
Findings of the Association for Computational Linguistics: EACL 2024, pages 1743–1759
March 17-22, 2024 c©2024 Association for Computational Linguistics

Parameter-Efficient Fine-Tuning: Is There An Optimal Subset of
Parameters to Tune?

Max Ploner
Humboldt University of Berlin

Science Of Intelligence
max.ploner@hu-berlin.de

Alan Akbik
Humboldt University of Berlin

Science Of Intelligence
alan.akbik@hu-berlin.de

Abstract

The ever-growing size of pretrained language
models (PLM) presents a significant challenge
for efficiently fine-tuning and deploying these
models for diverse sets of tasks within memory-
constrained environments. In light of this, re-
cent research has illuminated the possibility
of selectively updating only a small subset of
a model’s parameters during the fine-tuning
process. Since no new parameters or modules
are added, these methods retain the inference
speed of the original model and come at no
additional computational cost. However, an
open question pertains to which subset of pa-
rameters should best be tuned to maximize task
performance and generalizability. To investi-
gate, this paper presents comprehensive experi-
ments covering a large spectrum of subset se-
lection strategies. We comparatively evaluate
their impact on model performance as well as
the resulting model’s capability to generalize
to different tasks. Surprisingly, we find that
the gains achieved in performance by elaborate
selection strategies are, at best, marginal when
compared to the outcomes obtained by tuning
a random selection of parameter subsets. Our
experiments also indicate that selection-based
tuning impairs generalizability to new tasks.

1 Introduction

In recent years, the number of parameters used in
language models has risen much faster than the
memory available in GPUs (Lialin et al., 2023).
This creates high memory requirements for fine-
tuning such models on available hardware. Further,
this creates high memory requirements when de-
ploying a collection of such models to address vari-
ous downstream tasks. A single pretrained model
is often adapted to a wide range of tasks. The stor-
age requirements for such a collection of model
versions can be significantly reduced if the differ-
ence between these models can be represented in a
compact way.

Weight Bias

(a) BitFit

Weight Bias

(b) Random subset

Figure 1: Only a small subset of the parameters (marked
with red circles in this illustration) is updated during
training; the others are frozen. The BitFit approach
tunes only the bias weights, while other approaches
select a tuneable subset from all model parameters.

Parameter-efficient fine-tuning techniques
(PEFT) aim to reduce the number of parameters
that need to be stored and fine-tuned while
maintaining a performance that is comparable to
the training of the complete model. One popular
class of these methods is referred to as selective
parameter-efficient fine-tuning (Lialin et al., 2023).
Here, a subset of the parameters is selected for
PEFT, keeping the remaining parameters frozen
during training. We illustrate this intuition in
Figure 1 for a single weight matrix and bias vector
in which most parameters are frozen and only a
small subset is updated during the optimization
procedure.

Since only a few parameters are fine-tuned, the
sparse difference between the adapted and the pre-
trained model can be stored in a compact way (Za-
ken et al., 2022; Guo et al., 2021). The same applies
to gradient statistics that are stored by the optimizer
during fine-tuning. Reducing the required memory
frees up space for the use of larger batches and
therefore speeds up training. However, an open
question pertains to which subset of parameters
should best be tuned to maximize task performance
and generalizability.

1743

Contributions. In this paper, we investigate sev-
eral theoretical questions that have been raised in
the context of selective PEFT methods and the
lottery ticket hypothesis for pretrained (language)
models (Gong et al., 2022; Zheng et al., 2022). We
aim to explore if an optimal subset for tuning exists
and how subset tuning affects generalizability of
the model. In more detail, we examine the follow-
ing two aspects:

• We comparatively evaluate a broad range of
approaches for identifying the ideal subset of
parameters to tune. Our analysis considers
the size of the subset and the computational
costs for its identification. For instance, it has
been shown that an effective subset can be
obtained through an initial fine-tuning step of
the complete model (potentially incorporating
some form of regularization), followed by the
selection of parameters exhibiting the largest
magnitude of change (Guo et al., 2021; Xu
et al., 2021). This, however, still requires a
costly full fine-tuning step. Hence, the possi-
bility of identifying a promising subset with-
out an initial fine-tuning step would be benefi-
cial (Prasanna et al., 2020; Gong et al., 2022).

• We analyze how sparse fine-tuning affects the
generalizability of the resulting network. This
is motivated by Zaken et al. (2022)’s obser-
vation that their parameter-efficient method
"Bitfit" generalizes better: They report that
the gap between the train and test score is
substantially smaller compared to a full fine-
tuning of the model.

To address these questions, we systematically
conduct experiments using a large number of sub-
set sizes and various subset selection strategies.
We conduct a comprehensive grid search over hy-
perparameters to identify optimal training parame-
ters for each selection strategy. We compare these
hyperparameter-optimized subset selection strate-
gies to full fine-tuning (including the use of regu-
larization), as well as an additional (non-selective)
parameter-efficient fine-tuning technique, which re-
cently gained a lot of popularity: Low-Rank Adap-
tation (Hu et al., 2021, LoRA).

We make several observations in our experi-
ments: First, the differences between different sub-
set selection methods are marginal when hyperpa-
rameters (the learning rate specifically) are properly
optimized and do not significantly outperform a

baseline using a randomly selected subset. Second,
subset-tuning methods tend to modify embedding
networks significantly more since they are limited
to a small number of parameters and hence need to
make more drastic changes. The prior function of
the network which can exhibit a certain degree of
general language capabilities may be more affected
by these local but more drastic changes.

2 Background

Our work is informed by two lines of research:
Selective parameter-efficient fine-tuning and the
lottery ticket hypothesis for pretrained language
models. In this section, we discuss aspects of these
two areas that are relevant to the work we present
in this paper.

2.1 Selective Parameter-Efficient Fine-Tuning

Parameter-efficient fine-tuning (PEFT) methods re-
duce the number of parameters that are tuned in a
model. There are multiple benefits to this: (1) The
cost of storage for each task-specific adaptation
is smaller, (2) switching between different vari-
ants of the same pre-trained model for inference
requires less communication to load the model’s
parameters into the GPU (cf. Haller et al., 2023),
and (3) the GPU memory required for fine-tuning
is reduced (allowing larger batch sizes). For ex-
ample, Adam (Kingma and Ba, 2017; Loshchilov
and Hutter, 2019), a commonly used optimizer for
fine-tuning language models, not only stores the
calculated gradient of each parameter but also esti-
mates for two lower-order moments. When using
PEFT methods, the weights of the model still need
to be kept in memory. But, since fewer parame-
ters are tuned, a much smaller number of estimates
needs to be stored, significantly freeing up space
for processing a larger number of samples per batch
and hence speeding up training overall.

Lialin et al. (2023) arrange a large variety of
PEFT methods into a comprehensive taxonomy
and identify three major classes: Additive (which
includes adapters and soft prompts), Selective, and
Reparametrization-based approaches. In selection-
based approaches, only a certain subset of the pa-
rameters is tuned while other parameters which are
not part of the set remain frozen.

In the remainder of this subsection, we introduce
two ways of how such subsets have been selected
in prior work: (1) Using heuristics and (2) based
on gradient information that has been collected.

1744

Heuristically Motivated Subsets
Zaken et al. (2022) offer a particularly simple vari-
ant: In BitFit, only the bias terms (or in a variation
of this approach, only certain bias terms) are tuned.
This removes the need to compute and handle pa-
rameter masks. Qi et al. (2022) propose LN-tuning
(tuning only the LayerNorm modules) and suggest
combining this with other methods (such as prefix
tuning).

Using Gradient Information
Sung et al. (2021) attempt to determine the subset
by a less heuristics-based approach and instead pro-
pose to use the empirical Fisher information of the
network parameters to determine each parameter’s
importance (compare with Kirkpatrick et al., 2017).
The Fisher information estimates the impact of a
parameter on the model’s prediction. Since the
Fisher information matrix is intractable to compute,
a common approximation is to only use the diago-
nal and approximate the sample distribution with
the available N samples x1, ..., xN . The estimated
Fisher information F̂θ of each parameter can then
be expressed as:

F̂θ =
1

N

N∑

i=0

Ey∼pθ(y|xi) (∇θ log pθ(y|xi))2 (1)

In cases where many classes are available, calcu-
lating the expected value requires a large number of
backward passes. Hence, it is common to simplify
this using the "empirical Fisher" F̃θ which can be
derived by replacing the expected value with the
observed label yi of each sample.1

F̃θ =
1

N

N∑

i=0

(∇θ log pθ(yi|xi))2 (2)

To retrieve a fine-tuning mask, the k parameters
with the respective largest values are selected. All
other parameters will remain frozen.

Using a fine-tuning mask (as opposed to e.g. sim-
ply selecting all biases) trades off simplicity for a
more theoretically substantiated method for deter-
mining the subset to be fine-tuned.

