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Abstract
In this work, We present Unified Embeddings
for Multimodal Retrieval (UNIMUR), a sim-
ple but effective approach that embeds mul-
timodal inputs and retrieves visual and tex-
tual outputs via frozen Large Language Mod-
els (LLMs). Specifically, UNIMUR jointly re-
trieves multimodal outputs via unified multi-
modal embedding and applies dual alignment
training to account for both visual and textual
semantics. Thus, unlike previous approaches,
UNIMUR significantly reduces LLM’s modal-
ity bias towards generating text-only outputs.
Meanwhile, the proposed unified multimodal
embedding mitigates the inconsistency between
visual and textual outputs and provides coher-
ent multimodal outputs. Empirically, UNIMUR
also achieves strong image/text retrieval abil-
ity outperforming existing approaches on zero-
shot multimodal response retrieval on MMDia-
log, improving the overall R@1 by 6.5% while
boosting the image retrieval rate and having bet-
ter cross-modal consistency on multimodal out-
puts. UNIMUR also achieves 2.4% and 3.9%
improvement on context-based image retrieval
tasks on MMDialog and VisDial respectively
when compared to previous approaches, vali-
dating its generalization ability across multiple
tasks.

1 Introduction

Trained on massive text corpora sourced from the
Internet, large language models (LLMs) have show-
cased remarkable capabilities, ranging from gener-
ating human-like dialogue to answering complex
queries posed by users (Rae et al., 2021; Touvron
et al., 2023; Chowdhery et al., 2022; Zhang et al.,
2022; ChatGPT, 2022). One limitation of most
widely available state-of-the-art LLMs–with some
exceptions–is that they focus on text-only interac-
tions and do not utilize visual information. How-
ever, beyond language, visual information is a fun-
damental signal through which humans perceive
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FROMAGe (ICML’23)

What do pandas look like?

Pandas.

What do pandas eat?

These animals eat bamboo.

UNIMUR (Ours)

What do pandas look like?

Pandas are large, black and 
white bears with distinctive 
patches around their eyes, 

ears, and across their bodies.

What do pandas eat?

Pandas eat bamboo.

Inconsistent Multimodal Outputs 

Ambiguous Text-only Outputs 

Tell me some details about it.

Pandas look like a bear.

Figure 1: Comparison between FROMAGE baseline
and our proposed UNIMUR method. As shown in the
top of the figure, UNIMUR is able to more frequently
retrieve visual outputs compared to FROMAGE which
has a stronger bias to produce text-only outputs. Thus,
we leverage unified multimodal embeddings to reduce
the ambiguity of text-only outputs with the help of mul-
timodal information. UNIMUR also retrieves more in-
formative textual outputs which align with the visual
outputs. Additionally, as shown at the bottom of the
figure, via joint retrieval of visual and textual outputs,
UNIMUR reduces the inconsistency in multimodal out-
puts (UNIMUR retrieves the image of a “panda eat-
ing bamboo” while the baseline model retrieves a non-
specific picture of panda).

and engage with their surroundings. Consequently,
building LLMs that can embed and retrieve visual
and textual information is crucial for enhancing the
user experience when interacting with the model.

One approach for enabling multimodal inputs
and outputs with LLMs is to train a Multi-
modal LLM (MLLM) with large-scale multimodal
data (Alayrac et al., 2022; Yu et al., 2022; Gao et al.,
2023; Zhu et al., 2023; GPT-4, 2023). However,
this approach requires costly large-scale pretrain-
ing and primarily focuses on learning multimodal
input embeddings relative to optimizing for effi-
cient retrieval or generation of multimodal outputs.
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Recent work propose to instruct the frozen LLM
to generate a special retrieval token to retrieve or
generate an image given multimodal inputs (Koh
et al., 2023a,b). Despite their success, due to the
LLM’s extensive pretraining on text-only data, this
approach generally exhibits a strong bias towards
generating text tokens and not the special image
token, resulting in a low prevalence of responses
with visual information. As shown in Figure 1,
given the question “What do pandas look like”,
such approaches frequently give a text-only answer
“A panda” instead of also showing an image of a
panda to illustrate what it looks like.

In this work, we propose Unified Embeddings for
Multimodal Retrieval (UNIMUR), which aims to
mitigate this modality bias by efficiently retriev-
ing multimodal outputs via a unified embedding
which aligns to both visual and textual semantics.
UNIMUR utilizes a simple yet effective approach
for embedding multimodal inputs and retrieving
multimodal outputs via frozen language models.
Unlike previous methods, UNIMUR maps the LLM
output embeddings to the unified multimodal em-
beddings for retrieving both visual and textual out-
puts. To train the unified multimodal embedding,
we propose a dual alignment training strategy that
matches the unified multimodal embedding to both
visual and textual semantics.

