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Abstract

The five human senses – vision, taste, smell,
hearing, and touch – are key concepts that
shape human perception of the world. The ex-
traction of sensory references (i.e., expressions
that evoke the presence of a sensory experience)
in textual corpus is a challenge of high inter-
est, with many applications in various areas. In
this paper, we propose SENSE-LM, an informa-
tion extraction system tailored for the discov-
ery of sensory references in large collections
of textual documents. Based on the novel idea
of combining the strength of language model,
BERT, and linguistic resources such as senso-
rimotor norms, it addresses the task of sensory
information extraction at a coarse-grained (sen-
tence binary classification) and fine-grained
(sensory term extraction) level. Our evalua-
tion of SENSE-LM for two sensory functions,
Olfaction and Audition, and comparison with
state-of-the-art methods emphasize a signifi-
cant leap forward in automating these complex
tasks.

1 Introduction

Sensoriality, as a psycho-physiological concept
(Geldard, 1953), models the human perception
of the world through the five Aristotelian sensory
functions (Sorabji, 1971): visual (VIS), gustatory
(GUS), olfactory (OLF), auditory (AUD) and hap-
tic (HAP). A sixth sense, interoception (INT), was
more recently introduced by Craig (2002), referring
to the emotional and physical sensations inherent to
the inside of the human body. Sensory linguistics
refers to the studying of the relationship between
human language and sensory experiences (Winter,
2019).

This research domain has many real-life applica-
tions, such as cognitive sciences, cultural history, or
even urban planning. For instance, Murphy (2019)
evidenced a strong relationship between the way
olfactory experiences are expressed in the language
of inpatients, and the chances of suffering from
Alzheimer’s disease. Pardoen (2019) focuses on
the discovery of auditory indices in large document
corpora to design a realistic reconstruction of the
sound atmosphere of the City of Paris during the
19th century. Menini et al. (2022a) focuses on the
sensory heritage of smells between the 17th and
20th century, with the goal of providing strong
assets for museums to provide olfactory experi-
ments for visitors. Such ambitious challenges may
jointly solicit complementary spheres of compe-
tences, such as Art and Cultural History, Cogni-
tive Sciences, and more recently, computational do-
mains such as Semantic Web (Lisena et al., 2022)
and Natural Language Processing (Mpouli et al.,
2019; Menini et al., 2022b), with the interest of
enhancing sensory information mining processes,
notably with language models such as BERT (De-
vlin et al., 2019).

A set of lexical field generation approaches (Fast
et al., 2016b; Tekiroglu et al., 2014; Mpouli et al.,
2020) additionally provide interesting vocabulary
resources referring to specific sensory domain, but
employing them without integrating the text con-
text may limit their scope to a very explicit level
of sensory information. In parallel, a strong ad-
vance in the modeling of associations between con-
cepts and sensory experiences has been opened
by the appearance of the Lancaster Sensorimotor
Norms (Lynott et al., 2020). This resource asso-
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ciates 40 000 English lemmas to the way they may
evoke each sense, from a human judgement per-
spective. For instance, such a model represents
the fact that, in essence, a concrete concept such
as “cat” may evoke well-identified sounds and tex-
tures, and to a lesser extent odors, but probably
no taste. Such resources provide strong assets on
the sensory definition of concepts, but still lack of
context-awareness, as they focus on isolated terms.

In this paper, we propose SENSE-LM, a novel
system that combines the strengths of context-
aware models such as language models (LM), lin-
guistic resources, namely sensorimotor representa-
tions and lexical generation techniques, to provide
a robust approach for detecting sensory-related in-
formation in large text corpora, at the sentence and
term level.

We make the following contributions:

• We propose SENSE-LM, a sensory informa-
tion extraction system working in two steps:
Firstly, a coarse-grained binary classification
step, that combines the strength of BERT and
sensorimotor representations of words, to de-
tect, within a textual corpus, sentences that ex-
plicitly evoke the presence of a given sensory
function. Secondly, a fine-grained informa-
tion extraction step, that extracts the precise
terms referring to the evocation of the consid-
ered sensory function. The code and data are
publicly available1.

• Unlike existing works (Mpouli et al., 2019;
Menini et al., 2022c), SENSE-LM is sensory-
agnostic by design, i.e., it is not tailored for
one specific sense. It may either be applied for
the analysis of tastes, sounds, odors, or even
textures, as its main components consider all
senses.

• To evaluate the contributions of its different
components, we conduct an ablative study of
SENSE-LM for sensory information extrac-
tion, applied to two sensory functions, namely
Olfaction and Audition. Moreover, a compar-
ative evaluation of SENSE-LM with state-of-
the-art solutions, and a bleeding-edge large
language model, GPT-4 (OpenAI, 2023), con-
firms its good performances.

• To compensate the lack of benchmark datasets
for this evaluation, we built an Auditory-

1https://github.com/cfboscher/sense-lm

oriented Artificial Dataset, generated with
GPT-4 and manually labelled. We make pub-
licly available a dataset of 1000 sentences with
binary annotation (positive, i.e., containing a
sound reference, or negative), including 500
positive sentences with a token-level annota-
tion for terms expressing sound references.

The remainder of this paper is organized as fol-
lows. Section 2 provides an overview of the related
work. Section 3 elaborates on the objectives and
design principles of our contributions. We provide
experimental evaluations and analysis in Section 4.
We summarize our findings and draw our conclu-
sions in Section 5, and discuss the current limita-
tions of our solution in Section 6. An Appendix
provides further analyses of our experiments.

2 Related Work

One of the main challenges of textual sensory in-
formation research, that we address in this paper, is
about finding terms or expressions related to a sen-
sory experience in a corpus of textual documents.
In this section, we describe the existing approaches
for addressing this task.