2.2 Lottery Ticket Hypothesis

A different line of research tests the lottery ticket
hypothesis (Frankle and Carbin, 2019) for pre-

1The result is identical to the sum of the squared gradients
of the cross-entropy loss over a given dataset.

trained language models. The lottery ticket hypoth-
esis states that the performance of a dense neural
network trained fully from a random initialization
can be matched by only training a certain subnet-
work (i.e. only a subset of the parameters). Typi-
cally, these subsets can only be found by training
the complete network and pruning connections it-
eratively (Frankle and Carbin, 2019; Zhou et al.,
2020; Chen et al., 2021). More recent literature
has tried to translate these findings to pretrained
language models (Chen et al., 2020; Zheng et al.,
2022; Liang et al., 2021; Gong et al., 2022). Recent
research seems to suggest that it might be feasible
to find suitable subnetworks without prior train-
ing (and pruning) since the weights are no longer
random (Sung et al., 2021; Prasanna et al., 2020).

While the lottery ticket hypothesis typically in-
duces a different perspective, there are important
ties between this line of research and parameter-
efficient fine-tuning. The ability to find transferable
(or general) true (in the sense of perfectly matching
performance) "winning lottery tickets" would have
considerable implications for parameter-efficient
fine-tuning. Vice-versa, well-working methods to
select subsets to be fine-tuned might reveal infor-
mation about winning lottery tickets in general.

3 Subset Selection and Downstream Task
Performance

In this first series of experiments, we aim to investi-
gate the impact of the subset selection strategy and
the subset size on the performance of the embed-
ding network on a downstream task. Each configu-
ration is evaluated with respect to the performance
on each of the four downstream tasks. We first
describe the used selection strategies and the ex-
perimental setup, before discussing the observed
impact of these two variables.

3.1 Subset Selection Strategies

We compare several different selection strategies.
Some of the strategies are task-independent while
others rely on the task’s training data to select the
parameters to be tuned.
Baselines. As the simplest baseline, we include
a random selection of parameters. Additionally,
though not a subset selection strategy, we add
LoRA (Low-Rank Adaptiation Hu et al., 2021),
a popular reparametrization-based PEFT method
for comparison. LoRA tunes rank decomposition
matrices to produce an update with a low rank.

1745

Heuristics. One of the simplest strategies is BitFit
(Zaken et al., 2022). Here, all bias terms are se-
lected for tuning while all other parameters remain
frozen (see Figure 1). The tuned portion depends
on the model’s architecture and is not flexible. The
authors offer a second variant that uses only some
of the bias terms. However, we exclude this sec-
ond variant from our analysis since we compare
subset selections of similar size. Where not noted
differently, we use the resulting portion of active
parameters as target portion for the other methods.
Empirical Fisher Information. Sung et al. (2021)
propose choosing a subset based on the empiri-
cal Fisher information on the downstream data
F̃θ,downstr.. This is equivalent to picking the largest
sum of squared gradients (largest downstr. sq-
grad) of the cross-entropy loss.

Inspired by Elastic Weight Consolidation (EWC,
Kirkpatrick et al., 2017), we decided to additionally
consider the gradient statistics on a subsampled por-
tion of the pretraining data F̃θ,pretr. (using 30,508
samples of wikitext, Merity et al., 2016). While
choosing the k parameters with the smallest empir-
ical Fisher information would be more in line with
EWC (as it penalizes deviating from parameters
with particularly large empirical Fisher informa-
tion), we found that (this binarized version) leads
to a selection of parameters that receive minimal
gradient flow. For the fine-tuning to have a non-
negligible effect would require a learning rate that
is to high for the decoder to remain stable. We
hence pick the largest values instead (largest pretr.
sq-grad). Since this is the opposite of what EWC
suggests (focusing the change on parameters with
low empirical Fisher Information) we expect the
subset to be perform rather poorly. We still include
it for comparison.

Finally, we propose a combined measure that
selects parameters with large squared downstream
gradients and lower squared pretraining gradients.
This is an attempt to force the selection to consider
task-specific information not merely the received
gradient magnitudes. The strategy selects parame-
ters with the largest values of:

Gcombined =
F̃θ,downstr.

1 + F̃θ,pretr.

(3)

Difference Pruning. In Diff pruning (Guo et al.,
2021), the model is fine-tuned completely using
regularization before pruning the smallest differ-
ences to the pretrained model. The pruned weights

are not set to zero but to their original value.
We test two variants: One where we prune with-

out re-training and one where we prune with re-
training the remaining weights (initialized with
the pretrained parameters).

In contrast to (Guo et al., 2021), we only prune
and re-train a single time to mimic the other subset
methods as closely as possible (i.e. using a pre-
computed mask for a single training run) and use
L1- instead of L0-regularization to be more in line
with Gong et al. (2022). The first variant cannot
be considered a subset tuning method. The second
does include a subset tuning step, but still requires
a costly initial full-finetuning step. It might be
possible to approximate the subset selection by
training the model for a shorter period, but this is
outside the scope of this paper.

3.2 Experimental Setup

Evaluation datasets. We evaluate all methods
in their ability to adapt a RoBERTa-base model
(125M parameters) to four tasks:

• SST-2 (Socher et al., 2013), a sentiment clas-
sification task,

• QNLI (Wang et al., 2018) a question answer-
ing natural language inference task,

• CoNLL-2003 (Tjong Kim Sang and De Meul-
der, 2003), a named entity recognition tasks,

• TREC-6 (Hovy et al., 2001; Li and Roth,
2002), a question classifcation task.

In the case of SST-2 and QNLI which both are
part of the General Language Understanding Eval-
uation (GLUE) benchmark (Wang et al., 2018), we
use the development set in place of the test set (as
the test set is not readily available and requires a
submission for each set of predictions).
Experimental framework and hyperparameters.
All experiments were conducted using the Flair-
framework (Akbik et al., 2019), using their de-
fault implementations for the embeddings and task-
specific decoders. The complete configuration,
code, and resulting metadata can be found in a
public repository.2

Most of the hyperparameters used in fine-tuning
the embedding network are set to standard values
and are kept consistent over all experiments. There

2https://github.com/plonerma/
sparse-finetuning

1746

https://github.com/plonerma/sparse-finetuning
https://github.com/plonerma/sparse-finetuning

Hyperparameter Value

Number of epochs 2 or 4
Batch size 16

Weight decay none
Gradient norm clipping 5.0
Learning rate schedule Linear with warm-up

Warm-up fraction 10%

Table 1: The hyperparameters used in the fine-tuning
experiments. Default values of Flair (Akbik et al., 2019)
for fine-tuning are denoted in italics. For the larger task
(QNLI) 2 epochs were used and 4 epochs in all other
tasks.

is no indication that these settings favor any of the
variants (though this cannot be entirely ruled out).
These hyperparameters can be found in Table 1.

Preliminary experiments indicated different vari-
ants may require different learning rates. To en-
sure a level playing field, we performed an inde-
pendent learning rate search for each variant and
task (over an approximately logarithmicly equally
spaced range). To ensure a sufficiently large range
was selected, the experiment was repeated with a
larger range if a learning rate at the limit of the
range was selected. Assuming the objective is con-
vex with respect to the learning rate, the selection
of a learning rate not at the limit implies the range
was sufficiently large.

In approaches involving pruning, we addition-
ally tested two different regularization coefficients
(3 × 10−3 and 3 × 10−2) leading to a grid search.
Where the development set was used in place of
the test set, we split the training data into two parts
to conduct the hyperparameter search.

The parameter (combination) yielding the high-
est performance on the development set was then
used in the following experiments. The selected
learning rates can be found in Table 7 in the ap-
pendix.
Decoder initialization. As each task requires a
randomly initialized decoder on top of the PLM,
we first execute a decoder-tuning step in which we
train the decoder over the frozen PLM (Cui et al.,
2023). Fine-tuning the decoder first (while initially
keeping the embedding network frozen) helps to
mitigate the effect of the different selections of
learning rates used in the experiments on the de-
gree to which the decoder adapts to the embedding
network versus vice-versa. The much higher learn-
ing rate required by some of the variants can be

quite an advantage or disadvantage as a randomly
initialized decoder requires significantly more tun-
ing. The hyperparameters used to tune the decoders
can be found in Table 4 in Appendix A.

Like the fine-tuned task-specific decoder, the gra-
dient statistics can also be shared across multiple
repetitions of the experiment. A different decoder
initialization leads to different gradients. Hence,
using the same initialization of the decoder across
the experiments is required to allow sharing of the
gradient statistics.

3.3 Results

We present the experimental results, first focusing
on the different subset selection strategies (Sec-
tion 3.3.1) and then present an ablation study where
we vary the size of the subset (Section 3.3.2).

We only state that a method outperforms another
where this is substantiated by a p-value of ≤ 5% on
pairwise t-tests with p-values adjusted for testing
multiple hypotheses. For details on the setup and
results of the performed statistical tests, see Table 6
in the appendix.

