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Abstract

The gap between the trepidation of program re-
liability and the expense of repairs underscores
the indispensability of Automated Program Re-
pair (APR). APR is instrumental in transform-
ing vulnerable programs into more robust ones,
bolstering program reliability while simultane-
ously diminishing the financial burden of man-
ual repairs. Commercial-scale language models
(LM) have taken APR to unprecedented lev-
els. However, the emergence reveals that for
models fewer than 100B parameters, making
single-step modifications may be difficult to
achieve the desired effect. Moreover, humans
interact with the LM through explicit prompts,
which hinders the LM from receiving feedback
from compiler and test cases to automatically
optimize its repair policies. In this literature,
we explore how small-scale LM (less than 20B)
achieve excellent performance through process
supervision and feedback. We start by con-
structing a dataset named CodeNet4Repair, re-
plete with multiple repair records, which super-
vises the fine-tuning of a foundational model.
Building upon the encouraging outcomes of
reinforcement learning, we develop a reward
model that serves as a critic, providing feed-
back for the fine-tuned LM’s action, progres-
sively optimizing its policy. During inference,
we require the LM to generate solutions itera-
tively until the repair effect no longer improves
or hits the maximum step limit. The results
show that process-based not only outperforms
larger outcome-based generation methods, but
also nearly matches the performance of closed-
source commercial large-scale LMs. 1

1 Introduction

Since the birth of the program, its reliability has
been a primary concern. The capacity of large lan-
guage models to auto-generate code has further

*Corresponding author
1Code and data are publicly available at https://github.

com/TnTWoW/RePair
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Figure 1: The general procedure for competitors to
refine a solution on programming contest platform. Ini-
tially, they draft a solution based on the problem descrip-
tion and additional constraints such as time and memory
limits. They then progressively improve their solution
using feedback from the platform, like exceeding time
or memory limits, until they achieve an accepted result.

intensified these concerns (Khoury et al., 2023),
sparking discussions on possible solutions. Pro-
gram repair accepts vulnerable programs as input,
enhancing them through locating, correcting, and
testing - a process that is often challenging within
software development and programming competi-
tion. The confrontation arises when these defective
programs encounter errors only when they receive
rare and unexpected inputs. Moreover, it requires
experienced programmers to invest substantial time
in identifying and rectifying errors. A sophisticated
Automated Program Repair (APR) system can re-
duce the expertise threshold and time commitment
required, significantly enhancing the robustness of
the program.

Prior works viewed APR as a sequence-to-
sequence task, then LLMs, with their massive
model parameters and training data, can address
this issue through zero- or few-shot learning (Jiang
et al., 2021; OpenAI, 2023; Ouyang et al., 2022;
Chen et al., 2021; Zeng et al., 2022; Touvron et al.,
2023; Hoffmann et al., 2022; Anil et al., 2023;
Chen et al., 2022; Le et al., 2022; Rozière et al.,
2024; Guo et al., 2024; Wei et al., 2023; Zhang
et al., 2023). Whether it’s traditional methods or
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LLMs, they achieve the repair by making a single
modification. These outcome-based supervision
methods pose a stringent challenge to the model
due to the substantial edit distance between input
and output. Simultaneously, the one-step modifi-
cation approach does not align with human behav-
ioral patterns: To be specific, when facing com-
plex tasks, programmers usually repair the buggy
program step by step in a cycle of modification,
testing, and feedback. This inspires us to pay atten-
tion to the exploration of modification processes
in APR tasks. Unlike outcome-based supervision,
this process-based method requires guidance and
supervision at each modification step.

Figure 1 depicts the typical program repair pro-
cess in programming competitions, which is guided
by compilers and test cases: Competitors initially
construct a sketch of the program based on the
problem’s intent and other constraints. They then
complete the repair through a continuous process
of submission, feedback, and interaction. Specifi-
cally, they initially attempt to solve “Find the ma-
jority element” problem by sorting and selecting
the middle element. However, when they encounter
time constraints, they shift to calculating each el-
ement’s frequency. But this method still requires
O(n) space complexity. After receiving “Mem-
ory Limit Exceed” status, they ultimately use the
Boyer-Moore majority vote algorithm with O(1)
space complexity.