UNIMUR has three primary strengths: (1) It signif-
icantly reduces the text-only bias resulting in more
frequent retrieval of multimodal outputs and enrich
the text-only outputs with visual information. As
shown in Figure 1, given the question “what do
pandas look like”, UNIMUR is able to retrieve a
more informative than the baseline multimodal re-
sponse that contains both visual and textual descrip-
tions. Experimental results show that UNIMUR sig-
nificantly increases the number of dialogue turns
that also include retrieved visual responses. (2)
UNIMUR retrieves multimodal outputs with bet-
ter cross-modal consistency via its joint retrieval
pipeline. As shown in Figure 1, given the question

“what do pandas eat”, UNIMUR is able to retrieve
the textual response “Pandas eat bamboo.” to-
gether with an image that matches the text (instead
of retrieving a non-specific image with pandas).
Quantitative results show that UNIMUR achieves
higher CLIP-similarity a FROMAGE baseline by
2.6% between its visual and textual outputs. (3)
We empirically show that our dual-alignment train-
ing strategy for the unified multimodal embedding

improves the retrieval for both image and text can-
didates, which indicates that the knowledge sharing
between visual and textual information is useful
for retrieval performance on both ends.

To validate the effectiveness of UNIMUR, we first
evaluate its performance on the zero-shot multi-
modal response retrieval task using the MMDialog
dataset (Feng et al., 2023). Secondly, we evalu-
ate performance on the contextual image retrieval
and dialogue-to-image retrieval tasks on both multi-
modal chitchat and image-centric dialogue datasets.
On MMDialog, experimental results show that
UNIMUR significantly reduces the text-only output
bias with stronger retrieval performance in the zero-
shot setting. UNIMUR also achieves better results
on the contextual image retrieval and dialogue-to-
image retrieval tasks, indicating its improvements
generalizing to multiple tasks.

To summarize, our contributions are:

• We propose UNIMUR, a simple but effective
approach that embeds multimodal inputs and
retrieves multimodal outputs via frozen lan-
guage models;

• We apply a dual-alignment training strategy
to jointly retrieve the visual and textual out-
puts via a unified multimodal embedding that
significantly reduces the text-only response
bias and retrieves multimodal outputs with
increased cross-modal consistency;

• We empirically show that UNIMUR achieves
better performance on a zero-shot multimodal
response retrieval task as well as better results
on multiple zero-shot image retrieval tasks.

2 Related Work

Large Language Models. There have been
significant recent advancements in the field of
large language models (LLMs). Models with
parameter counts exceeding 100B, such as GPT-3
(Brown et al., 2020) have demonstrated remarkable
proficiency across a wide range of tasks and gained
popularity well beyond the research community.
Subsequently, a number of follow-up works have
been introduced, aiming to enhance different
aspects of LLMs’ capabilities (e.g., scaling the
model size and pretraining data, and improving
fine-tuning objectives) (Rae et al., 2021; Touvron
et al., 2023; Thoppilan et al., 2022; Chowdhery
et al., 2022; Zhang et al., 2022; ChatGPT, 2022).
These LLMs primarily aim to tackle different tasks
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in zero- and few-shot manner. In this work, we
leverage the zero-shot generalization ability of
the pretrained LLMs to tackle multiple diverse
downstream multimodal tasks.

Embedding Multimodal Inputs Using LLMs.
For LLMs to understand visual input, previous
works propose to train a mapping function (mod-
ule) to convert the visual representation into text
space that can be directly processed by LLMs (Li
et al., 2022; Tsimpoukelli et al., 2021; Alayrac
et al., 2022; Li et al., 2023; Liu et al., 2023a; Huang
et al., 2023a; Lv et al., 2023; Eichenberg et al.,
2021; Yu et al., 2023; Berrios et al., 2023; Agha-
janyan et al., 2022; Yi-Lin Sung, 2022; Wang et al.,
2022; Cho et al., 2021; Ilharco et al., 2020; Wu
et al., 2023; Huang et al., 2023b; Zhang et al.,
2023). Specifically, Frozen (Tsimpoukelli et al.,
2021) trains a vision encoder to represent each im-
age as a sequence of continuous embeddings as
input to LLMs. LIMBeR (Merullo et al., 2022)
shows that the image representations from vision
models can be transferred as continuous prompts to
frozen LMs by training only a single linear projec-
tion. BLIP-2 (Li et al., 2023) utilizes Q-Former to
align the visual features with an LLM while LLaVA
(Liu et al., 2023a) injects visual features into the
language model by treating image tokens as a for-
eign language, and using conversations generated
by GPT-4 for fine-tuning. As opposed to these
methods, our proposed UNIMUR method focuses
on jointly embedding multimodal inputs and re-
trieving multimodal outputs with minimal training
cost.

