1 on cross-utterance cases as one
of the indicator to explore each module’s contribu-
tion toward the structured context understanding.
Effects of Token-level Concrete Knowledge.
From Table 2, it can be observed that removing the
CKEncoder (w/o CKEncoder) results in a decline
on all of metrics for both datasets. Taking dataset
ZH as an example, the model decrease with approx-
imately 1.28% on Micro F1, 0.72% on identifica-
tion F1, and 3.17% on cross-utterance F1, respec-
tively. The significant decrease of cross-utterance
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Model
ZH EN

Micro F1 Ident. F1 Cross-Utt. Micro F1 Ident. F1 Cross-Utt.

Ours DMIN 44.49 47.50 31.23 39.22 42.31 25.56

w/o CKEncoder 43.21 (↓1.28) 46.78 (↓0.72) 28.06 (↓3.17) 38.54 (↓0.68) 42.07 (↓0.24) 23.75 (↓1.81)

w/o SynGCN 42.30 (↓2.19) 45.99 (↓1.51) 27.64 (↓3.59) 36.97 (↓2.25) 40.62 (↓1.69) 25.35 (↓0.21)

w/o SemGCN 42.73 (↓1.76) 46.58 (↓0.92) 25.83 (↓5.4) 38.25 (↓0.97) 40.92 (↓1.39) 22.93 (↓2.63)

w/o Utt-Discourse 42.94 (↓1.55) 46.26 (↓1.24) 28.32 (↓2.91) 38.54 (↓0.68) 42.08 (↓0.23) 23.03 (↓2.53)

w/o DscGCN 43.33 (↓1.16) 46.10 (↓1.40) 29.26 (↓1.97) 38.12 (↓1.10) 41.20 (↓1.11) 21.65 (↓3.91)

w/o Speaker 42.69 (↓1.80) 46.08 (↓1.42) 28.31 (↓2.92) 38.98 (↓0.24) 42.19 (↓0.12) 22.78 (↓2.78)

w/o Thread 42.11 (↓2.38) 44.69 (↓2.81) 26.87 (↓4.36) 36.36 (↓2.86) 39.46 (↓2.85) 16.74 (↓8.82)

Table 2: The results of ablation study on datasets. All of the metrics are Micro F1 scores, where "Cross-Utt." refers
to the Micro F1 scores of the model on cross-utterance quadruples.

F1 demonstrates that syntactic knowledge and se-
mantic information provide auxiliary support for
model’s structured context comprehension. Addi-
tionally, we conducted ablative experiments on two
sub-modules separately (w/o SemGCN and w/o
SynGCN), and the results showed a varying degree
of decrease as expected.
Effects of Utterance-level Discourse. We ini-
tially removed all speakers, GDEncoder, and the
corresponding integration mechanism (w/o Utt-
Discourse) to assess the impact on structured con-
text understanding. Consequently, the model’s
performance has a decrease of approximately
1.55% and 0.68% in Micro F1 scores on the two
datasets. Furthermore, we conducted additional
experiments by individually removing the reply re-
lationship (w/o DscGCN) and speaker information
(w/o Speaker) to evaluate their respective contribu-
tions. The results showed that their removal led to
varying performance drops ranging from approxi-
mately 0.24% to 1.80% Micro F1, confirming their
importance. Notably, we observed that the perfor-
mance of cross-utterance quad extraction on the
EN dataset was more influenced by replying infor-
mation,while the ZH dataset was more influenced
by speaker information.These experiments confirm
the importance of discourse information, such as
speaker and reply relationships, and also validate
the effectiveness of our proposed Multi-Granularity
Integrator.
Effects of Thread. The inclusion of the "thread"
in the encoding stage allows for a wider range of
token interactions. As demonstrated in Table 2, we
conducted an experiment where we replaced the
thread-range embedding and GCNs with utterance-
range counterparts (w/o thread). This resulted in
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Figure 3: Performances on different cross-utterance
levels.

a decrease in overall micro scores of more than
2.38% on both datasets. Particularly, the cross-
utterance quadruples experienced a larger drop,
with a decrease of 8.82% on the EN dataset. This
highlights the importance of the thread in achieving
optimal performance in the model.