This example illustrates the characteristics of
process-based program repair, which necessitates
ongoing interaction with the compiler and test cases
for feedback-guided repair. However, applying this
type of process-based feedback on LMs appears un-
feasible. First and foremost, the primary obstacle
hindering related research is the absence of process-
based datasets in practical scenarios. Second, the
supervision method for intermediate processes in
APR tasks are still under exploration. Previous
work explored process-based supervision in mathe-
matical problem solving and reasoning tasks (Light-
man et al., 2023; Liu et al., 2023a), which required
the intermediate steps to be correct. However, the
intermediate steps in APR tasks serve as incorrect
supervision signals and cannot be directly used
for training. Last, interaction with LMs can be
achieved through explicit prompt engineering. At-
tempts to use prompt engineering instead of com-
piler and test cases for feedback hinder the precise
construction of human intentions by LMs.

In this work, to the best of our knowledge, we

DeepFix Review4Repair Bug2Fix CodeNet4Repair
Language C Java Java Python
Test Cases × × × ✓
Repair Form single step single step single step multi step
Problem Description × × × ✓
Test Size 6,971 2,961 58,356,545 10,144

Table 1: A comparison between the CodeNet4Repair
dataset and existing datasets for program repair. The
advantages of CodeNet4Repair stem from its compre-
hensive inclusion of test cases, problem descriptions,
and detailed repair steps. CodeNet4Repair’s test set
contains 10,144 complex program repair processes at
competition level.

conduct the first few comprehensive exploration of
process-based feedback with LMs in APR task. For
this, we first establish a multi-step program repair
dataset called CodeNet4Repair. Following that, we
introduce a process-based feedback APR frame-
work called RePair. RePair includes two models:
a reward model and a repair model. We start by
training a reward model to mimic the compiler as a
virtual tool. It takes program text as input and gives
assertions about the program’s status. The repair
model works on buggy programs, completing one
repair in a step. It then offloads the assessment of
the program’s status to the virtual tool and waits
for feedback to adjust the strategy for the next mod-
ification. Finally, we use pass@k as a metric to
objectively assess the quality of program repair.

2 Data Collection

As far as we know, there has not been a dataset
established for program repair tasks that includes
processes. Thus we attempt to develop a proce-
dural dataset specifically for these tasks. Overall,
the dataset includes problem description, memory
and time limit of the problem, repair process (a
series of programs from error to correctness) and
resource usage during execution (memory usage,
CPU time, and code size). We derive our data from
the large-scale programming competition dataset
CodeNet (Puri et al., 2021). We make every effort
to cleanse and filter this data to guarantee its qual-
ity. We clarify problem description, clean up the
program from preliminary to fine, and collect addi-
tional high-quality test cases. Finally, we organize
the program into a procedural format. In Table 1,
we compare other excellent datasets and showcased
the unique aspects of CodeNet4Repair (Gupta et al.,
2017; Huq et al., 2020; Tufano et al., 2019).
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Figure 2: An illustration of process-based Automated Program Repair with compiler and test case feedback: (1) The
introduction of a clean, privacy-protected dataset called CodeNet4Repair. (2) The application of Supervised Fine-
Tuning (SFT) on pre-trained language models. (3) The incorporation of process-based feedback via reinforcement
learning (RL). This process includes: establishing a reward model as a critic, and LM adjusts its repair policies
based on the feedback from the critic. SFT and RL are both trained on CodeNet4Repair training set.

2.1 Problem Description Collection

Even professional programmers need to understand
the problem that the program is intended to solve
when fixing it. CodeNet provides unprocessed
HTML for storing the description of each ques-
tion. We utilize regular matching to extract these
descriptions from the CodeNet’s HTML files. Fi-
nally, we manually supplement any descriptions
that were challenging to recognize with Optical
Character Recognition.

2.2 Program Preliminary Filtering

We chose Python as our benchmark language. We
design the following rules for preliminary filtering.

(1) No duplicate submissions. Casual or copy
submissions do not aid in program repair process.

(2) No malicious submissions, which include au-
tomated disruptive attempts, invalid code aimed at
attacking the platform’s codebase, and destructive
codes designed to interfere with system files.

(3) No privacy breach submissions. Some IDEs
automatically generate comments that could reveal
the author’s identity.

(4) Ensure each repair process includes at least
one acceptable commit. The processes without any
accepted outcomes will be excluded.

After this preliminary filtering, we obtain
1,227,259 submission programs. All non-English
characters from the code comments are removed
prior to fine filtering.