Producing Multimodal Outputs Using LLMs.
Recently, several works have also explored the po-
tential of producing multimodal outputs via LLMs
(Sun et al., 2023; Koh et al., 2023b,a; Yasunaga
et al., 2023; Liu et al., 2023b). Specifically, FRO-
MAGE (Koh et al., 2023b) trains a multimodal
language model capable of generating free-form
text interleaved with retrieved images. GILL (Koh
et al., 2023a) extends the FROMAGE model with
image generation ability. While these models suc-
cessfully produce multimodal outputs with frozen
LLMs, they have two main limitations: (1) due to
the LLM’s extensive pretraining on the textual cor-
pus, these models suffer from text-only bias while
generating output responses, and (2) the textual and
visual output is produced by separate processes,
which can incur inconsistencies between the mul-

timodal outputs. UNIMUR mitigates these limita-
tions by utilizing a unified multimodal embedding
to jointly retrieve visual and textual outputs.

3 Methodology

In this section, we present UNIMUR, a general
approach based on frozen LLMs and image-text
pretrained models. The training pipeline of our
proposed approach is illustrated in Figure 2. We
propose two alternating steps to embed multimodal
inputs and retrieve multimodal outputs via frzoen
LLMs. As shown in the left part of Figure 2, in
the image-to-text training step, we train a linear
mapping layer that maps the image into LLM’s in-
put space in order to access the multimodal under-
standing ability of the LLM. In the dual alignment
training step, we propose to match the visual and
textual semantics with the unified multimodal em-
bedding, shown in the right part of Figure 2. During
inference, UNIMUR jointly retrieves multimodal
outputs via the trained unified multimodal embed-
ding. Below, we discuss the different components
of our UNIMUR approach in more detail.

3.1 Pretrained Models

Large Language Models (LLMs): To leverage
the knowledge from large-scale language pretrain-
ing, UNIMUR utilizes an auto-regressive LLM pθ
and keeps the LLM’s parameters θ frozen. Given
the input text T , the LLM first extracts a sequence
of input tokens (t1, . . . tM ) via its tokenizer. These
LLMs are trained to maximize the log likelihood of
the input token sequence by conditioning the next
token tm on all previous tokens (t1, . . . , tm−1).
LLMs are considered as strong tools for embed-
ding complex input context with the potential to
generate useful embeddings for multimodal output
retrieval. Specifically, we leverage the last output
embeddings Hθ of the LLM as the generated em-
beddings for further multimodal output training.

Image-Text Pretrained Models: To represent
the visual and textual semantics, we leverage the
image-text pretrained model CLIP (Radford et al.,
2021), which is a dual-stream image-text model
that was pretrained with a contrastive loss on 400
million image-text pairs. It utilizes a GPT-style
(Radford et al., 2019) Transformer-based text en-
coder and a VisionTransformer (ViT) image en-
coder (Dosovitskiy et al., 2021). Specifically,
given an image i and text t, we extract the visual
vϕ(i) ∈ Rc and textual sϕ(t) ∈ Rc semantic repre-
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Figure 2: UNIMUR is trained in two alternating steps: (a) The image-to-text training step learns an image-to-text
mapping layer via image caption objective, enabling multimodal input; and (b) the dual alignment training maps the
LLM output embedding to a unified multimodal space. The unified multimodal embedding is trained to perform
visual and textual matching by aligning the visual and textual semantics extracted by the CLIP encoders.

sentations.

3.2 Image-to-Text Training
To embed multimodal inputs via LLMs, we aim to
map the image into the LLM input space (i.e. text
space). Specifically, we first use CLIP visual en-
coder to extract the visual embedding v̂ϕ(i) ∈ Rc

of the given image i. Then, following Merullo et al.
(2022) and Koh et al. (2023b), we learn a linear
mapping Wi2t ∈ Rc×d from the image’s visual
embeddings v̂ϕ(i) into the LLM’s input space as
v̂ϕ(i)

TWi2t ∈ Rd. This allows the model to trans-
late the visual inputs to “language-like” tokens that
can directly be processed by the LLM. As shown
in Figure 2(a), to train this mapping layer, we apply
the image captioning objective which generates text
tokens within the textual caption conditioned on the
visual prefix. The visual prefix (i.e., “language-like”
tokens) is the output of the image-to-text mapping
layer, which is prepended to the textual caption.
The log-likelihood of textual caption t conditioned
on its image i is:

lc(i, t) =
∑M

m=1 log pθ
(
tm | v̂ϕ(i)TWi2t, t1, . . . , tm−1

)