4.6 Improvement Analysis

In Section 4.5, we conducted ablation studies on
various modules to validate their contributions to
structured dialogue understanding and additionally
observed the changes in F1 scores of the model
on more challenging cross-utterance cases to ex-
plore the capabilities of each module in addressing
such difficult examples. In this section, we further
performed an in-depth analysis by examining the
performance of different levels of cross-utterance
quad extraction. As shown in Figure 3, as the cross-
utterance level increases, the performance of all
models gradually decreases. Our DMIN achieved a
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significant improvement of approximately 12% and
4% in short-range (intra-utterance) and medium-
range (cross-1 utterance), respectively. Even in the
most challenging long-range cases (cross-≥2), our
performance was approximately 2% higher than
the baseline. Furthermore, we studied the perfor-
mance of utterance-level discourse information and
thread range encoding method. The results indi-
cated that the thread range encoding method was
more beneficial for short to medium-range quad
extraction, while utterance discourse information
played a more significant role in understanding the
dialogue structure over longer distances.

4.7 Case Study

In this section, we present a close look at our
DMIN and the baseline MVQPN via case studies.
In the complex dialogue shown in Figure 4, there
are a total of 3 threads, 4 cross-utterance quadru-
ples, and 4 intra-utterance quadruples. The base-
line model correctly predicts only 2 of the quadru-
ples. Specifically, it mistakenly pairs the opinion
"not good" from the sixth utterance with the target
"Pro" from the fifth utterance, indicating a misun-
derstanding of the dialogue structure. In contrast,
DMIN performs better and accurately extracts 3
cross-utterance quadruples and 1 intra-utterance
quadruple, including the cross-2 utterance quadru-
ple (id=1). Although DMIN incorrectly predicts
the boundary of the opinion phrase "joint names
is useless" as "useless" (id=4), it can be observed
that DMIN correctly matches the dependencies be-
tween elements across utterances.

A complex dialogue shown in Figure 6(a) mostly
consists of inter-utterance quads. DMIN predicts
a significantly higher number of accurate quads
compared to the baseline. In the case of simple
dialogue shown in Figure 6(b) that mostly contains
intra-utterance quads, DMIN performs slightly bet-
ter than the baseline. In both cases, DMIN extracts
fewer false positive cases, revealing another reason
for the score improvement achieved by DMIN.

5 CONCLUSION

This paper addresses previous work’s limitations
and proposes a fresh viewpoint for DiaASQ to bet-
ter model the discourse structure information in
dialogue. Specifically, we enhance the utterance
interactions at the token-level granularity on the
thread scale and then capture global discourse in-
formation at the utterance-level granularity on the

Speaker Utterance

0 OnePlus 1, 3, 7pro users, see how bad OnePlus 9, 9Pro, 9R, 9RT are this year. 
What? don't let me say

1 9pro and Kazakh Soviet co-branded is good for taking pictures [doge]

0 The mode updated later is a bit interesting. In the early stage, I feel that it 
is not as good as X3pro [allow sad]

1 Harzu is good [like]
2 Pro is ok, good workmanship

0
Aesthetics are not good, and taking pictures with joint names is useless. 
If the workmanship is not good, it is not a OnePlus. How can the 
workmanship be bad with the green factory production line.