2.1 Lexical Resources Based Approaches

Lexical approaches intend to automatically build
a list of terms or a taxonomy related to a specific
sensory domain, from a small sample of seed terms.
Lexifield (Mpouli et al., 2020), a system for auto-
matic building of lexicons by semantic expansion
of short word lists, was proposed and directly ap-
plied to the search for terms evoking either the
auditory or olfactory sensory functions in literary
works. This solution empirically dominates lexicon
generation approaches such as Empath (Fast et al.,
2016a) or Sensicon (Tekiroglu et al., 2014), by auto-
matically enriching a small set of seed terms, with
the help of techniques based on semantic similarity
in embedding spaces (Bojanowski et al., 2017; Pen-
nington et al., 2014) and external resources such
as dictionaries in various target languages (Am-
sler, 1981; Sagot and Fišer, 2012). Such resources
have been exploited for the automated detection of
sound descriptions (Mpouli et al., 2019); the de-
scribed approach happened to struggle with issues
such as polysemy, but also provided encouraging,
yet improvable results, as it considered including
word embeddings at their premises, on the base of
naive hypotheses.
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2.2 Language Models Based Approaches

Some preliminary works opened first contribu-
tions of sensory information mining based on lan-
guage models. Menini et al. (2022b) solve a sim-
ple binary classification task corresponding to the
following question: ”Considering a sentence s,
does s contain a reference to olfaction ?” with
MacBERTh (Manjavacas and Fonteyn, 2021), a
variant of BERT pre-trained on historical texts
(1450–1950). Massri et al. (2022) propose a text
mining method for detecting olfactory references
and sentiments related to olfaction. They intro-
duce a fine-grained olfactory concepts detection
approach, but still based on naive hypotheses, as
they use textual rules and only focus on objects and
sentiments, which provides a potentially limited
analysis of expressions of sensoriality.

As the efficiency of these solutions strongly
depends on the quality of the ground truth la-
bels and have a hardly explainable behavior (Zhao
et al., 2023), they are difficult to exploit by non-
specialists. They may require the support of do-
main specialists, both for annotating the data and
for controlling the quality of results in a production
environment.

Khalid and Srinivasan (2022) proposed a first
approach based on a language model (BERT) to
predict the most probable sensory function associ-
ated to a masked word in a sentence context. To
generate its ground truth labels, this work involves
the use of the Lancaster Sensorimotor Norms (Ly-
nott et al., 2020), a linguistic resource of 40 000
English terms labelled according to their matching
with each sensory function, but does not exploit
them as classification features yet. Kennington
(2021) first used sensorimotor norms as classifica-
tion features, enriching a language model, ELEC-
TRA (Clark et al., 2020), but for solving tasks that
are not related to sensory information extraction.

2.3 Motivations for our Work

Considering the limits of the aforementioned ex-
isting techniques, our motivation for proposing
SENSE-LM is to overstep the respective current
blind spots of different sensory information ap-
proaches, and to bring a new step forward by com-
bining the respective advantages of each family.
Indeed, approaches based on language models pro-
vide an encouraging (yet perfectible) ability to em-
bed a sentence context to detect the presence of a
sensory function with a coarse-grained approach

(Menini et al., 2022c), but it limits to contextual
information, and does not include any linguistic
resource describing sensoriality by design. It only
considers that a concept may be sensory on the
base of its context of utterance, without providing
guarantees of understanding that a concept may
evoke sensoriality in essence. In exchange, lexi-
cal resources (Tekiroglu et al., 2014; Fast et al.,
2016b; Mpouli et al., 2020), and sensorimotor re-
sources (Lynott et al., 2020) provide extensive
knowledge of terms that may explicitly or implic-
itly be related to the presence of a given sensory
function. These are interesting resources for fine-
grained sensory reference detection, but their main
weakness is that they still lack of context aware-
ness and may struggle with challenging issues such
as polysemy (Ravin and Leacock, 2000; Falkum
and Vicente, 2015). More generally, labelling sen-
sory references manually is a time-consuming task,
that may even require multidisciplinary expertise,
as suggested by Menini et al. (2022a). In this pa-
per, we introduce SENSE-LM, a system that au-
tomatically extracts sensory references from text,
by exploiting the complementary advantages of
language models and lexical resources-based ap-
proaches. We experimentally show that they can
work in synergy to overcome the current limits of
sensory information extraction techniques.

3 Methodology

In this section, we present our system SENSE-LM,
designed for detecting text information describing
sensory experiences in documents. SENSE-LM al-
lows extracting sensory references in large corpora,
at a sentence and at a token level. Figure 1 de-
picts its global workflow. Step 1 performs a coarse-
grained classification task, aiming at identifying,
within a set of documents D, the sentences that
evoke the presence (or not) of references related
to one of the five sensory functions. We may sum
up this binary classification task by the following
question: “Does a sentence s expresses an idea
evoking a given sense m among the five senses ?”
Then, Step 2 applies a fine-grained classification
process, for extracting word utterances that reflect
the presence of the target sensory function in the
sentence context. We sum up this classification
task with the following question : “Which words,
in this sentence s, evoke the presence of the given
sensory function m ?”.

It is worth noting that such a method adresses
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Figure 1: Global Workflow of SENSE-LM with an example for the sensory function Audition

the task of researching multi-sensory information,
i.e. finding, in a same document, information that
refer to several sensory functions. In that case, it
is enough to apply a One-vs-Rest strategy, which
consists to split the multi-class classification prob-
lem into several binary classification problems, one
per class, and to learn a model on each. Thus, for
instance, if a sentence contained several sensory
information, it will classified positively by several
instances of the model, whereas if it does not con-
tain any, it will be classified negatively by all the
models.

3.1 Step 1 — Sensory Sentence Classification

In the following, we describe our binary sentence
classification model, considering text features ex-
tracted by BERT and a sensorimotor representation,
implementing 11 human judgement based continu-
ous values that we describe below:

Definition of the Sentence Classification Prob-
lem. We consider the ensemble of sensory func-
tions M = {OLF, GUS, AUD, VIS, HAP, INT},
corresponding to Olfactory, Gustatory, Auditory,
Visual, Haptic and Interoceptive. We define a cor-
pus D of textual documents composed of sentences.
For each sensory function m of M, each sentence
s ∈ D has a class label C(s) which is positive
(1) if it contains explicit references to m; other-
wise its class label is negative (0). For instance,
if we consider m = AUD, “Clocks ticked, mark-
ing relentless seconds before thunder growls.” is
a positive sentence whereas “The cake was deli-
cious, moist, and adorned with colorful frosting”
is negative. This first step of SENSE-LM consists
in classifying correctly the sentences according to
the chosen sensory function m; which amounts to

Figure 2: Sensorimotor representation of the sentence
“Clocks ticked, marking relentless seconds before thun-
der growls”, plotting the sensory and motor functions.

learning a classification function ϵ that maps each
sentence s to a class label: ϵ : D → {1, 0} s.t.
ϵ(s) = C(s), ∀s ∈ D.