2.3 Program Fine Filtering
Although the original CodeNet dataset provides the
program execution status (e.g., Wrong Answer or
Accepted), these may vary due to differences in
Python versions and environments. We set up a
standard Python 3.11.3 environment and are metic-
ulously testing each of the 1,227,259 execution
results using test cases to ensure consistent status.
Ignoring extra expenses such as process switch-
ing and assuming an average execution time of 4
seconds per solution, we would require a total of
4×1227259

60×60 = 1364(Core · hours) CPU time. Fi-
nally, we obtain 278,408 consistent programs. We
arrange the answer records of each user for each
question in chronological order, ensuring that the
last program is “Accepted”.

To enhance evaluations precision, we expand
the number of high-quality test cases collected
online and annotated by hand. We organize
these programs with high-quality test cases into
a procedure-based dataset called CodeNet4Repair.
CodeNet4Repair is an information-leak-free pro-
gram repair dataset with Apache-2.0 License.

3 Method

Our methodology follows that of Ouyang et al.,
which aligned GPT-3 with human. We start from
StarCoderBase (Li et al., 2023), a 15.5B code foun-
dation pre-trained LM with 8K context length. It
is trained on 1 trillion tokens from The Stack (Ko-
cetkov et al., 2023). Figure 2 illustrates the tech-
niques used to train RePair.
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3.1 Supervised Fine Tuning on APR Task

To ensure that the LM can understand pro-
gram repair tasks, we use the prompt templates
in Appendix A.1 for Supervised Fine-Tuning
(SFT) (Zhang et al., 2022; Huang et al., 2024).
Given a vulnerable program sequence x =
{x1, x2, ..., xN}, LM is expected to output a ro-
bust program y = {y1, y2, ..., yN ′}, yt ∈ V that
can pass all test cases, where V is vocabulary. Dur-
ing the training phase, the model parameters θ are
learned by maximizing the likelihood of the out-
put and the ground-truth (Zhang et al., 2021). The
training objective is to minimize the following loss:

Lce(θ) = E[− logP (y | x; θ)]

= −
N ′∑

t=1

logP (yt | y<t,x; θ) ,
(1)

where E is the expectation over entire dataset, and
y<t is a partial sequence before time-step t.

3.2 Process-based Feedback

After supervised fine-tuning, we generally obtain
a fine-tuned LM suitable for the APR tasks. How-
ever, this model only understands how to provide
a possible solution under the condition of given
x, lacking process supervision and feedback from
environment like compilers and test cases. To en-
sure that the LM can gradually refine the program
through interaction, we introduce reinforcement
learning (RL). In this context, we treat the fine-
tuned LM as an actor. Given a state x, its output ŷ
is considered an action. Guided by feedback from
the reward model, it iteratively refines program
towards a final possible result.

3.2.1 Reward Modeling
Instead of using direct feedback from the compiler
and test cases, we train a reward model (RM) to as-
sess program quality. The reward model serves as
a virtual tool, while the LM optimizes repair strate-
gies by interacting with it. The main reasons boil
down to two points: (1) During training, direct in-
teraction with the environment significantly blocks
the training pipeline. The batch-processed tensors
in cuda must first be transferred to memory for de-
coding, undergoing syntax check and case testing
sequentially; when providing feedback, these re-
sults are re-encoded and sent back to cuda. This
process drastically reduces the throughput - a cost
that is unbearable. (2) During the inference phase,

Algorithm 1 Generate Repaired Program with
Process-based Feedback, Actor-Critic Style
Input: Trained critic rϕ(·); Trained actor’s policy
πθ; Vulnerable program x0; Max iterations T ; Max
Patience P
Output: Repaired Program

1: t = 0 ▷ Counter of timestep
2: p = 0 ▷ Counter of unimproved patience
3: r0 = rϕ(x0) ▷ Initialize the reward
4: while t < T & p < P do
5: xt+1 = πθ(xt) ▷ Actor generate
6: rt+1 = rϕ(xt+1) ▷ Critic review
7: ∆ = rt+1 − rt ▷ Evaluate the boost
8: if ∆ ≤ 0 then ▷ If no boost
9: p = p+ 1

10: else
11: p = 0 ▷ Counter reset
12: end if
13: t = t+ 1
14: end while
15: return xt−p ▷ Roll back to p steps ago

the inability to access test cases for vulnerable pro-
grams compromises generalization performance.

Unlike the methods used by (Christiano et al.;
Ziegler et al.; Stiennon et al.; Ouyang et al.), our ap-
proach doesn’t require extensive investment in col-
lecting human preferences to train a reward model.
We can substantially reduce costs by sourcing pro-
gram execution preferences from automated com-
piler and test cases. Specifically, we first empir-
ically define a non-strict partial order based on
program quality from high to low:

AC > PE > WA = TLE = MLE > CE > RE.