(1)
Then, the image captioning loss Lcap is the nega-
tive log-likelihood of all samples in a batch of N
image-text pairs:

Lcap = − 1

N

N∑

i=1

lc (ij , tj) (2)

By applying this image-to-text mapping, we con-
vert a set of multimodal inputs to “text-only” inputs

and feed it into the LLM, enabling the LLM to em-
bed complex multimodal inputs. Since our training
for multimodal inputs and outputs is modularized,
our image-to-text mapping is model-agnostic, pro-
viding the flexibility to incorporate any advanced
mapping strategies and achieve better performance
in the future.

3.3 Dual Alignment Training

Next, we describe how we train UNIMUR to
retrieve multimodal outputs consisting of paired
image-text data. In order to avoid the text-only out-
put bias of previous methods (Koh et al., 2023a,b),
which used separate processes for visual and tex-
tual retrieval, we optimize a unified embedding to
jointly retrieve visual and textual outputs. Specif-
ically, we map the LLM’s last output embedding
Hθ ∈ Rp to a unified multimodal space with a lin-
ear mapping layer Wt2m ∈ Rp×q and obtain the
unified multimodal embedding e = HT

θ Wt2m ∈
Rq. By applying the unified multimodal embed-
ding, we improve the cross-modal consistency of
the multimodal outputs and mitigate the potential
inconsistency caused by the separate image and
text retrieval processes.

As shown in Figure 2(b), to further alleviate the
modality bias of the LLM output, we adopt a dual
alignment training (DAT) method that aligns the
unified multimodal embedding with both visual
and textual semantics. Specifically, we utilize two
training objectives: visual matching (VM) loss and
textual matching (TM) loss. For visual matching
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loss, we aim to align our unified multimodal em-
beddings with the visual semantics provided by
CLIP visual encoder for image retrieval ability,
shown in the right part of Figure 2(b). Thus, we
apply a contrastive learning objective with the In-
foNCE loss (Oord et al., 2018), a type of contrastive
loss function which is widely used for represen-
tation learning. Note that the dimensionality of
unified multimodal embeddings is equivalent to vi-
sual/textual semantics hence we are able to directly
apply matching objectives without additional map-
pings. Given the input text caption t and image i,
we calculate the normalized cosine similarity for
the visual semantics vϕ(i) and the unified multi-
modal embeddings for the input text et as:

sim(et, i) =
etvϕ(i)

T

∥et∥ ∥vϕ(i)T ∥
. (3)

We minimize the InfoNCE loss in a symmetric
manner over a batch of N text-image pairs and
contrast over the unified multimodal embedding
for the text caption and the visual semantic of the
image (ej , vk) (here e stands for et, v stands for
vϕ(i)), where each paired example is considered
as a positive pair, and other in-batch examples as
negatives:

Lm2v = − 1

N

N∑

j=1

(
log

exp (sim (ej , vk) /τ)∑N
k=1 exp (sim (ej , vk) /τ)

)

Lv2m = − 1

N

N∑

k=1

(
log

exp (sim (vk, ej) /τ)∑N
j=1 exp (sim (vk, ej) /τ)

) (4)

Lvm = Lv2m + Lm2v (5)

For textual matching loss, as shown in the left part
of Figure 2(b), the target is to preserve the language
understanding ability of the unified multimodal em-
bedding and prevent the modality bias created by
single visual matching objective. To this end, we
align the textual semantics with the unified multi-
modal embedding. Since the domain gap between
the LLM output embedding and textual semantics
is limited, inspired by VLKD (Dai et al., 2022), we
employ a stricter alignment objective between mul-
timodal embedding e and textual semantics sϕ(t).
Specifically, given the textual caption t, we utilize
Mean Square Error (MSE) to minimize the L2 dis-
tance between et and sϕ(t):

Ltm = ∥et − sϕ(t)∥22 . (6)

In summary, the overall training objective is:

L = Lcap + λ1Lvm + λ2Ltm, (7)

where λ1 and λ2 are hyper-parameters which define
the relative weights of the visual and text matching
losses.

3.4 Retrieving Multimodal Outputs
During inference, UNIMUR retrieves both visual
and textual outputs using the unified multimodal
embeddings given the input contexts. Specifically,
we first map the image to text space via the image-
to-text mapping layer Wi2t and feed the result to
the LLM. We then map the LLM’s last output em-
bedding to the unified multimodal embedding e via
the linear mapping layer Wt2m. Given the multi-
modal candidate pool, we extract the visual embed-
dings via CLIP encoder. For textual candidates, we
directly use the LLM’s average input embeddings
of textual candidates as the candidate embeddings.
We then concatenate the candidate visual and tex-
tual embeddings to a candidate pool and utilize
the unified multimodal embedding e to retrieve the
most relevant multimodal candidates from the pool.
Specifically, we leverage cosine similarity to calcu-
late the relevance between the unified multimodal
embedding and multimodal candidates. We then
select the most relevant candidates with the highest
similarities.