Sensorimotor Representation Function. As
a premise to the description of our solution,
we present the concept of Sensorimotor Repre-
sentation, based on the Lancaster Sensorimotor
Norms (Lynott et al., 2020). This resource consists
of an extensive set of 40 000 English lemmas evalu-
ated by human annotators, asked to rate from 0 to 5
the semantic matching of a given lemma with 6 hu-
man sensory functions (the five Aristotelian Senses
and the Interoception), and 5 motor functions corre-
sponding to the usage of body parts (Mouth, Head,
Torso, Arms / Hands, Legs / Feet). In other words,
each lemma can be represented into a sensorimotor
representation, i.e., an 11-dimensional vector of
real values between 0 and 5, with 6 dimensions
corresponding to the sensory functions, and 5 to
the motor functions. Algorithm 1 details the cal-
culation method to obtain the sensory representa-
tion of a sentence s depicted in Figure 2. We de-
note by LSN a dictionary corresponding to words
available in the Lancaster Sensorimotor Norms:
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it maps each word w in s with its sensorimotor
representation wSN as an 11-dimensional vector
wSN = (wSN (j), j = 1, . . . , 11), where wSN (m)
corresponds to the component of wSN associated
with the sensory function m ∈ M. The sensorimo-
tor representation wSN of w equals lemma(w)SN
if the lemma associated to w exists in LSN . In case
this lemma is not included in LSN , we consider the
first element belonging to the set Synsets(w) of
WordNet synsets of w as defined by Miller (1995),
i.e., synonymous words. Finally, if there is also
no synset of w included in LSN , the sensorimotor
representation of w is an 11 dimensional vector
with null components. As detailed in the algorithm,
having determined this sensorimotor representation
for each word w ∈ s, the sentence sensorimotor
representation sSN = (sSN (j), j = 1, . . . , 11) of
s is obtained by summing these word vectors.

Algorithm 1 Sensorimotor Representation
Input: Sentence s, Sensorimotor Norms LSN

Output: Sensorimotor representation sSN

1: sSN ← (0, 0 ... 0)
2: s← RemoveStopWords(s)
3: for w ∈ s do
4: if lemma(w) ∈ LSN then
5: v ← lemma(w)SN

6: else
7: v ← (0, 0...0)
8: for i ∈ Synsets(w) do
9: if lemma(i) ∈ LSN then

10: v ← lemma(i)SN

11: break
12: end if
13: end for
14: sSN ←sSN + v
15: end if
16: end for

return sSN

Description of the Sentence Classification Model.
The first step of SENSE-LM combines the sentence
context awareness of BERT, and the knowledge
on sensoriality provided by the Lancaster Sensori-
motor Norms (Lynott et al., 2020). The latter has
been proven to be a robust representation, provid-
ing a singular level of semantic similarity between
terms, complementary to state-of-the-art embed-
dings (Wingfield and Connell, 2022). As shown in
Figure 3, SENSE-LM takes a sentence s as input.

Its first branch implements BERT’s successive
stages: Embedding, Transformers and Pooler lay-
ers, which extracts an embedded representation of
s of size 768 , denoted sB .

The second branch of the model transforms the
sentence s into its sensorimotor representation sSN ,

Figure 3: Model architecture for Step 1 of SENSE-LM

following the procedure detailed in Algorithm 1,
which results in a vector of size 11.

Finally, the model concatenates sB and sSN into
a global representation, and feeds it into a Fully-
Connected layer (dimension = 779) that outputs
either 1 if s is considered as sensory w.r.t. the
sensory function m, or 0 if not.

3.2 Step 2 — Sensory Terms Extraction
Definition of the Sensory Terms Extraction
Problem. The objective of the second step of
SENSE-LM consists in extracting the tokens that
refer to the expression of a given sense m ∈ M in
a sentence s, within sentences classified positively
in Step 1. We consider the following types of sen-
sory terms, defined by the categories proposed by
Menini et al. (2022a):

• Sensory word – Words that explicitly describe
the presence of the target sensoriality: “What
was this sound ? [. . . ]”

• Sensory Source – Entities that create the sen-
soriality: The cry of a baby [. . . ]

• Quality: “What a horrible smell [. . . ]”
• Evoked Experience: “The taste of this cake

gave me nausea [. . . ]”
For each sensory function m of M and each sen-

tence s belonging to Dpos, the set of sentences clas-
sified positively during the previous step, s is split
into a sequence of tokens, denoted t(s). To ensure
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that the length of t remains constant for all positive
sentences, we apply a padding, i.e., we fix a length
l that corresponds to the length of the longest posi-
tive sentence, and in case len(t(s)) < l, we append
k padding tokens denoted as <PAD> at the end of
t(s), with k = l − len(t(s)).

Each token i ∈ t(s), excluding the padding
tokens, has a ground truth class label F (i,m)
which is positive (1) if the token i refers to the
sensory function m in the context of the sentence,
and negative instead (0). We aim to learn a token
classification function γ that takes t(s) as an input,
and returns a vector of class labels (1 or 0) for each
i ∈ t(s) such that:

γ : t(s) → ({1, 0}, ∀i ∈ t(s)) s.t.
γ(t(s),m) = (F (i,m),∀i ∈ t(s)),∀s ∈ Dpos

For instance, if we consider the sensory function
m = AUD and the sentence s = “Clocks ticked,
marking relentless seconds before thunder growls.”,
we obtain t(s) = (Clocks, ticked, marking, re-
lentless, seconds, before, thunder, growls, . . . ,
<PAD>), where terms in bold reflect the presence
of the sensory function m i.e. positive terms.

Our objective is then to learn the function γ
which gives for this example:

γ(t(s),m) = (1, 1, 0, 0, 0, 0, 1, 1, . . . , <PAD>)

Description of the Sensory Term Extraction
Model. To address this task, we introduce a com-
binatorial approach involving three complementary
steps :

Step 2.1. Term Classification with RoBERTa.
Firstly, we propose to fine-tune a language model
on the task of extracting sub-phrases in sentences
that express the presence of a given sensoriality,
by following the intuition of Dash (2021) who for-
merly addressed the task of identifying the terms
that best reflect the main sentiment (Positive, Neu-
tral, or Negative) expressed by tweets2. By analogy,
we use a similar principle to detect words that best
reflect the presence of the target sensoriality m.