AC signifies that the program was “Accepted”
by all test cases. PE stands for “Presentation Er-
ror", which indicates that the output data is correct
but not properly formatted. WA, TLE, MLE, CE,
RE are abbreviations for “Wrong Answer”, “Time
Limit Exceed”, “Memory Limit Exceed”, “Com-
pile Error” and “Runtime Error” respectively. This
partial order defines the severity of program errors
in an ascending order, from AC (lowest) to RE
(highest). We prioritize fixing RE over CE because
RE typically indicates more serious issues such as
logical errors which pose a greater risk than CE.

Then, we optimize the reward model parameters
ϕ using pairwise ranking based on the above partial
order. Given K programs with status, all aimed
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Figure 3: (a) The edit distances between three program
after 2-step modifications. 0-1: The edit distance after
the first refinement; 1-2: The edit distance after the
second refinement; 0-2: The edit distance of a single-
step refinement. (b) The distribution of test cases. Most
of the test cases are concentrated between 10-20.

at solving an identical problem, there is a partial
order set D containing

(
K
2

)
pairs of partial orders.

After shuffling D, we train the reward model by
minimizing the following pairwise ranking loss:

Lpr(ϕ) = − 1

(K2 )
E(yw,yl)∼D [log (σ (rϕ (yw)− rϕ (yl)))] ,

(2)
where rϕ (·) is a reward model, which takes a pro-
gram as input and outputs a scalar reward. In
practice, we use another smaller pre-trained auto-
regressive model, and replace the original model’s
non-embedding layers with a projection layer to
output a scalar value. The pair (yw, yl) is a par-
tial order where yw is the preferred program (for
instance, the status of yw is AC while yl is WA).

3.2.2 Reinforcement Learning
In the previous two sections, we fine-tuned a LM
and developed a reward model capable of realisti-
cally evaluating program states by optimizing loss
Lce(θ) and loss Lpr(ϕ) respectively. In this section,
we will utilize reinforcement learning (RL) to fi-
nalize program repair through multiple interactions
with the fine-tuned LM and well-trained reward
model (Qian and Yu, 2021). We adopt Proximal
Policy Optimization (PPO) algorithm (Stiennon
et al., 2020; Ouyang et al., 2022; Schulman et al.,
2017) to fine-tune our LM. The LM functions as an
actor, generating a repaired program (action) based
on the input program (state) and the policy π of the
LM (i.e., LM parameters θ). The trained reward
model plays as a critic, assessing the effectiveness
of repairs and rewarding the LM accordingly. Our
objective is to optimize the LM parameters θ by
maximizing these rewards.

#problems #records #codes
Train set 563 94062 252031
Test set 61 10144 26377

record per problem code per record size per code
Train set 167.07 2.68 270.42
Test set 166.3 2.60 246.88

Table 2: Dataset Information

To be more specific, we supervise the process by
maximizing the the following objective function:

Lrl(θ)=E(xi,xi+1)∼Dπ
θ
′

[
rϕ(xi+1)−rϕ(xi)−βKL

(
θ, θ

′
)]

= E(xi,xi+1)∼Dπ
θ
′

[
∆r

ϕ(xi+1, xi)− β log
πθ(xi+1 | xi)
πθ′ (xi+1 | xi)

]
,

(3)
where xi+1 is the refined output based on the input
xi and learned LM’s policy πθ′ , rϕ(·) is calculated
as the learned reward model, the KL reward co-
efficient β control the strength of the KL penalty,
∆r

ϕ(xi+1, xi) = rϕ(xi+1)− rϕ(xi) means the eval-
uation of the degree of improvement.

3.3 Multi-step Generation Under RM
Supervision

We achieved process supervision with feedback by
maximizing reward function. In this section, we
will demonstrate how the language model interacts
with virtual tools during the generation phase to
achieve alignment during both training and gener-
ation stages. We continuously request the LM to
refine solutions until either of two conditions is met:
(1) there is no improvement (∆ ≤ 0) in P consecu-
tive steps; (2) the maximum number of iterations
has been reached. The Algorithm 1 elucidates the
specific process of generation.

4 Experiments

4.1 Data Preparation
We sample repair records that corrected after two-
step modifications from CodeNet4Repair, resulting
in three versions, and calculate the edit distance
between these versions. In Figure 3 (a), the find-
ings align with our hypothesis: The edit distance
required to complete the repair in one step is longer
than that required in multiple steps. Despite an
increase in overall cost, step-by-step repairing can
reduce the complexity of tasks.