4 Experiments

4.1 Tasks and Evaluation Metrics
Multimodal Response Retrieval. We first evalu-
ate our model on a multimodal response retrieval
task which requires the model to embed the multi-
modal dialogue context and retrieve the visual and
textual responses for current dialogue turn. For this,
we test the zero-shot performance on MMDialog
(Feng et al., 2023), a large-scale multi-turn dia-
logue dataset containing multi-modal open-domain
conversations derived from human-human chat con-
tent in social media. For each turn, we retrieve
the top-2 samples from the multimodal candidate
pool. Since the conversation turns in MMDialog
are in two categories – text-only and visual+text
responses – we first retrieve the top-1 text candi-
date as the textual utterance. Then, we retrieve the
most relevant candidate from the remaining candi-
date pool and output the image responses.1 Thus,
UNIMUR is capable of retrieving image responses
to facilitate the text-only dialogue without an addi-
tional intent prediction module (Feng et al., 2023).

1If the top-2 samples are both textual candidates, we output
the top-1 candidate as the textual utterance.
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We evaluate the multimodal response retrieval per-
formance based on three aspects: (1) the extent of
text-only bias within the outputs; (2) the accuracy
of the retrieved outputs; and (3) the consistency
of the multimodal text and image outputs. First,
to quantify the model’s text-only bias, we report
the rate at which the model retrieves image can-
didates when the ground truth response contains
visual responses (image retrieval rate). Then, to
show the correctness of the retrieved outputs, we
report the standard recall rate for both visual and
textual response retrieval using R@1.2 We also
report the overall R@1 on all responses to show
the general multimodal retrieval performance. To
test the semantic consistency of visual and textual
outputs, we report the average cosine similarity be-
tween the CLIP embeddings of the retrieved visual
and textual outputs (CLIP-Sim).

Contextual Image Retrieval. To evaluate the
model’s image retrieval ability given a complex
multimodal context, we test our model on the con-
textual image retrieval task. We test the zero-shot
image retrieval performance on the dialogue turns
that contain visual responses from the MMDia-
log dataset (Feng et al., 2023). Specifically, given
the multimodal dialogue context, we require the
model to retrieve the correct image from the visual
candidate pool. Importantly, this task can be con-
sidered as the image retrieval part of the previous
multimodal response retrieval task while given the
ground truth modality information of the dialogue
turns. Thus, the performance of contextual image
retrieval is capable of showing the model’s image
retrieval ability regardless of the modality bias. We
leverage the standard recall rates R@1,R@5, and
R@10 as evaluation metrics.

Dialogue-to-Image Retrieval. To further evaluate
UNIMUR on different types of dialogue data, we
test our model on the image-centric dataset - Visual
Dialog (VisDial (Das et al., 2017)). We report the
zero-shot performance on the dialogue-to-image
retrieval task, which requires the model to retrieve
the correct image given a conversation about it.
This task tests the model’s ability to embed com-
plex contexts and retrieve the most relevant image
given the dialogue context. Here we again use
the standard recall rates R@1,R@5, and R@10 as
evaluation metrics.

2We only consider the first visual response in each turn as
ground truth.

4.2 Training Data and Implementation Details
Following (Merullo et al., 2022; Koh et al., 2023b),
we train UNIMUR on the Conceptual Captions
(CC3M) dataset (Sharma et al., 2018) consisting
of 3.3 million image-text pairs. To improve the
retrieval abilities of auto-regressive LLM, we add a
special [RET] token at the end of each input context
to represent embeddings for multimodal retrieval
(Koh et al., 2023b).

We utilize the publicly available OPT model
(Zhang et al., 2022) with 6.7B parameters as our
LLM. Past work mentions that findings at the 6.7B
scale are large enough to exhibit the zero-shot learn-
ing abilities that we are interested in (Koh et al.,
2023b; Radford et al., 2019). For the image-text
pretraining model, we utilize the pretrained CLIP
ViT-L/14 model (Radford et al., 2021) for its ability
to produce strong visual/textual semantic informa-
tion (Wang et al., 2023).