We use a BERT architecture, with the RoBERTa
pre-trained parameters set (Liu et al., 2019), that
empirically shows improved performances on the
task of classifying sensory and non-sensory tokens
within a sentence context.

2https://www.kaggle.com/competitions/
tweet-sentiment-extraction/leaderboard

Our input is the tokenized sentence t(s), and the
predicted output is a vector denoted V (t(s),m),
with ones for positively predicted terms correspond-
ing to the sensory function m, and zeroes for nega-
tives. Thus, this first stage allows extracting a first
set of words, classified as positive in the context
by RoBERTa. Ppos(s,m) denotes the set of words
in t(s) that map the words classified positively in
V (t(s),m), and Pneg(s,m) the negative ones.

Step 2.2. Expansion with Lexical Resources.
Secondly, we use a lexical resource, such as
Lexifield (Mpouli et al., 2020) with the goal
of expanding the list of sensory tokens pre-
liminarily extracted in step 2.1. This lexicon
denoted Lm contains a set of words belong-
ing to the lexical field of the target sensory
function m. For instance, we may consider
LOLF = {odour (noun) , smell (verb), ...} if
m = OLF.

For each word w ∈ Pneg(s,m), we switch the
corresponding value in V (t(s),m) to 1 if w ∈ Lm.

Step 2.3. Language and Human Judgement-
Based Heuristic. Finally, with the objective of
recovering false negative words omitted by the first
classification step, and at the same time, avoiding
introducing false positive examples significantly,
we settle a heuristic that both considers the
sensorimotor representation of candidate terms and
their semantic proximity with positive examples.
We denote by E a set of semantic embedding
spaces, and CosSime(a, b) the cosine similarity
measure between words a and b in an embedding
space e ∈ E. For each word w ∈ Pneg(s,m), we
switch the corresponding value in V (t(s),m) to 1
in case it combines the two following conditions:

1. wSN (m) > T

2. ∃e ∈ E, and ∃x ∈ Ppos(s,m),
s.t. CosSime(w, x) > U

where wSN (m) denotes, in the sensorimotor rep-
resentation of the word w, the dimension corre-
sponding to the sensory function m.

Condition 1 first ensures that the candidate term
is coherent with the target sensory function m in
essence. T defines the minimal threshold value of
wSN (m), with T ∈ [0, 5]. Then, Condition 2 en-
sures that classifying w as positive makes sense in
context, as it is semantically close to at least one
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of the positive terms. U ∈ [0, 1] defines the min-
imal cosine similarity value between a candidate
term and at least one of the positive terms. Both T
and U are tuned manually on the base of empirical
analyses, although they could be determined by a
grid search. At the end of this stage, the system
returns the output γ(t(s),m) = V (t(s),m).

4 Experiments and Analyses

This section presents an experimental evaluation
of the effectiveness of SENSE-LM. The perfor-
mances are measured for each step and compared
with those provided by baselines that address the
same task. An ablative study is also carried out
to evaluate the interest of each of the components
implemented in Step 2. The software and hardware
environments of these experiments are described in
Appendix B, and an analysis of the computational
costs of SENSE-LM is provided in Appendix D.

4.1 Datasets

Our experiments are performed on two datasets:
Odeuropa: English Benchmark3 (Menini et al.,
2022c) This state-of-the-art dataset focused on ol-
factory experiences from the 17th to the 20th cen-
tury. It contains 2176 sentences with a positive
sentence ratio of 0.28 and, 5530 utterances of smell
related terms, distributed in 602 sentences.

Auditory-oriented Artificial Dataset. Due to
the lack of sensory dataset corresponding to other
sensory functions and including consistent anno-
tation, we built an artificial dataset composed of
synthetic sentences generated with GPT-4 (Ope-
nAI, 2023) and containing references to sounds.
We carefully ask GPT-4 to create examples respect-
ing a realistic diversity of sentence structures with
different sentence lengths (400 sentences of maxi-
mum 10 words, 400 sentences of between 25 and
35 words, and 200 sentences between 35 and 50
words) with a ratio of positive sentences examples
of 0.5. Our generation protocol is detailed in Ap-
pendix F.1.

Then, the sensory terms appearing in positive
sentences (500 sentences) have been labelled using
Label Studio (Tkachenko et al., 2020-2022) by a
European PhD student, with the following instruc-
tion : “Label terms that either evoke the produc-
tion of sounds, sound producers entities, qualities
related to sound experiences or evoked sound ex-

3https://github.com/Odeuropa/benchmarks_and_
corpora.

periences”, followed by the examples provided in
Section 3.2. The dataset is publicly available4.

4.2 Experimental Settings

The datasets have been split into training and test
sets, with a ratio of 0.2 for the test set. Our mod-
els and the baselines are trained on the same data,
with a 10-fold cross validation, and 5 experiment
runs. The train / test splits and cross validation
folds are generated using the same random seed
value fixed to 42. We use the AdamW optimizer
(Loshchilov and Hutter, 2017), with hyperparam-
eters lr = 2e−5 and ϵ = 1e−8, determined experi-
mentally. The models are trained over 30 epochs.
The evaluation measures are the Macro Precision,
Recall and F1-Score, and the reported results cor-
respond to the average scores, with standard devia-
tion, computed over all runs.

4.3 Evaluation of Step 1 — Binary Sentence
Classification

First, we evaluate the performances of the binary
classifier implemented in Step 1 of SENSE-LM for
detecting correctly the presence or not of a sensory
function m at the sentence level.

Model Setting The BERT component of our ar-
chitecture considers, for each dataset, respective
pre-trained parameters, determined on the base of
empirical observations : for the Odeuropa dataset
(historical texts), as recommended by (Menini et al.,
2022c), we use MacBERTh’s pre-trained parame-
ters that provide the best results. For the Auditory
dataset (contemporary texts), we use the default
bert-base-uncased5 parameters.