We ensure evaluation quality by using only ques-
tions with high-quality test cases for our training
and testing sets. We manually annotate and collect
additional high-quality test cases from the internet
to serve as hidden tests for each problem. This
process resulted in test cases for 794 questions.
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Model Size
pass@1 pass@3 pass@5

Easy Medium Hard All Easy Medium Hard All Easy Medium Hard All

Close-source

PaLM 540B 16.83 15.94 18.57 17.13 22.07 29.38 27.86 26.11 24.39 37.50 31.43 30.56
GPT-3.5 - 53.41 45.32 39.14 46.39 65.24 62.03 58.57 62.13 68.29 65.63 65.71 66.67
Claude2 - 50.73 43.75 36.29 43.98 65.12 63.75 55.29 61.53 71.95 73.44 62.86 69.44

ChatGLM-Pro - 20.49 20.94 17.43 19.63 23.17 27.19 24.43 24.77 24.39 29.69 28.57 27.31

Open-source

StarCoderBase 15B 0.49 0.31 0.00 0.28 1.46 0.94 0.00 0.83 2.44 1.56 0.00 1.39
StarCoderChat 15B 0.00 0.00 0.57 0.46 0.00 0.00 1.29 0.42 0.00 0.00 1.43 0.46

CodeGen2 16B 4.15 1.87 0.29 2.22 10.73 5.16 0.86 5.88 15.85 7.81 1.43 8.80
CodeGeeX2 6B 7.80 7.19 1.43 5.56 19.27 17.03 3.86 13.61 26.83 23.44 5.71 18.98

LLaMA2 70B 10.24 5.94 6.00 7.59 20.37 14.84 10.86 15.65 24.39 21.88 12.86 19.91
LLaMA2-Chat 70B 30.73 23.13 18.86 24.63 39.02 33.13 25.71 32.96 41.46 39.06 30.00 37.04
Our Model 15B 51.61 44.13 40.57 44.34 62.47 59.98 52.34 60.01 67.75 64.14 60.32 65.66

Table 3: Results on CodeNet4Repair: compared to open-source models, our process-based feedback method has
demonstrated superior performance. It also remains competitive when compared with commercial LLMs.

Figure 3 (b) shows the distribution of these test
cases. To prevent data leakage, we divided Co-
deNet4Repair based on the problem ID in a ratio
of 9:1. The training set consists of 94,062 repair
processes, while the testing set comprises 10,144
repair processes. Table 2 provides the statistical
information about filtered dataset.

4.2 Experimental Setup

In the fine-tuning stage, we train our model using
mixed precision training. We use AdamW opti-
mizer with 2e-5 learning rate. To prevent train-
ing instability caused by an excessively high learn-
ing rate, we utilize a cosine LR schedule down
to 10% of the original learning rate with learning
rate warmup. We use ZeRO++ to distribute model
tensors across accelerators (Wang et al., 2024).

In reward modeling, we adopt the LR of 9.6e-6
and cosine learning rate schedule. We randomly
select K = 9 programs in same problem and rank
them based on their execution status. Each batch
contains 64 units, thus a single gradient backpropa-
gation involves 64×

(
9
2

)
= 2304 comparisons.

In the process-based feedback stage, we initial-
ize RL policies from the fine-tuned LM. We train
the LM for 32k episodes with 512 batch size. We
assign a KL penalty factor, β, of 0.02 and establish
a learning rate of 9e-6. We perform nucleus sam-
pling with top_p=0.95 and top_k=50, and set the
temperature to 0.2.

4.3 Baselines

We compare the latest state-of-the-art LM that pos-
sess few-shot learning and code comprehension
capabilities. These models include PaLM (chat-
bison-001) (Anil et al., 2023), GPT-3.5 (gpt-3.5-
turbo-0613), Claude2 and ChatGLM-Pro (Zeng
et al., 2022). We also compare some open-

sourced models such as StarCoderBase/Chat (Li
et al., 2023), CodeGen2, CodeGeeX2 (Zheng et al.,
2023), LLaMA2/-chat (Touvron et al., 2023).

4.4 Evaluation

Previous program repair datasets lacked annotated
test cases and stable test environment (Dinella et al.,
2020; Hendrycks et al., 2021; Li et al., 2022; Wang
et al., 2023), leading to a shortage of automatic
evaluation methods for program repair based on ex-
ecution results. We contend this issue and advocate
for the evaluation using execution outcomes.