We implemented our model on PyTorch (Paszke
et al., 2019) and trained mixed-precision with
BFloat16 (Abadi et al., 2016). Since most of the
model parameters (98.0%) are frozen, our method
is computationally efficient and we only optimize
the parameters from two linear mapping layers. We
use the Adam (Kingma and Ba, 2014) optimizer
with a learning rate 0.0002 and warmup of 100
steps. We set the LLM’s input dimension d = 4096
(inherited from OPT-6.7B) and the dimension of
multimodal embedding as 768. Via simple hyperpa-
rameter search, we set the weight of visual match-
ing loss as 1 and textual matching as 10. We train
our model with 5 epochs and the training time is
less than 16 hours on 4 NVIDIA V100 GPUs.

5 Results

In this section, we present the empirical results of
our proposed approach – UNIMUR. We evaluate
UNIMUR on 3 different multimodal retrieval tasks;
multimodal response retrieval (Section 5.1), con-
textual image retrieval (Section 5.2), and dialogue-
to-image retrieval (Section 5.3).

5.1 Multimodal Response Retrieval
We evaluate UNIMUR’s performance on zero-shot
multimodal response retrieval task and compare its
performance to the recent FROMAGE model (Koh
et al., 2023b). For a fair comparison, we leverage
the same LLM and CLIP checkpoints for both mod-
els. Results show that FROMAGE suffers from
severe text-only bias with an image retrieval rate
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Method Image Retrieval Rate (%) Image R@1 Text R@1 Overall R@1 CLIP-Sim
BLIP-2 18.9 16.8 24.5 22.2 0.1755

FROMAGE 28.2 11.0 17.1 15.3 0.1024
FROMAGE-ppl 28.2 11.0 32.5 25.8 0.1618
UNIMUR (Ours) 68.3 23.2 36.1 32.3 0.1873

Table 1: Zero-shot multimodal response retrieval results on MMDialog dataset. We use FROMAGE-ppl as a
baseline which utilizes a highly time-consuming perplexity-based method for text retrieval. Results show that
UNIMUR achieves better performance on all metrics while significantly reducing the text-only bias.

Method R@1 R@5 R@10
FROMAGE 25.4 25.7 26.0

UNIMUR(Ours) 27.8 28.0 28.4

Table 2: Zero-shot contextual image retrieval results on
MMDialog dataset.
of only 28.2%, indicating that most of the visual
responses fail to be retrieved by the model leading
to a low image R@1. For text retrieval with FRO-
MAGE, we first apply the same embedding-based
retrieval setting with our approach to search the text
utterance and get poor text R@1 = 17.1 (shown at
the top of Table 1). We then apply the perplexity-
based method following Koh et al. (2023b), which
computes the perplexity of each context and candi-
date text sequence prior to selecting the text candi-
date with the lowest perplexity. While improv-
ing the text R@1 = 32.5 performance (shown
in the middle of Table 1), this perplexity-based
text retrieval pipeline is extremely time-consuming
(20× compared to UNIMUR), which makes it sub-
optimal for real-world applications.

We also compare our method with recent multi-
modal LLM (BLIP-2 (Li et al., 2023)). Results
show that our proposed approach has much less
text-only bias (68.3% Image Retrieval Rate com-
pared to 18.9% of BLIP-2), and also has a signifi-
cant improvement on both image and text retrieval
given complex input context. Furthermore, com-
pared to BLIP-2 (16 A100 GPU * 9 days), our
UNIMUR model requires much fewer computa-
tional resources (4 V100 GPU * 16 hours), proving
its efficiency. We argue that multimodal LLMs
like BLIP-2 mainly focus on embedding paired
multimodal input and producing text-only outputs,
which makes it sub-optimal for processing inter-
leaved multimodal input and retrieving visual and
textual outputs.

In contrast, as shown at the bottom of Table 1,
UNIMUR achieves better performance on all met-
rics compared to the existing methods. Of particu-
lar note, UNIMUR obtains a 68.2% image retrieve
rate, outperforming the FROMAGE approach by
40.1%. This indicates our approach significantly

reduces the text-only bias within the LLM out-
put. With a better image retrieve rate, UNIMUR
also achieves better image R@1, outperforming
the FROMAGE model by 12.2%. Note that we
show in Section 5.2, given the output modality in-
formation (image retrieve rate as 1), UNIMUR still
outperforms the baseline model by a significant
margin. Meanwhile, compared to the perplexity-
based FROMAGE model, we achieve 3.6% im-
provement on text R@1 while using significantly
less inference time. Furthermore, UNIMUR shows
a 6.5% improvement on overall R@1, which indi-
cates that in general, UNIMUR is more powerful in
embedding multimodal inputs and retrieving mul-
timodal outputs. UNIMUR also achieves a higher
CLIP similarity on its visual and textual outputs in
the same dialogue turns, indicating our approach
is capable of retrieving visual and textual outputs
with better cross-modal consistency.