3.3.1 Selection Strategies
Table 2 reports the performance on each of the
four downstream tasks. We make the following
observations:
Full fine-tuning best. Unsurprisingly, we note
that the full fine-tuning baseline outperforms all
parameter-efficient fine-tuning methods on all of
the tasks. It therefore represents the upper bound
that selection-based approaches can achieve.
LoRA with second highest mean. Though not a
selection-based approach, we also find that LoRA
is consistently among the top two PEFT methods.
It has a slightly higher mean, but we cannot say
with statistical significance that it outperforms the
PEFT approach using combined gradient statistics.
Different selectors score similarly. We also note
that different selection-based strategies score simi-
larly, with combined gradient statistics having the
highest average score but only outperforming (with
statistical significance) the subset tuning method
using pretraining statistics and pruning without re-
training.
Surprisingly strong results for random subsets.
Even the random baseline (using a large enough
learning rate), fares surprisingly well. On one task,
it even outperforms the other PEFT methods (in-
cluding LoRA). Only full fine-tuning and LoRA
outperform the random baseline with statistical sig-

1747

CoNLL-2003 QNLI SST-2 TREC-6 Avg.

Full fine-tuning 0.9217 ± 0.0008 0.9290 ± 0.0015 0.9468 ± 0.0011 0.9752 ± 0.0040 0.9432

LoRA (rank 4) 0.9139 ± 0.0015 0.9165 ± 0.0019 0.9406 ± 0.0027 0.9708 ± 0.0036 0.9354

Random subset 0.9087 ± 0.0011 0.9048 ± 0.0025 0.9342 ± 0.0024 0.9720 ± 0.0028 0.9299

Bitfit 0.9080 ± 0.0012 0.9039 ± 0.0015 0.9383 ± 0.0023 0.9592 ± 0.0052 0.9273

Largest pretr. sq-grad 0.9073 ± 0.0014 0.9037 ± 0.0025 0.9378 ± 0.0046 0.9552 ± 0.0053 0.9260

Largest downstr. sq-grad 0.9073 ± 0.0017 0.9075 ± 0.0009 0.9399 ± 0.0027 0.9580 ± 0.0043 0.9282

Combined gradient stats 0.9082 ± 0.0019 0.9100 ± 0.0017 0.9431 ± 0.0029 0.9644 ± 0.0026 0.9314

Pruning with re-training 0.9108 ± 0.0022 0.9059 ± 0.0023 0.9390 ± 0.0039 0.9696 ± 0.0015 0.9313

Pruning w/o re-training 0.9002 ± 0.0010 0.9102 ± 0.0014 0.9376 ± 0.0052 0.9556 ± 0.0019 0.9259

Table 2: Performance of the tested variants using roberta-base and a subset size similar to bitfit (except full fine-
tuning). All scores are averaged over 5 runs (seeds) and shown with a 95% confidence interval (1.96 standard errors).
Following previous work, we report F1 score (micro average) for CoNLL-2003 and accuracy for the other tasks.

nificance (though further experiments may lead to
more significant results). We conclude that the
performance differences in these experiments are
not drastic and that even a properly tuned random
subset scores competitively with more complex ap-
proaches. For example, to finetune on SST-2, the
optimal learning rate for a random subset turned
out to be 7 × 10−3, while it was 7 × 10−4 for bitfit,
and 1 × 10−4 for largest downstream sq-grad – all
starting with the same pretrained model and us-
ing the same subset size (Table 7 gives a detailed
overview over the selected learning rates).

3.3.2 Subset Size

To assess the impact of the subset size on the test
performance, we repeat the experiments over a
range of different sizes. Figure 2 illustrates the
results.

The approaches of using either the combined
or only the downstream gradient statistics method
outperform all other selective PEFT methods when
using very small subset sizes. Pruning without
retraining underperforms likely due to the large
amount of information that is lost during the prun-
ing step. At small subset sizes and compared to
the other approaches, the random baseline does not
perform as well. It should be mentioned though,
that in the case of the smallest subset size (and for
TREC-6 the second smallest), the highest available
learning rate of 0.1 was selected. Due to the already
large range, we did not repeat this experiment with
even larger learning rates.

While the gradient flow throughout the network
remains unchanged by the subset, the potential

0.80

0.85

0.90

Pe
rfo

rm
an

ce

Full FT
Bitfit

CoNLL-2003

10 5 10 3 10 1

Subset Size

0.8

0.9

1.0

Pe
rfo

rm
an

ce Full FTBitfit

TREC-6

Variant
Random subset
Pruning w/o re-training
Pruning with re-training
Largest downstr. sq-grad
Largest pretr. sq-grad
Combined gradient stats

Figure 2: Test scores on CoNLL-2003 and TREC-6 of
the different subset selection methods across a range of
subset sizes. The data is incomplete due to some ex-
periments being treated as invalid (here drawn partially
transparent and with thin lines). The errorbars indicate
the 95% confidence interval.

1748

10 4 10 1

Subset size

10 3

10 1
Le

ar
ni

ng
 ra

te
Random subset

10 4 10 1

Subset size

Largest downstr. sq-grad

Figure 3: Selected learning rate (y-axis) based on
the subset size (x-axis) and two selection strategies
on CoNLL-2003: Random (left) and largest average
squared gradient on the downstream data (right). A red
triangle indicates that the learning rate at the limit of the
range was selected and might therefore be suboptimal.
For more learning rate selection plots, see Figure 4.

change of the network’s function depends on (1) the
number of parameters that can be affected and
(2) the gradient these parameters receive. If the
average gradient is much lower for a given set of
parameters, a higher learning rate may produce
better results.

This is very prominent in the comparison of a
random subset and a subset selected by large Fisher
Information (see Figure 3). The latter subset re-
ceives (on average) a larger gradient magnitude
and may therefore require a lower learning rate.

4 Generality & Adaptability of the
Embedding Network

We extend our evaluation to investigate how the
generality of the embedding network is impacted
by the applied fine-tuning method. To this end,
we leverage the transformer networks fine-tuned
with different selection strategies on a primary task
from the previous experiment and evaluate their
usefulness for a distinct secondary task.

In total, we report the following differences in
performance:

1. The test score on the primary task vs. a full
fine-tuning of the model (Primary Diff.),

2. the test score vs. the score on the training data
of the primary task (Train/Test Gap),

3. the performance on a masked-language model-
ing (MLM) task using a tuned two-layer probe
vs. the initial performance (MLM Diff.),

4. the performance on a set of secondary tasks
(after adapting the model to the new task us-
ing full fine-tuning) compared to the score

reached by fully fine-tuning the initial pre-
trained model (Secondary Diff.), and

5. the performance of a decoder tuned on the
model adapted to the primary task vs. a de-
coder adapted to the pretrained model (Sec.
Decoder Diff.).

We therefore assess how the embedding net-
work’s function changes in terms of its capability
to adapt to new tasks.

4.1 Notes on Measuring Generality

We preface this experiment with the note that the
“generality” of a model is no well-defined concept.
Zaken et al. (2022) mention the generalization gap
(the difference between the test and train perfor-
mance). We are, however, not only interested in
whether a model generalizes well to the test data
but a broader notion of generality.

Looking solely at the test score is also not suf-
ficient as we might not be confident that the test
set represents our deployment distribution. Addi-
tionally, the current fine-tuning step might not be
the last in our transfer learning pipeline. In these
cases, we want to preserve some general language
capabilities much like we would like to preserve
a good performance on some previous task in a
continuous learning setting (see e.g. Kirkpatrick
et al., 2017). The primary objective of this work,
however, is not to attempt to resolve the question
of how to quantify generality.

In light of the vague nature of the objective and
due to the lack of a more suitable evaluation frame-
work, we opt to report masked-language modeling
(MLM) and performance on secondary tasks as a
proxy for generality. Though we are not strictly in
a continuous learning setting, these measures can
be conceived of as backward and forward transfer
(compare with Lopez-Paz and Ranzato, 2022). The
first measure represents how much of the previous
function (i.e. the masked-language modeling) was
preserved, while the second describes how well
each variant preserved the task-generality (see Lin
et al., 2023) while fine-tuning on a specific task (or
averaging across the complete set).

4.2 Experimental Setup

The experimental setup is identical to the first se-
ries of experiments (as described in Section 3.2),
but extends it by a final step. After fine-tuning the
model with one of the approaches, the embedding

1749

Primary Diff. MLM Diff. Test/Train Gap Seconday Diff. Sec. Decoder Diff.