Following previous code generation’s evaluation
method, we use pass@k as our evaluation met-
ric (Hendrycks et al., 2021; Chen et al., 2021; Ni-
jkamp et al., 2023). Here we use the unbiased
estimator proposed in (Chen et al., 2021), which is
defined as follows:

pass @ k = E

[
1−

(
n−c
k

)
(
n
k

)
]
. (4)

In this work, we report k ∈ {1, 3, 5} as the fi-
nal result. The reason is that in pass@k, a larger
k provides a more comprehensive assessment of
LM’s ability to generate code. However, in practice,
users won’t request multiple candidates repeatedly;
therefore, reporting a small number of k suffices
for program repair evaluation.

4.5 Main Results

We use the pass rate of all problems in 14 billion
submission records as a standard to measure the
difficulty of the problems. These problems are cat-
egorized into three levels - easy, medium, and hard
- based on their pass rates divided into tertiles. The
model’s performance at various difficulties is de-
tailed in Table 3. The results of the experiment
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Model
pass@1 pass@3 pass@5

Process Feedback Reward
× × - 36.32 47.63 52.63
× ✓ Pair 37.26 54.81 62.27
✓ × - 20.43 35.14 44.72
✓ ✓ Pair 44.34 60.01 65.66
✓ ✓ Point 40.11 58.89 64.27
✓ ✓ List 39.45 57.33 63.56

Table 4: The results of ablation study. We conduct an in-
depth study on the design of process supervision, feed-
back, and reward functions. The experimental results
confirm our model’s effectiveness. Point: Point-wise
loss; Pair: Pair-wise loss; List: List-wise loss.

indicate that our model outperforms all other open-
source models. Even when compared to sophisti-
cated commercial LLMs, we achieve competitive
results. Starting with an analysis of the open-source
models: We acknowledge that some performance
gains come from supervised fine-tuning. However,
as evidenced by StarCoderBase/Chat results, our
foundation model lacks zero- or few-shot program
correction capabilities and struggles with repair
tasks without supervised fine-tuning. In compari-
son to LLMs designed for code downstream tasks,
our repair model generates programs that better
meet task requirements and outperforms them at
every difficulty level. Moreover, in LLaMA2-Chat
we found that multiple rounds of dialogue-based
supervised fine-tuning do not degrade but rather en-
hance its understanding of human instructions and
repair abilities. While our model’s performance
is not yet on par with commercial LLMs such as
ChatGPT and Claude2, considering the resources
they’ve invested - including compute, data collec-
tion, and manual annotation among others - which
are significantly greater than ours, we have still
achieved competitive results. This validates the ef-
fectiveness of our process-based feedback method
and provides guidance for future research.

4.6 Model Analysis

We explore the rationality of the model including
process supervision, feedback, and reward function
design. We design different variants from those
three perspectives. First, we arrange and combine
process supervision and feedback to create four
different approaches. Then, we discuss the design
of reward functions within the process-based feed-
back framework.

Impacts of Process Supervision. We attempt
to eliminate process supervision signals, enabling
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Figure 4: Performance comparison on other fine-tuned
open-sourced model.

the model to depend solely on single-step supervi-
sion signals. Without feedback, the model degen-
erates into a fine-tuned single-step program repair
model. While with the feedback, the fine-tuned
model’s adjustment of its repair policies is limited
to the final signal.

Impacts of Feedback. We remove feedback
from the reward function during process supervi-
sion, which prevents the language model from us-
ing reinforcement learning for policy adjustment.
When given a repair sequence, we force the lan-
guage model to use the subsequent repair step as a
supervision signal for learning.

Impacts of Reward Function. We introduce
two variants to verify the effectiveness of pairwise
ranking in reward modeling. We use two rank-
ing methods: point-wise, and list-wise. Point-wise
ranking scores individual program states without
considering their order relationship; while list-wise
ranking compares multiple programs together (be-
yond pairs) to determine their order relationship.

The results of the experiment are shown in Ta-
ble 4. We can draw the following conclusions
from the results: (1) Regardless of the supervision
method used, introducing feedback to adjust LM’s
repair policies is necessary. Performance may sig-
nificantly decrease due to additional noise if feed-
back is lacking in the process-based supervision
method. (2) Pair-wise ranking proves more effec-
tive as a reward model compared to point-wise or
list-wise ranking. Using point-wise ranking solely
requires the model to score each program based on
compiler and test case, without comprehending the
program’s preferences and modification direction.
Conversely, providing K rankings simultaneously
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Figure 5: Performance of explicit prompts at different
training steps. At three difficulty levels, the best perfor-
mance was achieved at three training steps. ChatGPT
can effectively understand feedback from the compiler
and test cases. For small-scale models, explicit prompts
are still difficult to understand.

in a list-wise task can be overly complicated and
potentially hinder performance.