Baselines First, we compare SENSE-LM with
a simple BERT model with the same pre-trained
parameters as the ones provided to the BERT com-
ponent of our architecture. Then, we compare with
a scenario in which sentences are only described
with the sensorimotor representation (11 features),
and classified by a Logistic Regression. We de-
note this second baseline by LR(sSN ). As GPT-4
allegedly comes with high potential for handling
a large panel of NLP tasks, we also compare the
efficiency of our solution against such a model for
this classification task. We ask GPT-4 to solve this
sensory sentence classification task, by first show-
ing it examples, corresponding to the training set,

4https://github.com/cfboscher/sense-lm
5https://huggingface.co/bert-base-uncased
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and asking it to classify unseen examples, corre-
sponding to our test set. The protocol implemented
with GPT-4 is detailed in Appendix F.2.

Results The results presented in Table 1 show
that SENSE-LM obtains better performances for
both datasets, compared to the concurrent baselines
(BERT classifier, LR(sSN ) and GPT-4), for the
Precision, Recall and F1-Score measures.

In the case of the Odeuropa dataset, we notice
close performances between BERT and GPT-4; the
latter offers a precision equivalent to BERT, and a
recall marginally below. Such a behaviour may re-
sult from the tangible limits of the information level
that language models such as BERT or GPT-4 can
infer from text, missing the inclusion of a human
judgement based projection of concepts, contrary
to the guarantees offered by SENSE-LM. Moreover,
as the dataset is relatively small (2176 sentences),
containing heterogeneous sources of documents
from different eras, generalizing the classification
problem on the base of the vocabulary only may
be a difficult task, even for a large language model
surch as GPT-4. Then, OpenAI (2023) do not delve
into details about the pre-training data of GPT-4,
and do not provide guarantees on its real ability
to work with historical data such as the Odeuropa
dataset, which is a reasonable explanation on why
GPT-4 may not work as well as MacBERTh, and
SENSE-LM by extension.

In exchange, SENSE-LM reaches a F1-Score of
93.16% for Odeuropa and 97.12% on the Auditory
dataset, dominating the compared baselines. This
confirms the interest of enriching the model’s train-
ing by integrating the sensorimotor representation
to its architecture, for detecting the presence of a
sensory function within a sentence.

4.4 Evaluation of Step 2 — Sensory Terms
Extraction

This second set of experiments aims to evaluate
the effectiveness of the term extraction from the
sentences classified positively in the previous step.

Model Setting According to the sub-steps de-
scribed in Section 3.2, we set our model as follows:

In Step 2.1, we set up the BERT component
with the RoBERTa pre-trained parameters, and we
fine-tune the model on our dataset. The fine-tuned
model is used for predicting a first set of words for
each candidate sentence.

In Step 2.2, as a lexical resource, we consider the
lexicons of sensory words provided by Lexifield

(Mpouli et al., 2020). In the case of Olfaction, the
lexicon contains 155 English terms explicitly evok-
ing smell experiences, and for Audition, 551 words
evoking auditory experiences, including common
names, verbs, and adjectives.

In Step 2.3, we configure our heuristic
by including three embeddings in our set E:
’word2vec-google-news-300’ (Church, 2017),
’glove-wiki-gigaword-300’ (Sakketou and Am-
pazis, 2020), and the sensorimotor representation
defined in Section 3.1. We set the threshold values
T = 3.50 and U = 0.65 for the Odeuropa dataset
and, T = 4.50 and U = 0.75 for the Auditory
dataset, which empirically correspond to optimal
values estimated through a series of experiments.

Baselines We compare the performances of the
second step of SENSE-LM with a simple lexicon-
based baseline, denoted Lexifield(Lm); we con-
sider a naive scenario in which all term utterances
that are included in Lm are labelled positive, and
the others are labelled negative. We also compare
SENSE-LM with a stand-alone RoBERTa classifier
and with GPT-4 using the same principle as in Sec-
tion 4.3. A detailed description of our protocol is
available in Appendix F.3.

Results Table 2 presents the results provided by
the baselines (on top) and by SENSE-LM, with an
ablative evaluation of each component (on bottom).
SENSE-LM shows the best overall performances.
For the Odeuropa dataset, SENSE-LM outperforms
the F1-Score of Lexifield by 22% and the F1-score
of RoBERTa alone by more than 5%. SENSE-LM
also improves by 2% the F1-score of RoBERTa for
the Auditory Dataset. The gap between RoBERTa
and SENSE-LM is lower in this case; as the Audi-
tory dataset contains synthetic data, it may include
sentence construction patterns, which make the
term extraction task easier even for the RoBERTa
classifier alone, reducing the added value of our
architecture, although it remains visible.

GPT-4 performs better than Lexifield, but still
struggles with this task, with a F1-Score barely
over 60%. Our reasoning on the performance lim-
its of GPT-4 detailed in Section 4.3 may remain
valid in this new case, and even be accentuated by
the even smaller data sample used for the training
task, as we only dispose of 600 sentences, using
only 80% of them for the training. In such condi-
tions, and without any guarantee on the abilities of
GPT-4 to distinguish olfactory concepts from a hu-
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Odeuropa Benchmark Dataset Auditory Artificial Dataset
Method Precision Recall F1-Score Precision Recall F1-Score
BERT 91.51 ± 1.12 90.12 ± 0.61 90.80 ± 0.85 96.03 ± 0.31 96.14 ± 0.64 96.08 ± 0.45

LR(sSN ) 82.25 ± 1.51 72.33 ± 1.22 76.97 ± 1.36 87.64 ± 1.14 87.04 ± 1.32 87.23 ± 1.23
GPT-4 91.59 ± 1.04 89.42 ± 2.21 90.4 ± 1.61 N/A∗ N/A∗ N/A∗

SENSE-LM 94.09 ± 0.81 92.26 ± 0.72 93.16 ± 0.76 97.01 ± 0.15 97.22 ± 0.24 97.12 ± 0.19

Table 1: Evaluation of SENSE-LM’s binary sentence classification step versus baselines.