Full fine-tuning 0.0000 ± 0.0006 -0.0584 ± 0.0043 -0.0402 ± 0.0048 -0.0020 ± 0.0007 0.0421 ± 0.0271

Regularized FT (L1, 0.01) -0.0290 ± 0.0045 -0.0274 ± 0.0022 -0.0025 ± 0.0049 -0.0029 ± 0.0010 0.0423 ± 0.0257

Regularized FT (L1, 0.10) -0.0527 ± 0.0067 -0.0299 ± 0.0046 0.0068 ± 0.0044 -0.0018 ± 0.0007 0.0401 ± 0.0214

Regularized FT (L2, 0.01) -0.0025 ± 0.0009 -0.0431 ± 0.0029 -0.0376 ± 0.0053 -0.0035 ± 0.0009 0.0330 ± 0.0301

Regularized FT (L2, 0.10) -0.0028 ± 0.0007 -0.0293 ± 0.0015 -0.0311 ± 0.0052 -0.0042 ± 0.0010 0.0614 ± 0.0282

LoRA (rank 4) -0.0077 ± 0.0010 -0.0742 ± 0.0028 -0.0225 ± 0.0055 -0.0271 ± 0.0292 0.0014 ± 0.0285

Random subset -0.0133 ± 0.0020 -0.0675 ± 0.0068 -0.0245 ± 0.0051 -0.0054 ± 0.0010 0.0387 ± 0.0326

Bitfit -0.0159 ± 0.0017 -0.1202 ± 0.0099 -0.0066 ± 0.0044 -0.0026 ± 0.0007 -0.0096 ± 0.0401

Largest pretr. sq-grad -0.0172 ± 0.0018 -0.1469 ± 0.0110 -0.0092 ± 0.0054 -0.0051 ± 0.0010 -0.0225 ± 0.0346

Largest downstr. sq-grad -0.0150 ± 0.0015 -0.1162 ± 0.0083 -0.0078 ± 0.0049 -0.0046 ± 0.0010 0.0033 ± 0.0343

Combined gradient stats -0.0118 ± 0.0015 -0.1140 ± 0.0063 -0.0072 ± 0.0047 -0.0039 ± 0.0010 0.0112 ± 0.0350

Pruning with re-training -0.0119 ± 0.0019 -0.0613 ± 0.0049 -0.0238 ± 0.0052 -0.0054 ± 0.0010 0.0543 ± 0.0324

Pruning w/o re-training -0.0173 ± 0.0014 -0.0496 ± 0.0032 -0.0021 ± 0.0049 -0.0014 ± 0.0008 0.0451 ± 0.0294

Table 3: Performance of the tested methods using roberta-base. The table reports the differences of test scores
on primary and secondary task to full fine-tuning on the pretrained embedding network (Primary Diff. and
Seconday Diff.), the differences of a decoder tuned on the adapted embedding network (trained on the primary
task) to a decoder tuned on the pretrained embedding network (Sec. Decoder Diff.), the Test/Train Gap (values
smaller than zero indicate the test score is lower than the train score; the higher the better), and the difference
(MLM Diff.) of the MLM score to the inital MLM score. All scores are averaged over 5 runs (seeds) and all primary
and secondary tasks. The confidence represents 95% estimate (1.96 standard errors). In all columns, higher values
are preferable. We mark the best score (per column) in bold and the second best with an underline. See Table 2 for
the primary scores on each of the tasks.

network is reused with a new task-specific classi-
fication head, fine-tuned on a secondary task, and
then evaluated on the respective test sets.

During MLM probing, the embedding network
remains unchanged while a two-layer MLP decoder
head is tuned to solve an MLM task (a small por-
tion of wikitext, see Table 5 in Appendix A for
a detailed list of used hyperparameters). After a
few epochs of training, the model is evaluated on
the test set. Re-training an MLM head may not
seem necessary (as one might want to conserve the
original embeddings). We believe, however, that a
simple transformation (e.g. a rotation, scaling, etc.)
should not be counted as a reduction in the general
capabilities: The underlying information content
would not have changed, only the representation.
Hence, we re-train the MLM decoder to correct for
such transformations.

To fine-tune the (already tuned) model on the
secondary tasks, we use the same hyperparameter
as presented in Table 1. Regardless of the fine-
tuning strategy that is applied in the primary adap-
tation, we first tune the task-specific decoder to
adapt to the current state of the embedding network

(the scores of tuning only the decoder are reported
separately; this is similar to Xu et al., 2021). We
then apply a full fine-tuning of the model together
with the decoder. This ensures a fair evaluation
and guarantees we are measuring a property of the
current state of the model, not the ability of the
approach to adapt the model. The learning rate is
selected based on a grid search conducted on the
pretrained version of the model. Thus, for all sec-
ondary fine-tuning runs, the same learning rates are
used.

4.3 Results

Table 3 contains a summary of the collected results.
As mentioned in the previous section, LoRA ex-
hibits the largest average primary test scores among
the parameter-efficient fine-tuning techniques. In
terms of the generalization, it has a mid-range rank.

As expected, using the largest Fisher informa-
tion on the pretraining data not only fares worse
in regard to the primary score but also is one of
the worst with respect to its generalization capabili-
ties. Using these statistics combined with the down-
stream information, however, does slightly improve

1750

the subsets based on the largest downstream Fisher
information (largest downstream sq-grad). If the
embedding network is not tuned a second time (but
only the task-specific decoder), this approach also
outperforms BitFit.
Subset tuning impairs adaptation to new tasks.
None of the strategies outperform full fine-tuning in
terms of the embedding network’s ability to adapt
to new tasks by fine-tuning the complete model or
only the decoder. Follow-up experiments would
be required to determine whether the same applies
when fine-tuning the model with the same strategy
as in the primary adaptation.
BitFit with small train/test gap. As observed by
Zaken et al. (2022), BitFit has a very low train/test
gap. In our experiments, it has the lowest train/test
gap among the PEFT methods. Only one of the
regularized methods has a better gap (here the test
score is higher; the primary score is very low). Full
fine-tuning (as one might expect) has the highest
overall train/test gap.

Ablation: Similar vs. Dissimilar Secondary
Tasks
In a follow-up experiment, we assess the impact
of the similarity between the primary and sec-
ondary tasks. We first fine-tune a cross-lingual
transformer model (XLM-RoBERTa-base, 279M pa-
rameters, Conneau et al., 2020) on the English ver-
sion of CoNLL-2003 (a named entity recognition
task) and then evaluate its performance after run-
ning a secondary fine-tuning on CoNLL-2003 in
German (which we assume to be similar as the
classes are identical) as well as TREC-6 which is
a question classification task and thus differs more
from the primary task.

Unfortunately, the data is fairly inconsistent.
Since we only used two tasks (one for each cat-
egory of similar vs. dissimilar), it is not possible to
draw any definite conclusions from this. Nonethe-
less, we include these results in the appendix. Ta-
ble 8 in the appendix contains a detailed report of
these results.

5 Conclusion

In our evaluation of fine-tuning strategies, full
fine-tuning consistently outperforms all parameter-
efficient fine-tuning (PEFT) methods across vari-
ous tasks. LoRA consistently ranks among the top
two PEFT methods in our experiments.

Examining the utilization of gradient statistics,
we observe that the method using combined gra-

dient statistics consistently outperforms its coun-
terparts, although the performance improvement is
marginal. On average, this approach surpasses all
proper subset tuning methods that do not necessi-
tate initial full fine-tuning.

Nevertheless, it is worth noting that the differ-
ences in performance across these experiments may
not be substantial enough to justify the added com-
plexity. Surprisingly, even the random baseline,
with a sufficiently high learning rate, demonstrates
competitive performance, occasionally outperform-
ing other PEFT methods.

Liang et al. (2021) demonstrate the impact of the
subset size on the question of whether a "winning"
lottery ticket can be found (with or without opti-
mizing parameters to retrieve it). Our experiments
extend this analysis into much smaller subset sizes.
The results indicate that random subsets may not
necessarily produce worse results than "winning"
tickets (c.f. Gong et al., 2022; Liang et al., 2021).
Instead, using a higher learning rate when tuning
random subsets may shrink or diminish these per-
formance differences.

Given the strong results of the random baseline
and the generally similar performance on primary
tasks, our results call into question whether there
is a clear optimal subset of parameters to tune. Fur-
thermore, our generalization experiments indicate
that selective PEFT strategies impair rather than
increase generalizability to secondary tasks, likely
due to PEFT affecting more localized and severe
changes to the transformer network.

Limitations

The experiments we report on in this paper were
performed using a single model (roberta-base)
and on a limited number of tasks. Hence, there is
no guarantee that these findings transfer to large
models and more complex transfer-learning scenar-
ios. Due to the exhaustive learning rate search, we
set out to conduct and given the resources that were
available to us, testing the observations on a larger
set of models and tasks was not possible. Testing
specific hypotheses on a broader set of models and
tasks may be part of future work.

Impact Statement

Large language models have the potential to re-
produce multiple forms of stereotypes due to their
ability to absorb societal biases ingrained in the
training data. Research into parameter-efficient

1751

fine-tuning methods is unlikely to change this be-
havior. Additionally, training of language models
is computationally demanding and carries a sub-
stantial environmental burden. This complexity
further hampers the prospects of reproducing re-
search findings and conducting subsequent studies
in an academic setting. Parameter-efficient fine-
tuning aims to reduce the required computational
resources and might enable broader use of such
models.

The experiments we conducted in the context of
this paper amount to an estimated number of 150
GPU days using a mix of GPUs (mostly Nvidia
Tesla V100S and some Nvidia Ampere A100).