4.7 Process-based Feedback Can Bring
Performance Benefits

Someone might question the superiority of RePair
over current open-source models due to our use of
SFT on the training set, while other models em-
ployed a few-shot setting. It is important to clarify
that SFT was utilized to enhance the model’s com-
prehension of the repair task, rather than being the
primary factor for performance improvement. To
substantiate this, we also fine-tune several open-
source models with similar parameter counts using
the same dataset. The results, presented in Figure 4,
demonstrate a performance enhancement following
SFT. However, this improvement is largely due to
the model’s increased understanding of the task and
the standardization of output formats. Furthermore,
when combined with SFT, process-based feedback
method significantly amplifies the model’s poten-
tial, leading to even greater performance gains.

4.8 Smaller Models May Struggle to Receive
Effective Explicit Feedback

As mentioned in the abstract and introduction, un-
derstanding explicit prompts for small-scale LMs
remains challenging. We directly interact with
LMs using the prompt template provided in Ap-
pendix A.1. We fine-tune two open-source mod-
els, StarCoder and CodeGen2, within 5 steps and
present the experimental results in Figure 5. The
experimental results indicate that: (1) The perfor-
mance of the open-source model peaked after three
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Figure 6: An example of repair process for “Count the
number of integer transitions”.

steps of fine-tuning. (2) ChatGPT’s performance
was further enhanced after receiving feedback from
compilers and test cases, demonstrating better re-
sults than one-step repair. (3) Small-scale mod-
els struggle to comprehend feedback information
through explicit prompts.

4.9 Qualitative Results
As shown in Figure 6, our model through step-by-
step modification, have effectively simplified the
complexity of each repair step and achieved sat-
isfactory “Accepted” results. For more examples,
please refer to the Appendix A.3.

5 Related Works

5.1 Large Language Models
The recent years have witnessed a substantial evolu-
tion in the field of large language models. language
modeling is the prediction of the probability dis-
tribution of the next token given a context. The
scaling law makes it possible to enhance perfor-
mance by increasing the size of the model and
data (Kaplan et al., 2020). The emergence of large-
scale language models with over 100B parameters
has consistently resulted in record-breaking perfor-
mance (Srivastava et al., 2023; Hendrycks et al.,
2021; Chen et al., 2021). Larger models begin to
solve problems that smaller models cannot handle,
a phenomenon known as emergence. Typical phe-
nomena of emergence include In Context Learning
(ICL) and Chains of Thought (CoT) (Brown et al.,
2020; Wei et al., 2022). The core of ICL is to draw
knowledge from analogies. After providing demon-
strations, the query problem is presented alongside
prompts to form the input. A CoT is a prompt
formed through a series of logical thinking steps,
guiding the LLMs to answer in a thoughtful manner.
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This method can significantly improve performance
on reasoning tasks (Liu et al., 2023b). Our work is
dedicated to using small-scaled language models
to enhance program repair performance.

5.2 Outcome- and Process- based Approaches
The outcome-based approaches supervise the final
results, while the process-based approach focuses
on each step leading to the result. Both have their
strengths and weaknesses: outcome-based requires
fewer supervision signals, but process-based ap-
proaches align more with human thinking patterns.
In (Uesato et al., 2022), researchers conducted ex-
periments on math dataset and found that both ap-
proaches produced similar error rates, but due to
cost considerations, the process-based method per-
formed better. However, recent research (Light-
man et al., 2023) has proposed a different view;
after building larger datasets and annotating more
processes, the process-based method showed clear
advantages. Process-based can help machine learn-
ing systems accurately understand humans’ way of
thinking and regulate potential hallucination.

5.3 Learning from Feedback
Through learning from feedback, language models
can effectively receive signals beyond labels (Gou
et al., 2024). Some NLP tasks rely on automated
evaluation metrics such as BLEU, ROUGE to
get feedback from ground truth. However, this
kind of automatic feedback that solely depends
on exact matching is not an effective assessment
criterion (Colombo et al., 2022). Therefore, re-
searchers are attempting to train language models
using human preferences as supervisory signals.
In some open text generation tasks, learning from
human feedback has significantly improved perfor-
mance (Jaques et al., 2019; Bahdanau et al., 2016;
Lawrence and Riezler, 2018; Zhou and Xu, 2020;
Stiennon et al., 2020). Following this line, (Ouyang
et al., 2022) applies human feedback to GPT-3 to
achieve alignment with humans, thereby mitigating
the issue of generating untruthful or toxic text. Our
work focuses on obtaining feedback from the com-
piler as a virtual tool, integrating signals from the
tools into the training process of language models.