Odeuropa Benchmark Dataset Auditory Artificial Dataset
Method Precision Recall F1-Score Precision Recall F1-Score

Lexifield (Lm) 77.3 ± 1.33 43.53 ± 1.17 55.69 ± 1.25 43.25 ± 0.18 16.32 ± 0.27 23.69
GPT-4 52.90 ± 2.11 70.99 ± 2.36 60.62 ± 2.24 N/A∗ N/A∗ N/A∗

SENSE-LM (Step 2.1) 80.01 ± 2.22 66.32 ± 1.13 72.52 ± 1.68 91.51 ± 2.84 89.25 ± 2.94 90.36 ± 2.89
SENSE-LM (Step 2.1 ∪ Step 2.2) 81.5 ± 2.11 72.7 ± 1.56 76.84 ± 1.74 91.75 ± 2.84 92.49 ± 2.75 92.11 ± 2.81
SENSE-LM (Step 2.1 ∪ Step 2.3) 80.48 ± 1.65 70.21 ± 1.87 74.99 ± 1.77 91.19 ± 2.76 92.32 ± 2.81 91.75 ± 2.79

SENSE-LM (All steps) 82.01 ± 1.81 73.62 ± 1.56 77.58 ± 1.65 91.65 ± 2.72 93.01 ± 2.65 92.32 ± 2.70

Table 2: Evaluation of SENSE-LM’s sensory terms extraction step versus baselines.
∗ As the Auditory Dataset was generated using GPT-4 itself, on the base of an explicit definition of our classification criterion, we do not consider evaluating the

classification of the latter model on this dataset, as it would provide biased results.

man judgement perspective and to handle properly
historical texts, we may have a reasonable expla-
nation on why GPT-4 does not work well on this
task. Indeed, our additional experiments in Ap-
pendix E show the importance of benefiting from
sensorimotor representations in order to detect sen-
soriality, particularly when working with a small
training dataset. A reasonable explanation for the
high improvement brought by SENSE-LM is that
we additionally require the sentence context and
a human judgement-based representation of con-
cepts to better identify the relationship between an
explicit odor, and contextually related entities.

In a second time, the ablative evaluation of
SENSE-LM highlights the interest of combining
successively its 3 steps, as including all of them in
a unique framework provides the highest results.

Appendix C provides an error analysis of SENSE-
LM, detailing its performances scores grouped
by part-of-speech and by semantic category (as
defined in Section 3.2), in order to highlight its
strengths and weaknesses.

5 Conclusion and Future Works

In this paper, we presented SENSE-LM, a novel
framework for coarse-grained, at the sentence level,
and fine-grained, at the word level, sensory refer-
ences detection. As far as we know, SENSE-LM
is the first approach proposing a combination of
sensorimotor representations with the text features
of language models such as BERT for sensory in-
formation extraction in text documents. In addition,
unlike other systems which are dedicated to a par-
ticular sensoriality, it offers the advantage of being
generic and applicable to any sense.

Its evaluation on two datasets for two different

sensory functions, Olfaction and Audition, pro-
vides enhanced and encouraging results compared
to state-of-the-art solutions. Moreover, an ablative
study confirms the contribution of each compo-
nent of the system, highlighting that using sentence
context-aware approaches and human-judgement
based approaches together brings a new step for-
ward in the task of identifying sensory references in
text, as these two approaches are complementary.

This work opens interesting directions for future
works. Our approach, evaluated on a sensory infor-
mation research task, could be transferred to similar
tasks involving human judgement, such as senti-
ment analysis or political polarity analysis, by re-
placing the sensorimotor representation function by
an equivalent function built on human-judgement
based resources tailored for other domain-specific
tasks. Thus, our work on sensoriality shows a new
way to enhance a human judgement oriented task
with the help of multimodality, and opens a set
of interesting research directions for other appli-
cation domains. From a language-models study
perspective, we may inspire from existing works
that enrich language models with extra modali-
ties such as images alongside sensorimotor rep-
resentations (Kennington, 2021). The principle
of combining the three aforementioned modalities
(text, image and sensorimotor), has been applied
to purely text-oriented tasks, but has not been ap-
plied yet to the research of sensory indices in text
corpora. Conversely, the synergy of text and sen-
sorimotor modalities, that we valued in this paper,
could be employed to enrich computer vision and
multi-modal architectures for extracting visual sen-
sory information from images.
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6 Limitations

Although it shows promising results, the usage
of SENSE-LM may suffer from operational limita-
tions, either related to its design or to its adaptation
to use-cases. Firstly, the strength of SENSE-LM
against existing approaches resides, to an important
extent, in the integration of Sensorimotor Norms;
the latter resource provides interesting added value
in the accomplishment of our tasks, but it is worth
noting that on the day of writing, Sensorimotor
Norms exist for a limited vocabulary, namely, lem-
mas known by 80% of a group of subjects represen-
tative of the English-speaking community (Lynott
et al., 2020). It covers a wide spectrum of current
vocabulary, but such a resource may become hard
to exploit for rare and domain-specific vocabulary.

Yet, the research of sensory references may be
solicited for specialized scientific research areas
such as chemistry (Brate et al., 2020), that involve
uncommon and domain-specific vocabulary that
may have no equivalent synset in WordNet (Miller,
1995). For instance, in the chemistry area, the term
chalcogen designates a family of metals that may
evoke specific smells, such as sulfur (Vogel et al.,
2019). Notwithstanding, the word chalcogen is nei-
ther listed in Sensorimotor Norms, nor on WordNet,
which makes it a blind spot in the scope of SENSE-
LM by default. An alternative solution would be
to include domain-specific terms in the lexical re-
source component, but it supposes a prior exhaus-
tive definition of terms related to the application
domain, or even the usage of knowledge bases.We
may face a similar issue for analyzing historic texts.
Indeed, SENSE-LM’s Sensorimotor Representation
function only covers 87% of unique terms appear-
ing in the Odeuropa dataset (which corresponds to
94% of word utterances in the whole corpus), while
replacing values for missing words by zeroes. This
coverage may decrease in case we apply our system
to even older texts (before the 17th century).

Additionally, Sensorimotor Norms are predom-
inantly available for the study of the English lan-
guage. Preliminary works have been provided for
Dutch (Speed and Brybaert, 2021), Chinese (Zhong
et al., 2022) and French (Lakhzoum et al., 2023),
but for instance, the latter only covers 1,100 words,
while the French language counts over 38 000
words (Ferrand et al., 2010). This makes SENSE-
LM, to some extent, suitable for English but hardly
adaptable to other languages by design, until con-
sequent sensorimotor resources are released.