3 We both use the same phone.
Id Type Gold Label [T, A, O, P] MVQPN’s Pred Ours DMIN’s Pred
1 cross ['9pro', 'Harzu', 'good', 'pos'] ✖ ✔

2 cross ['9pro', 'mode', 'a bit interesting', 'pos'] ✖ ✔

3 cross ['Pro', 'Aesthetics', 'not good', 'neg'] ✔ ✔

4 cross ['Pro', 'taking pictures', 'joint names is 
useless', 'pos'] ✖ ['Pro', 'taking pictures', 

'useless', 'pos']

5 intra ['Pro', 'workmanship', 'good', 'pos']
['Pro', 

'workmanship', 
'not good', 'neg']

✖

6 intra ['green factory', 'workmanship', 'How 
can the workmanship be bad', 'pos'] ✖ ✖

7 intra ['9pro', 'taking pictures', 'good', 'pos'] ✔ ✔

8 intra ['OnePlus', 'workmanship', 'not good', 
'neg'] ✖ ['OnePlus', 'workmanship', 

'bad', 'neu']

9 error / / ['9pro', 'mode', 'not as 
good as', 'neg']

Figure 4: Case study. The major target, aspect, and opin-
ion in dialog are colored differently, and the incorrectly
predicted quads by the model are marked in red.

dialogue scale, which is more efficient and macro.
Furthermore, we introduce a novel integrator to
tackle the challenge of integrating data across di-
verse granularities, yielding a comprehensive and
cohesive contextual understanding. The experi-
mental results demonstrate the effectiveness of our
proposed DMIN.
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7 Limitations

In this paper, we considered utilizing both syn-
tactic knowledge and semantic information to en-
hance token-level representations. However, we
just adopted a simple additive fusion method to
combine the representations from the two modules.
In the future, more efficient fusion methods can be
explored for better integration. Additionally, as an
emerging task, the DiaASQ task focuses on struc-
tured dialogue text and holds significant research
value. However, it poses challenges in terms of
annotation difficulty, and the availability of suit-
able datasets is limited. In the future, we plan to
apply our proposed model framework to a wider
range of datasets and domains to further validate
its effectiveness and generalizability.
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A Datasets

The statistics of experimental datasets is shown
in Table 3. The Chinese version of the dataset
contains a total of 1000 dialogues, 7,452 utter-
ances, and 5,742 sentiment quadruples, while the
English version contains 5,514 quadruples Each
dialog has around five speakers on average, and
the dataset contains 1,275 (22.2%, in Chinese) and
1,227 (22.3%, in English) cross-utterance quadru-
ples, respectively. As for pair labels, in the training
set of dataset ZH, there are 4699, 5931, and 3989
instances for T-A, T-O, and A-O, respectively. In
the training set of dataset EN, there are 4823, 6062,
and 4297 instances for T-A, T-O, and A-O, respec-
tively.

Dataset
Pair Quadruple

T-A T-O A-O Intra. Cross. Total.

EN
train 4,699 5,931 3,989 3,442 972 4,414
val 603 750 509 423 132 555
test 592 751 496 422 123 545

ZH
train 4,823 6,062 4,297 3,594 1,013 4,607
val 621 758 538 440 137 577
test 597 767 523 433 125 558

Table 3: The statistics of experimental datasets. "Intra."
represents intra-utterance quadruples, while "Cross."
represents cross-utterance quadruples.
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Prompt - Quad Extraction 

Schema and Regulations
[Task Description]
Conversational aspect-based quadruple analysis aims to predict the (target, aspect, opinoin, 
polarity) sentiment element from the dialogue, where target refers to the mobile phone model 
or brand (such as iPhone 14, Xiaomi, mate30, etc.), aspect refers to a certain aspect of the 
target (such as battery life, photography, price, etc.), opinion is the evaluation word of the 
aspect (such as good, very expensive, really unbearable, etc.), polarity is the corresponding 
sentiment polarity (including positive, negative, neutral). target, aspect, opinion are entities 
extracted from the dialogue, and polarity is one of {pos, neg, neu}.