6 Conclusion

In this work, we proposed an automated program
repair method that utilizes process-based feedback.
This approach is inspired by strategies used in pro-
gramming competitions and incorporates process

supervision into the repair process. Due to the un-
availability of suitable datasets, we first created a
multi-step repair dataset called CodeNet4Repair.
This dataset not only includes the initial faulty pro-
grams and the final accepted ones but also records
the intermediate repair process. On this basis, we
implemented supervision over the process with
feedback. Specifically, we fine-tuned a pre-trained
model StarcoderBase through to make it under-
stand program repair tasks. Then, we empirically
defined a partial order relationship for program
states and trained reward models using pairwise
ranking. This reward model would serve as a critic,
assessing each attempt by the LM to polish the
program. Meanwhile, the LM plays the role of an
actor, constantly adjusting its policies for repairing
the program based on received rewards. During
the inference stage, LM iteratively repaired the
program until the exit conditions are met. The ex-
perimental results indicated that the process-based
feedback method can demonstrate excellent per-
formance. With smaller model sizes, RePair still
can rival or even surpass closed-source commercial
large models. We believe that process-based feed-
back is currently underexplored, and will continue
to explore more universal methods.

7 Limitation

We contributed a dataset called CodeNet4Repair,
which focuses on program repair in real com-
petition scenarios. We acknowledge that Co-
deNet4Repair still has limitations in evaluating
model repair capabilities. Due to time and resource
constraints, we were unable to collect all repair
processes across different languages and software
engineering domains. But there are significant sim-
ilarities between competition and engineering sce-
narios. This implies that our model can achieve a
level of usability for engineering project purposes,
and our dataset can partially evaluate its repair per-
formance in an engineering context.
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A Appendix

A.1 Prompts Used in Experiments

Input: {problem description}{vulnerable 

program}

Optional Input: {standard test case}

Output: {repaired program}

System: 

You will play the role of a programming 

expert.

Given a problem and incorrect program, 

please fix the errors in the program 

and provide the correct program.

Note that you need to use markdown 

format for the code section.

Please ensure that the program is 

executable.

User:

Problem: {problem description}

Incorrect program: {vulnerable program}

Assistant: {output response}

(User parses and executes the repaired 

program to obtain the execution 

results.)

User:

The program {repaired program} expects 

the outputs: {standard test case}, but 

the actual output is: {execution 

result}, please refine the program 

according to the feedback.

Standard 

prompt 

template

(Sec 3.1)

Explicit

feedback

(Sec 4.8)

Figure 7: Prompt Template for Program Repair.

We performed supervised fine-tuning and ex-
plicit feedback experiments following the prompt
template shown in Figure 7. For explicit feedback,
we also input optional standard test cases.

A.2 Ethics Statement
As creators and users of LLMs, we recognize the
profound ethical responsibilities that come with
their development and deployment. We will strive
to avoid creating or perpetuating harm, including
the reinforcement of bias, misinformation, and
harmful stereotypes. We advocate for the use of
open-source LLMs in potential ethical risk research.
We believe that a public LLM can reveal its internal
state, thereby avoiding possible risks.

A.3 Detailed Case Study
In the next page, we provide six examples of re-
pairs. Through the examples shown, we found that
the edit distance for single-step modifications (di-
rectly from Step 1 to Step 3) is very high, resulting
in tasks being too complex (e.g., having both com-
pilation errors and semantic errors) to be completed
in one step. However, process-based modifications
can decompose complex tasks into simple ones and
solve each problem gradually, thereby producing
good repair effects.
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Figure 8: Case 1, an example of repair process for “Count the number of integer transition”.

Figure 9: Case 2, an example of repair process for “Maximum possible value of x × y”.
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Figure 10: Case 3, an example of repair process for “The number of combinations of sticks that can form a triangle”.

Figure 11: Case 4, an example of repair process for “A × B”.

16428



Figure 12: Case 5, an example of repair process for “Distance calculation in an undirected graph”.

Figure 13: Case 6, an example of repair process for “Calculate the minimum number of sheets of paper required”.
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