At the time of writing, it is difficult to bench-
mark to what extent the effectiveness of SENSE-
LM is generalizable. Even if our system may be
useful in many use cases in practice, evaluating our
solution on real data is difficult, as far as conse-
quent and labelled datasets are too few in numbers
until now; only the Odeuropa benchmark dataset
(Menini et al., 2022c), as a public dataset coming
with a ground truth annotation, suits our needs for
experimenting our solution. Thus, our experimen-
tation on real data has been practically limited to
one sensory function in this paper, olfaction, al-
though it has also been evaluated on artificial data
for another sensory function, confirming its ability
to deal with different functions The construction
of suitable datasets may be considered for several
applications, but labelling correctly sensory refer-
ences is a hard task, as it requires a high human
effort and involves in-depth knowledge of the ap-
plication domains. The release of datasets pro-
viding sensory information dedicated to the other
sensory functions would be a strong asset to push
our method a step farther, for example by consider-
ing multisensory classification at a sentence and a
token level. Constructing a valuable ground truth
is still a difficult task, as transdisciplinary projects
such as Odeuropa (Menini et al., 2022a) or Polifo-
nia6 require the intervention of domain experts in
several research areas such as history, musicology
or cognitive sciences. In Appendix E, we discuss
the performances of our system depending on the
size of the available training data.

Ethics Statement

All datasets and code used in this work are released
publicly under open-source licenses, and do not
contain any personal information.

Our system aims to reproduce the classification
of human annotators, on the base of a few examples.
Thus, biases may be reproduced by our models.
Furthermore, as we work with historical data, it
may contain outdated and controverted expressions
that do not reflect the authors’ opinion.

At the same time, as we work with artificial data
generated by GPT-4, the synthetic data we use in
our study may express objectively erroneous facts,
as GPT-4 does not integrate any notion of fact-
checking regarding generated contents.

6https://polifonia-project.eu/
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A Table of Notations

Table 3 sums up all notations used in the paper.
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Notation Definition
s Sentence
t(s) Tokenized sentence
M Ensemble of sensory functions, s.t. M = {OLF, GUS, AUD, VIS, HAP}
m Sensory function, s.t. m ∈ M
D Documents corpus
d A document, s.t. d ∈ D
Dpos(m) Subset of D containing all positive sentence examples w.r.t. the sensory function m
Dneg(m) Subset of D containing all negative sentence examples w.r.t. the sensory function m
C(s) Class label of sentence s (1 -positive- or 0 -negative-)
ϵ(s) Classification function for Step 1 of SENSE-LM)
w Word, s.t. w ∈ s
lemma(w) Lemma of word w
LSN Lancaster Sensorimotor Norms : Dictionary with words as keys and

associated sensorimotor representations (11 dimensions) as values
wSN Sensory vector representation of the word w
sSN Sensory vector representation of the sentence s
wSN (j) jth dimension of wSN

wSN (m) Dimension of wSN associated to the sensory function m
sB BERT features extracted from the sentence s in Step 1
l BERT’s padding length
F (w,m) Ground truth class label of word w w.r.t. the sensory function m, in Step 2
γ(t(s),m) Classification function of SENSE-LM’s Step 2
V (t(s),m) Vector output of t(s) w.r.t the sensory function m in SENSE-LM’s Step 2
Lm Lexicon of terms related to the sensory function m
Ppos(s,m) List of words predicted as positive in sentence s, w.r.t the sensory function m
wpos Word identified as positive, s.t. wpos ∈ Ppos(s,m)
Pneg(s,m) List of words predicted as negative in sentence s, w.r.t the sensory function m
E Set of semantic embeddings spaces
e Semantic embedding space, s.t. e ∈ E
T Threshold value for semantic distances
U Threshold value for sensorimotor dimension values
CosSime(a, b) Cosine similarity between the representations of words a and b in the semantic space e
Synsets(w) List of WordNet Synsets of word w

Table 3: Table of notations.
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B Software and Hardware Setup

The experiments in this paper are executed using
Python 3.10, PyTorch7 version 1.13.1 and Keras
for model architectures, NLTK (Bird et al., 2009)
and SpaCy (Honnibal and Montani, 2017). Model
pre-trained parameters are obtained from Hugging-
Face8. For the implementation of Step 2, we used
and adapted an existing implementation9. The hard-
ware environment in which experiments are con-
ducted includes one NVIDIA RTX A5000 Mobile
GPU (6144 CUDA Cores), one 11th Gen Intel®
Core™ i9-11950H @ 2.60GHz × 16 CPU and 32
GB of RAM.

C Evaluation – Error Analysis

We provide the results of Step 2 for the Odeuropa
dataset, grouped by Semantic Category in Table 4,
for a more detailed reading of the actual perfor-
mances of SENSE-LM. We note that SENSE-LM
provides strong performances for the detection of
Sensory Words, with a F1-Score over 90. It is
expected as these words are most of the time ex-
plicit («odour, smell, perfume, etc...») and easy to
identify as markers of odour, from the perspective
of text features and sensorimotor features. How-
ever, SENSE-LM happens to struggle with Evoked
Experiences; indeed, such expressions are few in
number (only 5.8% of annotated terms) and do not
always reflect explicitly the presence of an odour. It
may be difficult to establish a semantic correlation
with odours with too few examples.

Then, in Table 5, we provide the detailed results
for the same scenario, grouped by Part-of-Speech:

Our model shows higher performances in par-
ticular for verbs and adjective. It is expected, as
sensorimotor representations cover a wide spec-
trum of encountered words and verbs, providing
strong assets on their relationship with an olfactory
experience. It appears to show lower performances
for Proper Nouns, that cannot be described from a
sensorimotor point of view and may only be classi-
fied positively according to the text features. The
model also struggles with numbers such as dates or
counted entities; these are exception cases that are
few in the dataset, which is a reasonable explana-
tion on why we have difficulties to learn properly
how to classify them.

7https://pytorch.org/
8https://huggingface.co/
9https://github.com/Jitendra-Dash/

Extracting-Phrase-From-Sentence

D Evaluation of Computational Costs

In the following, we provide the costs of SENSE-
LM compared to the baselines described in Sec-
tion 4.3 and Section 4.4.