[Regulations]
Input format: I will give you a dialogue, which contains multiple utterances U, each utterance U 
is composed of [uid][sid][rid][utterance], where uid and sid respectively represent the unique 
identifiers of utterance U and speaker S, and rid represents the uid of the object to which the 
current utterance replies.
Output specification: You need to find all the sentiment quadruples (target, aspect, opinoin, 
polarity). Do not output anything other than the quadruple. Do not output duplicate quadruples. 
Connect multiple quadruples with "#", the output format is: (t1, a1, o1, p1)#(t2, a2, o2, 
p2)#...#(tn, an, on, pn)

Example
Input=
[u0][s0][reply to u0][So who is better than 11u in taking pictures ? ]
[u1][s1][reply to u0][vivo X70 Pro+ is the strongest]
[u2][s2][reply to u1][Telephoto 11ultra is better , portrait vivo is better]
....
Output=('11u', 'taking pictures', 'better', 'pos')#('vivo X70 Pro+', 'taking pictures' ...

Sentence input
Input=
[u0][s0][reply to u0][I use iPhone 14 . The latest version has a good battery life under the ...]
....
Ouput=

GhatGPT response
(iPhone 14, battery life, good, pos)#(Android, battery life, good, pos)#....

Prompt - Pair Extraction 

Schema and Regulations
[Task Description]
Conversational aspect-based pair analysis aims to predict the (target-aspect), (target-opinion) 
and (aspect-opinion) sentiment element pairs from the dialogue, where target refers to the 
mobile phone model or brand (such as iPhone 14, Xiaomi, mate30, etc.), aspect refers to a 
certain aspect of the target (such as battery life, photography, price, etc.), opinion is the 
evaluation word of the aspect (such as good, very expensive, really unbearable, etc.). target, 
aspect, opinion are entities extracted from the dialogue.

[Regulations]
Input format: I will give you a dialogue, which contains multiple utterances U, each utterance U 
is composed of [uid][sid][rid][utterance], where uid and sid respectively represent the unique 
identifiers of utterance U and speaker S, and rid represents the uid of the object to which the 
current utterance replies.
Output specification: You need to find all the sentiment pairs (target-aspect), (target-opinion) 
and (aspect-opinion). Do not output anything other than the pair. Do not output duplicate pairs. 
The output format is: <target, aspect>=(t1, a1)#(t2, a2)#...#(tn, an)
<target, opinion>=(t1, o1)#(t2, o2)#...#(tn, on)
<aspect, opinion>=(a1, o1)#(a2, o2)#...#(an, on)

Example
Input=
[u0][s0][reply to u0][So who is better than 11u in taking pictures ? ]
[u1][s1][reply to u0][vivo X70 Pro+ is the strongest]
....
Output=
<target, aspect>=(Xiaomi, algorithm)#(x70Pro+, color reproduction)#...
<target, opinion>=(OV, good)#(x70Pro+, good)#(vivo X70 Pro+, strongest)#(11ultra, better)# ...
<aspect, opinion>=(Telephoto, better)#(taking pictures, strongest)#(telephoto, yyds)#(takin...

Sentence input
Input=[u0][s0][reply to u0][I use iPhone 14 . The latest version has a good battery life under ...]
....
Ouput=

GhatGPT response
<target, aspect>=(vivo, photography)#...
<target, opinion>=(X70Pro+, better)#...
<aspect, opinion>=(photography, strong)#...

Figure 5: The prompt of ChatGPT for quadruple extraction (left) and pair extraction (right).

B Experiment Details

As shown in the Table 4, our parameter size is
only about 6% higher than the baseline. After com-
pleting dependency parsing, the time required to
train one epoch is very close to that of MVQPN.
This indicates that the computational complexity
of DMIN is not as high as it may appear.

Attribute Value

Optimizer AdamW
αent,αrel,αpol 2, 9, 6

Learning rate(BERT) 1e-5
Learning rate(Other) 1e-4

Max grad norm 1.0
Weight decay 0.01
Max Epoch 40
Early Stop 10
Batch size 2 (dialogues)

θ 10,000
Parameter scale (DMIN) 128M

Parameter scale (MVQPN) 120M
Memory Consumption (DMIN) 11G

Memory Consumption (MVQPN) 8G
Training time/epoch (DMIN) 1min58s

Training time/epoch (MVQPN) 1min49s

Table 4: The details of main experiment.