Acknowledgements

We thank all reviewers for their valuable comments.
Max Ploner and Alan Akbik are supported by the
Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) under Germany’s Excellence
Strategy – EXC 2002/1 “Science of Intelligence”
– project number 390523135. Alan Akbik is fur-
ther supported by the Deutsche Forschungsgemein-
schaft (DFG, German Research Foundation) under
Emmy Noether grant “Eidetic Representations of
Natural Language” (project number 448414230)

References

Alan Akbik, Tanja Bergmann, Duncan Blythe, Kashif
Rasul, Stefan Schweter, and Roland Vollgraf. 2019.
FLAIR: An Easy-to-Use Framework for State-of-
the-Art NLP. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Associa-
tion for Computational Linguistics (Demonstrations),
pages 54–59, Minneapolis, Minnesota. Association
for Computational Linguistics.

Tianlong Chen, Jonathan Frankle, Shiyu Chang, Sijia
Liu, Yang Zhang, Zhangyang Wang, and Michael
Carbin. 2020. The Lottery Ticket Hypothesis for
Pre-trained BERT Networks. In Proceedings of the
34th International Conference on Neural Information
Processing Systems, NIPS’20, pages 15834–15846,
Red Hook, NY, USA. Curran Associates Inc.

Xiaohan Chen, Yu Cheng, Shuohang Wang, Zhe Gan,
Jingjing Liu, and Zhangyang Wang. 2021. The Elas-
tic Lottery Ticket Hypothesis.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
Cross-lingual Representation Learning at Scale.

Ganqu Cui, Wentao Li, Ning Ding, Longtao Huang,
Zhiyuan Liu, and Maosong Sun. 2023. Decoder Tun-
ing: Efficient Language Understanding as Decoding.

Jonathan Frankle and Michael Carbin. 2019. The Lot-
tery Ticket Hypothesis: Finding Sparse, Trainable
Neural Networks. arXiv:1803.03635 [cs].

Zhuocheng Gong, Di He, Yelong Shen, Tie-Yan Liu,
Weizhu Chen, Dongyan Zhao, Ji-Rong Wen, and Rui
Yan. 2022. Finding the Dominant Winning Ticket
in Pre-Trained Language Models. In Findings of
the Association for Computational Linguistics: ACL
2022, pages 1459–1472, Dublin, Ireland. Association
for Computational Linguistics.

Demi Guo, Alexander M. Rush, and Yoon Kim. 2021.
Parameter-Efficient Transfer Learning with Diff Prun-
ing.

Patrick Haller, Ansar Aynetdinov, and Alan Akbik.
2023. OpinionGPT: Modelling Explicit Biases in
Instruction-Tuned LLMs.

Eduard Hovy, Laurie Gerber, Ulf Hermjakob, Chin-
Yew Lin, and Deepak Ravichandran. 2001. Toward
Semantics-Based Answer Pinpointing. In Proceed-
ings of the First International Conference on Human
Language Technology Research.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2021. LoRA: Low-Rank Adaptation
of Large Language Models.

Diederik P. Kingma and Jimmy Ba. 2017. Adam: A
Method for Stochastic Optimization.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz,
Joel Veness, Guillaume Desjardins, Andrei A. Rusu,
Kieran Milan, John Quan, Tiago Ramalho, Ag-
nieszka Grabska-Barwinska, Demis Hassabis, Clau-
dia Clopath, Dharshan Kumaran, and Raia Had-
sell. 2017. Overcoming catastrophic forgetting
in neural networks. Proceedings of the National
Academy of Sciences of the United States of America,
114(13):3521–3526.

Xin Li and Dan Roth. 2002. Learning Question Clas-
sifiers. In COLING 2002: The 19th International
Conference on Computational Linguistics.

Vladislav Lialin, Vijeta Deshpande, and Anna
Rumshisky. 2023. Scaling Down to Scale Up: A
Guide to Parameter-Efficient Fine-Tuning.

Chen Liang, Simiao Zuo, Minshuo Chen, Haoming
Jiang, Xiaodong Liu, Pengcheng He, Tuo Zhao, and
Weizhu Chen. 2021. Super Tickets in Pre-Trained
Language Models: From Model Compression to Im-
proving Generalization.

Yong Lin, Lu Tan, Hangyu Lin, Zeming Zheng, Renjie
Pi, Jipeng Zhang, Shizhe Diao, Haoxiang Wang, Han
Zhao, Yuan Yao, and Tong Zhang. 2023. Speciality
vs Generality: An Empirical Study on Catastrophic
Forgetting in Fine-tuning Foundation Models.

1752

https://doi.org/10.18653/v1/N19-4010
https://doi.org/10.18653/v1/N19-4010
http://arxiv.org/abs/2103.16547
http://arxiv.org/abs/2103.16547
https://doi.org/10.48550/arXiv.1911.02116
https://doi.org/10.48550/arXiv.1911.02116
http://arxiv.org/abs/2212.08408
http://arxiv.org/abs/2212.08408
http://arxiv.org/abs/1803.03635
http://arxiv.org/abs/1803.03635
http://arxiv.org/abs/1803.03635
https://doi.org/10.18653/v1/2022.findings-acl.115
https://doi.org/10.18653/v1/2022.findings-acl.115
https://doi.org/10.48550/arXiv.2012.07463
https://doi.org/10.48550/arXiv.2012.07463
https://doi.org/10.48550/arXiv.2309.03876
https://doi.org/10.48550/arXiv.2309.03876
https://aclanthology.org/H01-1069
https://aclanthology.org/H01-1069
https://doi.org/10.48550/arXiv.2106.09685
https://doi.org/10.48550/arXiv.2106.09685
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.1073/pnas.1611835114
https://doi.org/10.1073/pnas.1611835114
https://aclanthology.org/C02-1150
https://aclanthology.org/C02-1150
http://arxiv.org/abs/2303.15647
http://arxiv.org/abs/2303.15647
https://doi.org/10.48550/arXiv.2105.12002
https://doi.org/10.48550/arXiv.2105.12002
https://doi.org/10.48550/arXiv.2105.12002
http://arxiv.org/abs/2309.06256
http://arxiv.org/abs/2309.06256
http://arxiv.org/abs/2309.06256

David Lopez-Paz and Marc’Aurelio Ranzato. 2022.
Gradient Episodic Memory for Continual Learning.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
Weight Decay Regularization.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2016. Pointer Sentinel Mixture Mod-
els.

Sai Prasanna, Anna Rogers, and Anna Rumshisky. 2020.
When BERT Plays the Lottery, All Tickets Are Win-
ning.

Wang Qi, Yu-Ping Ruan, Yuan Zuo, and Taihao Li. 2022.
Parameter-Efficient Tuning on Layer Normalization
for Pre-trained Language Models.

Skipper Seabold and Josef Perktold. 2010. Statsmod-
els: Econometric and Statistical Modeling with
Python. In Python in Science Conference, pages
92–96, Austin, Texas.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive Deep Models for
Semantic Compositionality Over a Sentiment Tree-
bank. In Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Processing,
pages 1631–1642, Seattle, Washington, USA. Asso-
ciation for Computational Linguistics.

Yi-Lin Sung, Varun Nair, and Colin Raffel. 2021. Train-
ing Neural Networks with Fixed Sparse Masks.

Erik F. Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the CoNLL-2003 Shared Task:
Language-Independent Named Entity Recognition.
In Proceedings of the Seventh Conference on Natu-
ral Language Learning at HLT-NAACL 2003, pages
142–147.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel Bowman. 2018. GLUE:
A Multi-Task Benchmark and Analysis Platform for
Natural Language Understanding. In Proceedings
of the 2018 EMNLP Workshop BlackboxNLP: An-
alyzing and Interpreting Neural Networks for NLP,
pages 353–355, Brussels, Belgium. Association for
Computational Linguistics.

Runxin Xu, Fuli Luo, Zhiyuan Zhang, Chuanqi Tan,
Baobao Chang, Songfang Huang, and Fei Huang.
2021. Raise a Child in Large Language Model: To-
wards Effective and Generalizable Fine-tuning. In
Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, pages
9514–9528, Online and Punta Cana, Dominican Re-
public. Association for Computational Linguistics.

Elad Ben Zaken, Shauli Ravfogel, and Yoav Goldberg.
2022. BitFit: Simple Parameter-efficient Fine-tuning
for Transformer-based Masked Language-models.

Rui Zheng, Bao Rong, Yuhao Zhou, Di Liang, Sirui
Wang, Wei Wu, Tao Gui, Qi Zhang, and Xuanjing
Huang. 2022. Robust Lottery Tickets for Pre-trained
Language Models. In Proceedings of the 60th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 2211–2224,
Dublin, Ireland. Association for Computational Lin-
guistics.

Hattie Zhou, Janice Lan, Rosanne Liu, and Jason Yosin-
ski. 2020. Deconstructing Lottery Tickets: Zeros,
Signs, and the Supermask. arXiv:1905.01067 [cs,
stat].

A Additional Setup Details

Table 4 and 5 present the hyperparameters used for
tuning the task decoders as well as the decoders
used in masked language model probing.