5.2 Contextual Image Retrieval

To evaluate the image retrieval ability given mul-
timodal input, we also report the zero-shot con-
textual image retrieval results on the MMDialog
dataset in Table 2. Results show that UNIMUR
outperforms the baseline FROMAGE approach by
2.4% for R@1, indicating that the unified multi-
modal embedding is capable of capturing impor-
tant visual information for image retrieval. This
also shows that the UNIMUR’s improvement on
Image R@1 of multimodal response retrieval is not
just due to the reduction of modality bias, but also
takes advantage of more powerful zero-shot image
retrieval ability. One additional observation is that
the R@5 and R@10 of both models are not sig-
nificantly higher than R@1, which may be due to
using a zero-shot protocol for these evaluations.

5.3 Dialogue-to-image Retrieval

We evaluate UNIMUR on zero-shot dialogue-
to-image retrieval on the Visual Dialog
dataset(VisDial). This task requires the model
to retrieve the correct image given a complex
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Method R@1 R@5 R@10
CLIP 17.7 38.9 50.2

FROMAGE 20.8 44.9 56.0
UNIMUR (ours) 24.7 49.8 60.9

Table 3: Zero-shot dialogue-to-image retrieval results
on VisDial dataset.

Img Retr. Rate(%) Img R@1 Text R@1 Overall R@1
VM 74.3 22.4 29.8 27.6
TM 44.1 14.2 26.4 22.7
DAT 68.3 23.2 36.1 32.3

Table 4: Comparison of different training strategies;
Visual Matching (VM), Textual Matching (TM), and
our proposed Dual Alignment Training (DAT). DAT
achieves better multimodal response retrieval perfor-
mance while preserving a rather low modality bias.

dialogue context. As shown in Table 3, UNIMUR
outperforms CLIP (Radford et al., 2021) and
FROMAGE (Koh et al., 2023b) on all metrics,
improving the R@1 by 3.9% compared to FRO-
MAGE baseline. This reveals the generalization
ability of UNIMUR given complex text-only
dialogue contexts.

6 Analysis

In this section, we further analyze UNIMUR to
understand the impact of different model design
choices as well as to showcase its capabilities.

6.1 Ablation Study

The Effect of Dual Alignment Training. First,
we validate the effectiveness of the dual alignment
training strategy in our UNIMUR method. As
shown in Table 4, compared to visual matching
only (VM) and textual matching only (TM) train-
ing, our dual alignment training strategy (DAT)
achieves better multimodal output quality while
preserving a rather low modality bias. Specifically,
although image matching only training obtains a
better image retrieve rate, the training is biased
to the image domain and has a significant drop
in text R@1. Meanwhile, the Image R@1 under
dual alignment training is also better than image
matching only training, indicating that knowledge

Loss Img Retr. Rate(%) Img R@1 Text R@1 Overall R@1
Info-NCE 55.6 17.7 32.2 28.0

Max-Margin 49.8 15.1 30.7 26.3
MSE (UNIMUR) 68.3 23.2 36.1 32.3

Table 5: Comparison of different training objectives for
textual matching training. Results show that regression-
based objective (MSE) outperforms the contrastive
learning objectives.

Grace is finding a waterfall when you 
are only looking for a stream.

By sitting quietly in front of a 
waterfall, we will feel enriched and 
enlightened. The sight, sound, and 
power of falling water will give us a 
hidden message.

Multimodal Context

One activity that many can still do 
right now is hiking. If you've got a 
second, I'd love to hear about your 
favorite hike you've ever done!

One of the best hikes in Canada 
(and not at all hard) is the 
beautiful Skerwink Trail in Port 
Rexton.

Text-only Context

Multimodal Response

Figure 3: Selected examples from UNIMUR on embed-
ding multimodal input and retrieving multimodal output.

sharing between multimodal data is beneficial for
the uni-modal retrieval performance. For textual
matching only training, the model suffers from sig-
nificant text-only bias and has a low image retrieve
rate and R@1. Since our target is to jointly retrieve
visual and textual outputs, it is crucial to align the
unified multimodal embedding to both visual and
textual semantics.

Different Training Objective for Text Match-
ing. In Table 5, we compare the different loss
choices for our text matching training. Results
show that the regression-based objective performs
better than the contrastive objective (Info-NCE and
Max-Margin). We argue that is because the CLIP
text encoder is not powerful enough compared to
LLMs and we have to apply a more strict loss func-
tion upon text matching training. Meanwhile, an-
other possible reason is that due to the limitation of
computational resources, we apply a rather small
batch size while training, which is unfavorable for
contrastive objectives that highly rely on massive
negative samples.