C ChatGPT Experiments

We conducted preliminary tests on the performance
of ChatGPT-3.5-turbo under 0-shot and 1-shot con-

ditions. Initially, we set the temperature parameter
of ChatGPT to 0 to obtain stable outputs. Consid-
ering the length limitation of ChatGPT-3.5-turbo,
we employed quad extraction and pair extraction
tasks for the large model separately. Furthermore,
we requested the large model to output quads and
pairs in the form of entity words, rather than pre-
cise word indices. Figure 5 illustrates the prompts
designed for our experiment, consisting of three
parts: "Schema and Regulations" provides the def-
inition of the task, the input data format, and the
output specifications; "Example" presents a sample
provided to the large model for reference under the
1-shot condition, while it is not provided under the
0-shot condition; "Sentence Input" represents the
dialogue that the large model needs to perform sen-
timent analysis on. It can be observed from Table 1
that the large model achieves a significant improve-
ment under the one-shot condition compared to the
zero-shot condition. However, it still falls short of
the performance of the supervised training-based
generative model ParaPhrase.

D Case study

Additional case study results are shown in Figure 6.
The target, aspect, and opinion in the dialogue are
colored differently, and the incorrectly predicted
quads by the model are marked in red.
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Speaker Utterance

0 11U is a lot of stacking materials , and the actual experience is 
particularly poor

1 Let 's talk about it when you have a 11u [ two ha ]

2

The photoshoot is terrible , not at all up to the gn2 real level , 
and the photography is equally terrible . If you do n't believe me , 
look at my space , I 'm already out , the performance is bad , the 
charging speed is not bad , the screen is good , the r corner is 
too ugly , oh , by the way , do n't brag about the new system , I 
used it for half a year without optimization

1

You are really interesting , blahblahblah , other people use 
11u to take good pictures , and the photography is also 
good , although not as good as Apple Samsung . Oh , by the 
way , whether taking pictures is good or not also depends on 
the individual [ two ha ] .

3 Indeed , the system is not good
0  right ?

3

It 's very bad to use . The first few systems often have a 
black screen and no response . The camera and zoom will 
also freeze . The game has not been optimized until now . I 
use it now for playing games and taking pictures , and I still 
use the iPhone for daily use

4 Your Hasselblad is worthless in front of me !

5 Is this why Lei Jun pursues Leica ? [ question ]

Id Type Gold Label [T, A, O, P] MVQPN’s Pred Ours DMIN’s Pred

5 cross ['11U', 'systems', 'often have a black 
screen and no response', 'neg'] ✖ ✖

6 cross ['11U', 'zoom', 'will also freeze', 'neg'] ✖ ✖

7 cross ['11u', 'charging speed', 'not bad', 'pos'] ['11U', 'charging speed', 
'not bad', 'pos'] ✖

8 cross ['11u', 'performance', 'bad', 'neg'] ✖ ✖

9 cross ['11u', 'photography', 'equally terrible', 
'neg']

['11U', 'photography', 
'equally terrible', 'neg'] ✔

10 cross ['11u', 'photoshoot', 'terrible', 'neg'] ✔ ✔

11 cross ['11u', 'r corner', 'too ugly', 'neg'] ['11U', 'r corner', 'too 
ugly', 'neg'] ✔

12 cross ['11u', 'screen', 'good', 'pos'] ✖ ✖

13 cross ['11u', 'system', 'without optimization', 'neg'] ✖ ✖

14 intra ['11U', 'actual experience', 'particularly 
poor', 'neg']

['11U', 'experience', 
'particularly poor', 'neg'] ✔

15 intra ['11U', 'materials', 'a lot of stacking', 'pos'] ✖ ✖

16 intra ['11u', 'photography', 'good', 'pos'] ✔ ✔

17 intra ['11u', 'photography', 'not as good as', 
'neg'] ✔ ✔

18 intra ['11u', 'pictures', 'good', 'pos'] ['11u', 'take good 
pictures', 'good', 'pos'] ✔