Hyperparameter Value

Number of epochs 5
Learning rate 4 × 10−4

Batch size 64
Weight decay none

Gradient norm clipping 5.0
Learning rate schedule Linear with warm-up

Warm-up fraction 10%

Table 4: The hyperparameters used to fine-tune the task-
specific decoders. Default values of Flair (Akbik et al.,
2019) for fine-tuning are denoted in italics.

Hyperparameter Value

Number of epochs 4
Learning rate 2 × 10−3

Batch size 64
Weight decay 0.05

Learning rate schedule Constant

Table 5: The hyperparameters that used to fine-tune the
MLM head.

B Additional Data

In the following, we present some alternative per-
spectives on the experiments discussed in this paper.
The results are derived from the same set of experi-
ments and are purely a different way of presenting
them.

1753

https://doi.org/10.48550/arXiv.1706.08840
https://doi.org/10.48550/arXiv.1711.05101
https://doi.org/10.48550/arXiv.1711.05101
https://doi.org/10.48550/arXiv.1609.07843
https://doi.org/10.48550/arXiv.1609.07843
https://doi.org/10.48550/arXiv.2005.00561
https://doi.org/10.48550/arXiv.2005.00561
https://arxiv.org/abs/2211.08682v3
https://arxiv.org/abs/2211.08682v3
https://doi.org/10.25080/Majora-92bf1922-011
https://doi.org/10.25080/Majora-92bf1922-011
https://doi.org/10.25080/Majora-92bf1922-011
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170
http://arxiv.org/abs/2111.09839
http://arxiv.org/abs/2111.09839
https://aclanthology.org/W03-0419
https://aclanthology.org/W03-0419
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/2021.emnlp-main.749
https://doi.org/10.18653/v1/2021.emnlp-main.749
https://doi.org/10.48550/arXiv.2106.10199
https://doi.org/10.48550/arXiv.2106.10199
https://doi.org/10.18653/v1/2022.acl-long.157
https://doi.org/10.18653/v1/2022.acl-long.157
http://arxiv.org/abs/1905.01067
http://arxiv.org/abs/1905.01067

10 3

10 1

Le
ar

ni
ng

 ra
te

Pruning w/o re-training
on trec-6

Pruning w/o re-training
on conll03

10 3

10 1

Le
ar

ni
ng

 ra
te

Pruning with re-training
on trec-6

Pruning with re-training
on conll03

10 3

10 1

Le
ar

ni
ng

 ra
te

Random subset
on trec-6

Random subset
on conll03

10 3

10 1

Le
ar

ni
ng

 ra
te

Largest downstr. sq-grad
on trec-6

Largest downstr. sq-grad
on conll03

10 3

10 1

Le
ar

ni
ng

 ra
te

Largest pretr. sq-grad
on trec-6

Largest pretr. sq-grad
on conll03

10 4 10 1

Subset size

10 3

10 1

Le
ar

ni
ng

 ra
te

Combined gradient stats
on trec-6

10 4 10 1

Subset size

Combined gradient stats
on conll03

Figure 4: Selected learning rates for each subset size.
Each grid intersection represents (at least) one experi-
ment conducted in the parameter search. The best learn-
ing is represented by a marker. Learning rates that are
at the limits of the tested intervals are marked red and
may not be optimal given the used resolution (we used
learning rates which, on a logarithmic scale, are approx-
imately equally spaced: 1× 10−4, 2× 10−4, 5× 10−4,
1× 10−3, and so on).

Higher Mean Lower Mean p-value

Full fine-tuning

LoRA (rank 4) 0.0006%

Random subset 0.0000%

Bitfit 0.0000%

Largest pretr. sq-grad 0.0000%

Largest downstr. sq-grad 0.0000%

Combined gradient stats 0.0000%

Pruning with re-training 0.0000%

Pruning w/o re-training 0.0000%

LoRA (rank 4)

Random subset 0.4146%

Bitfit 0.0002%

Largest pretr. sq-grad 0.0000%

Largest downstr. sq-grad 0.0029%

Pruning w/o re-training 0.0000%

Combined gradient stats Largest pretr. sq-grad 0.5013%

Pruning w/o re-training 0.4146%

Pruning with re-training Largest pretr. sq-grad 0.6073%

Pruning w/o re-training 0.4855%

Table 6: Corrected p-values of hypothesis tests for differ-
ence in means. Pairwise t-test conducted based on OLS
model test_score ∼ C(variant) + C(task) to correct
for the different task means (using the implementation
by Seabold and Perktold, 2010). The p-values have been
adjusted for the testing of multiple hypotheses.

CoNLL-2003 QNLI SST-2 TREC-6

Full fine-tuning 4 × 10−5 1 × 10−5 1 × 10−5 7 × 10−5

LoRA (rank 4) 1 × 10−3 5 × 10−4 5 × 10−4 1 × 10−3

Random subset 7 × 10−3 4 × 10−3 7 × 10−3 7 × 10−3

Bitfit 1 × 10−3 1 × 10−3 7 × 10−4 1 × 10−3

Largest pretr. sq-grad 4 × 10−4 1 × 10−4 1 × 10−4 1 × 10−3

Largest downstr. sq-grad 4 × 10−4 1 × 10−4 1 × 10−4 1 × 10−3

Combined gradient stats 4 × 10−4 1 × 10−4 1 × 10−4 7 × 10−4

Pruning with re-training 1 × 10−2 4 × 10−3 4 × 10−3 1 × 10−2

Pruning w/o re-training 1 × 10−4 1 × 10−4 1 × 10−4 1 × 10−4

Table 7: Learning rates selected for tuning models using
each of the variants.

1754

1 2 3 4 16 64
Rank

0.960

0.965

0.970

0.975

Te
st

 sc
or

e

TREC-6

1 2 3 4 16 64
Rank

0.935

0.940

0.945
SST-2

1 2 3 4 16 64
Rank

0.905

0.910

0.915

0.920
CoNLL-2003

1 2 3 4 16 64
Rank

0.905

0.910

0.915

0.920

QNLI

Figure 5: Primary test performance using Low-Rank adoption (Hu et al., 2021) with varying ranks.

CoNLL-2003
(English) CoNLL-2003 (German) TREC-6

Sec. (decoder) Sec. (full) Sec. (decoder) Sec. (full)

Subset size Variant

0.0001

Combined gradient stats 0.8874 ± 0.0011 0.7808 ± 0.0051 0.8659 ± 0.0036 0.5048 ± 0.0819 0.9624 ± 0.0047

Largest downstr. sq-grad 0.8849 ± 0.0024 0.7749 ± 0.0022 0.8648 ± 0.0029 0.5252 ± 0.0310 0.9660 ± 0.0057

Largest pretr. sq-grad 0.8665 ± 0.0014 0.7419 ± 0.0049 0.8608 ± 0.0031 0.4928 ± 0.0846 0.9660 ± 0.0045

Pruning w/o re-training 0.8867 ± 0.0010 0.7926 ± 0.0022 0.8717 ± 0.0015 0.4860 ± 0.0405 0.9716 ± 0.0040

Pruning with re-training 0.8618 ± 0.0017 0.4617 ± 0.0118 0.8598 ± 0.0031 0.3048 ± 0.0472 0.9636 ± 0.0042

Random subset 0.8590 ± 0.0016 0.3151 ± 0.0184 0.8504 ± 0.0043 0.2576 ± 0.0084 0.9572 ± 0.0036

0.0010

Combined gradient stats 0.8962 ± 0.0005 0.7868 ± 0.0048 0.8690 ± 0.0022 0.4708 ± 0.0674 0.9700 ± 0.0028

Largest downstr. sq-grad 0.8980 ± 0.0015 0.7883 ± 0.0036 0.8704 ± 0.0029 0.4468 ± 0.0341 0.9700 ± 0.0028

Largest pretr. sq-grad 0.8910 ± 0.0017 0.7655 ± 0.0077 0.8654 ± 0.0026 0.5488 ± 0.0279 0.9640 ± 0.0071

Pruning w/o re-training 0.8891 ± 0.0012 0.7899 ± 0.0016 0.8719 ± 0.0008 0.4972 ± 0.0224 0.9700 ± 0.0045

Pruning with re-training 0.8986 ± 0.0008 0.7410 ± 0.0026 0.8578 ± 0.0041 0.4404 ± 0.0554 0.9680 ± 0.0045

Random subset 0.9000 ± 0.0012 0.7430 ± 0.0093 0.8581 ± 0.0031 0.3924 ± 0.0634 0.9684 ± 0.0050

0.0100

Combined gradient stats 0.9081 ± 0.0012 0.7896 ± 0.0058 0.8682 ± 0.0024 0.4524 ± 0.0625 0.9656 ± 0.0068

Largest downstr. sq-grad 0.9078 ± 0.0011 0.7991 ± 0.0024 0.8683 ± 0.0017 0.4240 ± 0.0675 0.9696 ± 0.0015

Largest pretr. sq-grad 0.9028 ± 0.0007 0.7671 ± 0.0035 0.8636 ± 0.0049 0.5052 ± 0.0244 0.9636 ± 0.0029