Larger Multimodal Corpora and LM Architec-
tures. As discussed in the implementation detail
section 4.2, we follow (Koh et al., 2023b; Merullo
et al., 2022) leveraging OPT-6.7B as LLM and
Conceptual Caption 3M as training data. Since the
LLM is frozen, from a methodological perspective,
we can simply scale our approach to larger LM
architectures by changing the LLM checkpoints.
As shown in Table 6, our approach achieves bet-
ter VisDial dialogue-to-image retrieval results on
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LLM OPT-1.3B OPT-7B OPT-13B
VisDial R@1 16.5 24.7 27.8

Table 6: Comparison of LLMs with different capacity.

larger LLM backbones and indicates its potential
to get even better results on LLM over 100B pa-
rameters. We also scale up the training dataset
using the 12M version of Conceptual Caption.
UNIMUR achieves 1.5% performance gain on Vis-
Dial dialogue-to-image retrieval using a larger mul-
timodal corpus, proving its generalization ability
towards even larger training data.

6.2 Qualitative Analysis

Next, we show some examples of UNIMUR’s re-
trieval results on the MMDialog dataset. As the left
side of Figure 3 shows, UNIMUR is capable of em-
bedding multimodal context and retrieving visual
and textual responses (in this case, a topic about
waterfalls). In addition, UNIMUR is also capable
of handling lengthy text-only input and retrieving
visual and textual outputs (as shown on the right
side of the figure). This last example shows that our
model is flexible with different input contexts and
is able to retrieve both visual and textual outputs.

7 Conclusion

We present Unified Embeddings for Multimodal
Retrieval (UNIMUR), a simple yet effective ap-
proach that retrieves visual and textual output via
unified multimodal embeddings and significantly
reduces the text-centric bias from the LLM’s output
as compared to previous approaches. We empiri-
cally show that UNIMUR achieves better zero-shot
multimodal response retrieval than state-of-the-art
approaches through its joint retrieval process that is
capable of retrieving multimodal outputs with bet-
ter cross-modal consistency. In addition, UNIMUR
improves dialogue-to-image retrieval and contex-
tual image retrieval performance to demonstrate its
improved performance across multiple tasks.

Limitations

Given multimodal input, we focus on the joint re-
trieval of visual and textual outputs using frozen
large language models. However, given an imper-
fect candidate pool, retrieval can fail to provide a
perfect candidate that matches the input context.
We plan to extend our model to multimodal gen-
eration. Specifically, given the multimodal input,
could we directly generate textual and visual out-

puts using the unified multimodal embedding? We
leave this question for future works.

Ethical Considerations

This paper presents a novel approach for multi-
modal output retrieval using frozen Large Lan-
guage Models (LLMs). We leverage LLMs to ex-
tract the embeddings for both visual and textual
retrieval and not generate any novel visual/textual
data. Thus, the proposed method does not intro-
duce additional ethical/social bias given a reliable
retrieval candidate pool.
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Appendix

A Additional Evaluation Tasks

A.1 Visual Question Answering
While the main goal of this paper is to embed inter-
leaved multimodal input and retrieve multimodal
outputs, we also show the effectiveness of our ap-
proach on visual question answering (VQA) tasks.
In Table 7, we show the results of the zero-shot vi-
sual question answering task on the VQAv2 dataset
(Goyal et al., 2017) (following the FROMAGe
(Koh et al., 2023b) setup). Note that our UNIMUR
mainly focuses on multimodal retrieval and has no
additional training objective related to multimodal
reasoning. Still, compared to the baselines (Frozen
(Tsimpoukelli et al., 2021) and FROMAGe (Koh
et al., 2023b) ) that also leverage frozen LLMs, our
approach still achieves better VQA results, validat-
ing the robustness of the proposed approach.

A.2 Integrating the Unified Embedding with
Multimodal Generation Framework

We further extend our method to multimodal gen-
eration by simply incorporating the dual alignment
training to the recently proposed multimodal gen-
eration framework GILL (Koh et al., 2023a) (a
contextual image generation method using frozen
LLM and Stable Diffusion (Rombach et al., 2021)).
We compare our augmented version with the orig-
inal GILL framework on contextual image gener-
ation and contextual image retrieval on the Vis-
Dial dataset. Results show that our approach re-
tains strong multimodal generation ability (0.642
vs 0.645 on CLIP-Similarity) while having signif-
icant improvement on multimodal retrieval (24.6
vs 21.7 on contextual image retrieval R@1). This
indicates our approach is generalizable for differ-
ent output types including generation with minimal
model change.
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