19 intra ['Apple', 'photography', 'not as good as', 
'pos'] ✔

['Apple Samsung', 
'photography', 'not 
as good as', 'neg']

20 intra ['Samsung', 'photography', 'not as good 
as', 'pos']

✔ ✔

Id Type Gold Label [T, A, O, P] MVQPN’s Pred Ours DMIN’s Pred
1 cross ['11U', 'Hasselblad', 'worthless', 'neg'] ✖ ✖

2 cross ['11U', 'camera', 'will also freeze', 'neg'] ✖ ['11U', 'camera', 
'freeze', 'neg']

3 cross ['11U', 'game', 'not been optimized', 'neg'] ✖ ✔

4 cross ['11U', 'system', 'not good', 'neg'] ✔ ✔

(a)

Speaker Utterance
0 4000 + buying Apple and Huawei is always the best solution

1 No more than 6,000 , Apple , Huawei , not as good as dog [ laughing 
but not speaking ] [ laughing and not speaking ]

2

Smart people [ cool][cool][cool][cool ] ! Huawei must buy high - 
end ! Low - end just look at them ! 4000 price Xiaomi is the first 
choice ! Do whatever you want if you have enough money ! The 
optimal solution for Huawei Apple is 5000 to 6000 + ! Around 
4000 , you can only consider Xiaomi , O V , Meizu ! Do not ask 
me why ! Because that 1000 to 2000 is that called some tax 
[ cool][cool][cool][cool][cool][cool ]

3
The configuration of Huawei with more than 4000 may be 
worse than that of Xiaomi with more than 4000 , but the 
actual experience must be far better than Xiaomi

4 But Huawei 's latest model does n't have 5 G
1 Do n't buy it now , no need

4 It 's really not necessary , I really want to use emui , and 
glory is fine too

5 Huawei 's p40 with more than 4000 really suck [ allow sad ]
6 Taking pictures is really hard to say . .

Id Type Gold Label [T, A, O, P] MVQPN’s Pred Ours DMIN’s Pred

1 cross ['p40', 'Taking pictures', 'hard to say', 'neg'] ✔ ✔

2 intra ['Huawei', 'actual experience', 'far better', 
'pos'] ✔ ✔

3 intra ['Huawei', 'configuration', 'worse', 'neg'] ✔ ✔

4 intra ['Xiaomi', 'actual experience', 'far better', 
'neg']

['Xiaomi', 'actual 
experience', 'far better',  

'pos']]
✔

5 intra ['Xiaomi', 'configuration', 'worse', 'pos'] ✖ ✖

6 error /
['Huawei', 'Taking 
pictures', 'hard to 

say', 'neg']

['Huawei', 
'Taking 

pictures', 'hard 
to say', 'neg']

7 error / ['Xiaomi', 'experience', 
'far better', 'neg'] /

8 error / ['Huawei', 'experience', 
'far better', 'neg'] /

(b)

Figure 6: Additional case study results presentation.

Figure 6(a) presents a complex dialogue primar-
ily composed of inter-utterance quads. In this case,
the main cross-utterance quads are densely dis-
tributed in the first and second threads, with the
terms "11U" in the first utterance and "11u" in
the second utterance being the main target terms.
These two target terms are semantically similar and
closely located, making them easily confused. In
quads with IDs 7, 9, and 11, the baseline model
incorrectly predicts "11U" instead of "11u", while
DMIN correctly identifies the dialogue structure
and identifies the correct target. As a result, DMIN
achieves a Micro F1 score of 60.61% on this case,
significantly surpassing the baseline’s 36.36%. In
the case of a simple dialogue shown in Figure 6(b),
which mainly consists of intra-utterance quads,

DMIN performs slightly better than the baseline.
However, in both cases, due to the correct under-
standing of the structured dialogue context, DMIN
extracts fewer incorrect quads, meaning it has
fewer false positive cases, thus revealing another
reason for the score improvement achieved by
DMIN.
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