Pruning w/o re-training 0.9078 ± 0.0009 0.7987 ± 0.0041 0.8727 ± 0.0030 0.5352 ± 0.0242 0.9680 ± 0.0041

Pruning with re-training 0.9121 ± 0.0012 0.7912 ± 0.0035 0.8668 ± 0.0024 0.5316 ± 0.0364 0.9704 ± 0.0015

Random subset 0.9112 ± 0.0014 0.7927 ± 0.0020 0.8670 ± 0.0033 0.4956 ± 0.0419 0.9636 ± 0.0034

0.1000

Combined gradient stats 0.9135 ± 0.0016 0.7918 ± 0.0046 0.8661 ± 0.0044 0.5112 ± 0.0318 0.9676 ± 0.0038

Largest downstr. sq-grad 0.9139 ± 0.0016 0.7881 ± 0.0032 0.8629 ± 0.0038 0.5420 ± 0.0218 0.9696 ± 0.0042

Largest pretr. sq-grad 0.9117 ± 0.0013 0.7811 ± 0.0043 0.8664 ± 0.0017 0.5196 ± 0.0463 0.9660 ± 0.0054

Pruning w/o re-training 0.9080 ± 0.0011 0.7989 ± 0.0041 0.8720 ± 0.0025 0.5332 ± 0.0264 0.9688 ± 0.0046

Pruning with re-training 0.9123 ± 0.0012 0.7885 ± 0.0050 0.8651 ± 0.0044 0.5536 ± 0.0366 0.9688 ± 0.0058

Random subset 0.9108 ± 0.0011 0.7701 ± 0.0056 0.8638 ± 0.0039 0.4304 ± 0.0895 0.9656 ± 0.0049

Table 8: After training on CoNLL-2003 (English) using each of the variants, the resulting models are adapted
(using full FT) to a secondary dataset. Directly adapting the pre-trained model yields a score (and 95% confindence
interval) of 0.8724 ± 0.0020 for CoNLL-2003 (German) and 0.9752 ± 0.0040 for TREC-6. Following previous
work, we report F1 score (micro average) for CoNLL-2003 (English & German) and accuracy for the other tasks.

1755

Primary score Secondary Score Diff. MLM Precision @1
Primary task Variant

CoNLL-2003

Full fine-tuning 0.9217 ± 0.0004 -0.0025 ± 0.0011 0.3756 ± 0.0011

Regularized FT (L1, 0.01) 0.9013 ± 0.0003 -0.0030 ± 0.0016 0.4044 ± 0.0007

Regularized FT (L1, 0.10) 0.8824 ± 0.0006 -0.0018 ± 0.0011 0.3869 ± 0.0012

Regularized FT (L2, 0.01) 0.9203 ± 0.0004 -0.0050 ± 0.0015 0.3870 ± 0.0023

Regularized FT (L2, 0.10) 0.9210 ± 0.0011 -0.0038 ± 0.0015 0.4067 ± 0.0015
LoRA (rank 4) 0.9139 ± 0.0007 -0.0074 ± 0.0019 0.3659 ± 0.0055

Random subset 0.9087 ± 0.0005 -0.0039 ± 0.0017 0.3754 ± 0.0027

Bitfit 0.9080 ± 0.0006 -0.0023 ± 0.0010 0.3481 ± 0.0015

Largest pretr. sq-grad 0.9073 ± 0.0006 -0.0063 ± 0.0015 0.2965 ± 0.0021

Largest downstr. sq-grad 0.9073 ± 0.0008 -0.0049 ± 0.0018 0.3283 ± 0.0014

Combined gradient stats 0.9082 ± 0.0009 -0.0046 ± 0.0016 0.3316 ± 0.0008

Pruning with re-training 0.9108 ± 0.0010 -0.0070 ± 0.0021 0.3552 ± 0.0028

Pruning w/o re-training 0.9002 ± 0.0004 -0.0015 ± 0.0013 0.3891 ± 0.0012

QNLI

Full fine-tuning 0.9290 ± 0.0007 -0.0020 ± 0.0007 0.4067 ± 0.0007

Regularized FT (L1, 0.01) 0.8701 ± 0.0004 -0.0025 ± 0.0014 0.4177 ± 0.0009

Regularized FT (L1, 0.10) 0.8323 ± 0.0004 -0.0022 ± 0.0014 0.4259 ± 0.0007
Regularized FT (L2, 0.01) 0.9270 ± 0.0008 -0.0019 ± 0.0021 0.4146 ± 0.0016

Regularized FT (L2, 0.10) 0.9242 ± 0.0007 -0.0047 ± 0.0026 0.4210 ± 0.0006

LoRA (rank 4) 0.9165 ± 0.0009 -0.0279 ± 0.0439 0.3776 ± 0.0049

Random subset 0.9048 ± 0.0012 -0.0056 ± 0.0013 0.3817 ± 0.0013

Bitfit 0.9039 ± 0.0007 -0.0038 ± 0.0013 0.2595 ± 0.0066

Largest pretr. sq-grad 0.9037 ± 0.0011 -0.0027 ± 0.0008 0.3040 ± 0.0055

Largest downstr. sq-grad 0.9075 ± 0.0004 -0.0037 ± 0.0015 0.3461 ± 0.0050

Combined gradient stats 0.9100 ± 0.0008 -0.0028 ± 0.0015 0.3407 ± 0.0045

Pruning with re-training 0.9059 ± 0.0010 -0.0051 ± 0.0016 0.3828 ± 0.0025

Pruning w/o re-training 0.9102 ± 0.0006 -0.0013 ± 0.0014 0.3825 ± 0.0012

SST-2

Full fine-tuning 0.9468 ± 0.0005 -0.0012 ± 0.0009 0.3957 ± 0.0027

Regularized FT (L1, 0.01) 0.9326 ± 0.0009 -0.0020 ± 0.0013 0.4279 ± 0.0007

Regularized FT (L1, 0.10) 0.9177 ± 0.0006 -0.0019 ± 0.0016 0.4328 ± 0.0005
Regularized FT (L2, 0.01) 0.9436 ± 0.0009 -0.0032 ± 0.0013 0.4034 ± 0.0008

Regularized FT (L2, 0.10) 0.9438 ± 0.0009 -0.0033 ± 0.0016 0.4169 ± 0.0012

LoRA (rank 4) 0.9406 ± 0.0012 -0.0451 ± 0.0766 0.3737 ± 0.0020

Random subset 0.9342 ± 0.0011 -0.0077 ± 0.0016 0.3394 ± 0.0026

Bitfit 0.9383 ± 0.0011 -0.0019 ± 0.0010 0.3393 ± 0.0016

Largest pretr. sq-grad 0.9378 ± 0.0021 -0.0021 ± 0.0010 0.3531 ± 0.0016

Largest downstr. sq-grad 0.9399 ± 0.0012 -0.0017 ± 0.0012 0.3611 ± 0.0013

Combined gradient stats 0.9431 ± 0.0013 -0.0011 ± 0.0011 0.3582 ± 0.0013

Pruning with re-training 0.9390 ± 0.0018 -0.0051 ± 0.0015 0.3854 ± 0.0016

Pruning w/o re-training 0.9376 ± 0.0024 -0.0021 ± 0.0014 0.3950 ± 0.0009

TREC-6

Full fine-tuning 0.9752 ± 0.0019 -0.0022 ± 0.0014 0.3669 ± 0.0032

Regularized FT (L1, 0.01) 0.9528 ± 0.0009 -0.0040 ± 0.0021 0.4203 ± 0.0002
Regularized FT (L1, 0.10) 0.9296 ± 0.0010 -0.0017 ± 0.0012 0.4133 ± 0.0006

Regularized FT (L2, 0.01) 0.9720 ± 0.0027 -0.0023 ± 0.0013 0.4011 ± 0.0025

Regularized FT (L2, 0.10) 0.9724 ± 0.0013 -0.0044 ± 0.0017 0.4166 ± 0.0010

LoRA (rank 4) 0.9708 ± 0.0017 -0.0053 ± 0.0009 0.3659 ± 0.0039

Random subset 0.9720 ± 0.0013 -0.0022 ± 0.0013 0.4135 ± 0.0015

Bitfit 0.9592 ± 0.0024 -0.0024 ± 0.0016 0.3505 ± 0.0024

Largest pretr. sq-grad 0.9552 ± 0.0025 -0.0091 ± 0.0020 0.2354 ± 0.0049

Largest downstr. sq-grad 0.9580 ± 0.0020 -0.0067 ± 0.0016 0.2781 ± 0.0058

Combined gradient stats 0.9644 ± 0.0012 -0.0048 ± 0.0018 0.2936 ± 0.0043

Pruning with re-training 0.9696 ± 0.0007 -0.0026 ± 0.0011 0.4097 ± 0.0016

Pruning w/o re-training 0.9556 ± 0.0009 -0.0003 ± 0.0010 0.4149 ± 0.0013

Table 9: Performance of the tested variants using roberta-base. Primary and secondary score compared to full
fine-tuning on the pretrained embedding. MLM is the MLM precision @1 score. All scores are averaged over 5
runs (seeds) and all secondary tasks.