For each mechanism, we compare the number
of model parameters, denoted # Parameters, the
average duration of a single full model training
over 5 trainings, denoted Training Duration (s),
and the average inference duration per data record,
over all records of the test dataset, denoted Infer-
ence Duration per record(s). The experiments are
performed over the Odeuropa Benchmark dataset.
The results for Step 1 are reported in Table 6, and
the results for Step 2 in Table 7. The reported re-
sults correspond to experiments executed with the
hardware setup described in Appendix B.

E Evaluation of Sensory Terms
Extraction – Dataset Size Impact
Analysis

In the following, we discuss the amount of labelled
data required to benefit from the effective perfor-
mances of SENSE-LM compared to baselines. In
Figure 4, we plot the F1-Score of SENSE-LM and
baselines according to the number of sentences
labelled (i.e., sentences with an annotation of sen-
sory terms), against the constant performances of
Lexifield, that does not require preliminary data
annotation. We plot the F1-Score on the Y axis,
and the amount of labelled data on the X axis. For
each point of the X axis, we incrementally augment
the size of the dataset used to train the RoBERTa
component in Step 2.1 of SENSE-LM. We observe
that RoBERTa alone requires 80 labelled sentences
to perform as good as Lexifield, while SENSE-LM
is already better with only 10 sentences. However,
we observe that it requires at least 300 labelled sen-
tences to obtain a stable and optimal F1-Score. It
is worth noting that our architecture remains better
than RoBERTa in any case and acquires a stable
behavior with fewer records, justifying the interest
of Steps 2.2 and 2.3.
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# of
groundtruth utterances

% of
groundtruth utterances Precision Recall F1-Score

Evoked Experience 196 5.8% 70.42 ± 2.41 52.03 ± 1.38 58.50 ±2.01
Quality 614 18.2% 75.41 ± 1.28 71.49 ± 2.01 73.40 ± 1.65

Sensory Source 1787 53.2% 71.11 ± 1.65 76.63 ± 1.87 73.66 ± 1.77
Sensory Word 764 22.7% 84.92 ±1.01 97.87 ±0.51 90.94 ± 0.72

Table 4: Evaluation of SENSE-LM’s sensory terms extraction step for Odeuropa, detailed by semantic category

# of
groundtruth utterances

% of
groundtruth utterances Precision Recall F1-Score

NOUN 1112 49.91 % 75.61 ± 1.22 74.62 ± 1.21 75.11 ± 1.22
ADJ 549 24.64 % 81.88 ± 1.56 73.82 ± 1.26 77.64 ± 1.41

VERB 261 11.71 % 83.33 ± 1.55 83.33 ± 1.71 83.33 ± 1.61
NUMBER 12 0.53% 65.23 ± 2.12 70.83 ± 2.41 67.91 ± 2.30
ADVERB 36 1.61% 80.55 ± 1.82 78.12 ± 1.18 79.31 ± 1.56

PROPER NOUN 258 11.57% 72.49 ± 1.34 74.22 ± 1.28 73.34 ± 1.31

Table 5: Evaluation of SENSE-LM’s sensory terms extraction step for Odeuropa, detailed by Part-of-Speech

Odeuropa Benchmark Dataset
Method # Parameters Training Duration (s) Inference Duration per record (µs) F1-Score
BERT 110M 336 239 90.80 ± 0.85

LR(sSN )) 22 2 11 76.97 ± 1.36
GPT-4 Over 100T N/A N/A 90.49 ± 1.61

SENSE-LM 110M 401 251 93.16 ± 0.76

Table 6: Evaluation of costs of SENSE-LM– Step 1 versus baselines.

Odeuropa Benchmark Dataset
Method # Parameters Training Duration (s) Inference Duration per record (ms) F1-Score

Lexifield (Lm) N/A N/A 8 55.69 ± 1.25
GPT-4 Over 100T N/A N/A 60.62 ± 2.24

SENSE-LM (Step 2.1) 110M 377 18.12 72.52 ± 1.68
SENSE-LM (Step 2.1 ∪ Step 2.2) 110M 377 18.27 76.84 ± 1.74
SENSE-LM (Step 2.1 ∪ Step 2.3) 110M 377 19.67 74.99 ± 1.77

SENSE-LM (All steps) 110M 377 19.82 77.58 ± 1.65

Table 7: Evaluation of costs of SENSE-LM– Step 2 versus baselines.
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Figure 4: Training dataset size versus F1-Score trade-
off for SENSE-LM’s Step 2, compared to baselines, for
the Odeuropa dataset.

F GPT-4 Teaching protocols

We detail the protocols used to teach our different
tasks to Chat GPT-4. We use the Chat GPT-4 web
prompt10. We provide the detailed transcripts of
the chat prompts corresponding to each task in our
repository11.

F.1 Auditory Dataset Generation

We provide the protocol used to generate the Au-
ditory dataset that we described in 4.1. We askt
GPT-4 generate 200 positive examples; i.e. audi-
tory sentences, of length 10. Then, we generate
200 negative examples of length 10 as follows. We
repeat the same protocol for 2 times 200 sentences

“between 25 and 35 words”, and 2 times 100 sen-
tences “between 35 and 50 words”, resulting in
1000 sentences. We check the consistence of the
data manually; we corrected 11 misclassified sen-
tences on 1000 generated examples. We did not
notice any personal data, nor offensive content.

F.2 Binary Sentence Classification – GPT-4
Teaching Protocol

We provide the protocol used for teaching GPT-
4 our binary classification task, as we consider it
as a baseline with the objective of validating the
relevance of our work, compared to the current
capabilities of pre-trained models. We define the
classification task as described in Section 4.3, we
provide a set of examples corresponding to our
training set to GPT-4, by providing both the sen-

10https://chat.openai.com/
11https://github.com/cfboscher/sense-lm/tree/

main/gpt4_prompts

tences and their class (positive or negative), then
we ask the model to classify the test set.

F.3 Sensory terms Extraction – GPT-4
Teaching Protocol

We use the same protocol described in Ap-
pendix F.2, applied to positive sentences only, by
using the entire sentence as an input, and the set of
words to be extracted as a target. We ask GPT-4 to
predict the words to extract on the test set.
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