1756

Re
lat

ive
 n

um
be

r o
f p

ar
am

et
er

s

task = CoNLL-2003

variant =
 Random

 subset

task = TREC-6

Re
lat

ive
 n

um
be

r o
f p

ar
am

et
er

s variant =
 Full fine-tuning

10 9 10 5 10 1

Magnitude of change

Re
lat

ive
 n

um
be

r o
f p

ar
am

et
er

s

10 9 10 5 10 1

Magnitude of change

variant =
 Bitfit

1e-06
1e-05
0.0001
0.001
0.01
0.1

Re
lat

ive
 n

um
be

r o
f p

ar
am

et
er

s

task = TREC-6

variant =
 Pruning with re-training

task = CoNLL-2003

Re
lat

ive
 n

um
be

r o
f p

ar
am

et
er

s

variant =
 Largest downstr. sq-grad

Re
lat

ive
 n

um
be

r o
f p

ar
am

et
er

s variant =
 Largest pretr. sq-grad

10 9 10 6 10 3 100

Magnitude of change

Re
lat

ive
 n

um
be

r o
f p

ar
am

et
er

s

10 9 10 6 10 3 100

Magnitude of change

variant =
 Com

bined gradient stats

1e-06
1e-05
0.0001
0.001
0.01
0.1

Figure 6: The relative number of parameters with a certain magnitude of change over the different subset sizes.

1757

Primary score MLM score CoNLL-2003 QNLI SST-2 TREC-6
Primary task Variant

CoNLL-2003

Bitfit 0.9080 ± 0.0006 0.3481 ± 0.0015 0.9213 ± 0.0012 0.9269 ± 0.0014 0.9433 ± 0.0023 0.9720 ± 0.0021

Combined gradient stats 0.9082 ± 0.0009 0.3316 ± 0.0008 0.9197 ± 0.0018 0.9239 ± 0.0012 0.9383 ± 0.0018 0.9724 ± 0.0042

Full fine-tuning 0.9217 ± 0.0004 0.3756 ± 0.0011 0.9206 ± 0.0017 0.9255 ± 0.0008 0.9433 ± 0.0034 0.9732 ± 0.0020

Largest downstr. sq-grad 0.9073 ± 0.0008 0.3283 ± 0.0014 0.9204 ± 0.0015 0.9248 ± 0.0013 0.9358 ± 0.0019 0.9720 ± 0.0021

Largest pretr. sq-grad 0.9073 ± 0.0006 0.2965 ± 0.0021 0.9180 ± 0.0015 0.9235 ± 0.0017 0.9381 ± 0.0028 0.9680 ± 0.0041

LoRA (rank 4) 0.9139 ± 0.0007 0.3659 ± 0.0055 0.9173 ± 0.0012 0.9166 ± 0.0015 0.9385 ± 0.0041 0.9708 ± 0.0029

Pruning w/o re-training 0.9002 ± 0.0004 0.3891 ± 0.0012 0.9218 ± 0.0019 0.9277 ± 0.0011 0.9424 ± 0.0027 0.9748 ± 0.0032

Pruning with re-training 0.9108 ± 0.0010 0.3552 ± 0.0028 0.9186 ± 0.0033 0.9179 ± 0.0011 0.9369 ± 0.0036 0.9712 ± 0.0029

Random subset 0.9087 ± 0.0005 0.3754 ± 0.0027 0.9188 ± 0.0011 0.9233 ± 0.0018 0.9394 ± 0.0035 0.9756 ± 0.0015

Regularized FT (L1, 0.01) 0.9013 ± 0.0003 0.4044 ± 0.0007 0.9217 ± 0.0007 0.9278 ± 0.0008 0.9399 ± 0.0034 0.9712 ± 0.0032

Regularized FT (L1, 0.10) 0.8824 ± 0.0006 0.3869 ± 0.0012 0.9211 ± 0.0008 0.9275 ± 0.0009 0.9424 ± 0.0022 0.9744 ± 0.0029

Regularized FT (L2, 0.01) 0.9203 ± 0.0004 0.3870 ± 0.0023 0.9211 ± 0.0022 0.9229 ± 0.0012 0.9404 ± 0.0016 0.9684 ± 0.0031

Regularized FT (L2, 0.10) 0.9210 ± 0.0011 0.4067 ± 0.0015 0.9213 ± 0.0019 0.9248 ± 0.0006 0.9394 ± 0.0025 0.9720 ± 0.0025

QNLI

Bitfit 0.9039 ± 0.0007 0.2595 ± 0.0066 0.9188 ± 0.0019 0.9248 ± 0.0013 0.9406 ± 0.0023 0.9736 ± 0.0029

Combined gradient stats 0.9100 ± 0.0008 0.3407 ± 0.0045 0.9173 ± 0.0014 0.9256 ± 0.0008 0.9420 ± 0.0017 0.9768 ± 0.0032

Full fine-tuning 0.9290 ± 0.0007 0.4067 ± 0.0007 0.9206 ± 0.0011 0.9270 ± 0.0013 0.9450 ± 0.0012 0.9720 ± 0.0018

Largest downstr. sq-grad 0.9075 ± 0.0004 0.3461 ± 0.0050 0.9182 ± 0.0003 0.9257 ± 0.0012 0.9388 ± 0.0018 0.9752 ± 0.0029

Largest pretr. sq-grad 0.9037 ± 0.0011 0.3040 ± 0.0055 0.9184 ± 0.0013 0.9257 ± 0.0008 0.9445 ± 0.0029 0.9732 ± 0.0010

LoRA (rank 4) 0.9165 ± 0.0009 0.3776 ± 0.0049 0.9167 ± 0.0004 0.9260 ± 0.0018 0.9392 ± 0.0031 0.8792 ± 0.1750

Pruning w/o re-training 0.9102 ± 0.0006 0.3825 ± 0.0012 0.9193 ± 0.0018 0.9263 ± 0.0015 0.9447 ± 0.0026 0.9772 ± 0.0032

Pruning with re-training 0.9059 ± 0.0010 0.3828 ± 0.0025 0.9161 ± 0.0021 0.9240 ± 0.0017 0.9399 ± 0.0048 0.9724 ± 0.0029

Random subset 0.9048 ± 0.0012 0.3817 ± 0.0013 0.9175 ± 0.0013 0.9246 ± 0.0023 0.9385 ± 0.0027 0.9696 ± 0.0026

Regularized FT (L1, 0.01) 0.8701 ± 0.0004 0.4177 ± 0.0009 0.9197 ± 0.0011 0.9258 ± 0.0009 0.9415 ± 0.0033 0.9756 ± 0.0026

Regularized FT (L1, 0.10) 0.8323 ± 0.0004 0.4259 ± 0.0007 0.9211 ± 0.0019 0.9267 ± 0.0010 0.9415 ± 0.0040 0.9748 ± 0.0020

Regularized FT (L2, 0.01) 0.9270 ± 0.0008 0.4146 ± 0.0016 0.9196 ± 0.0012 0.9310 ± 0.0012 0.9385 ± 0.0029 0.9760 ± 0.0033

Regularized FT (L2, 0.10) 0.9242 ± 0.0007 0.4210 ± 0.0006 0.9194 ± 0.0011 0.9301 ± 0.0016 0.9344 ± 0.0029 0.9700 ± 0.0051

SST-2

Bitfit 0.9383 ± 0.0011 0.3393 ± 0.0016 0.9199 ± 0.0009 0.9281 ± 0.0016 0.9445 ± 0.0032 0.9728 ± 0.0020

Combined gradient stats 0.9431 ± 0.0013 0.3582 ± 0.0013 0.9196 ± 0.0010 0.9268 ± 0.0008 0.9472 ± 0.0033 0.9748 ± 0.0024

Full fine-tuning 0.9468 ± 0.0005 0.3957 ± 0.0027 0.9205 ± 0.0011 0.9284 ± 0.0009 0.9443 ± 0.0017 0.9748 ± 0.0027

Largest downstr. sq-grad 0.9399 ± 0.0012 0.3611 ± 0.0013 0.9192 ± 0.0015 0.9277 ± 0.0016 0.9450 ± 0.0012 0.9740 ± 0.0045

Largest pretr. sq-grad 0.9378 ± 0.0021 0.3531 ± 0.0016 0.9197 ± 0.0009 0.9278 ± 0.0014 0.9450 ± 0.0021 0.9720 ± 0.0033

LoRA (rank 4) 0.9406 ± 0.0012 0.3737 ± 0.0020 0.9173 ± 0.0008 0.9218 ± 0.0011 0.9420 ± 0.0013 0.8112 ± 0.3054

Pruning w/o re-training 0.9376 ± 0.0024 0.3950 ± 0.0009 0.9199 ± 0.0018 0.9262 ± 0.0005 0.9461 ± 0.0027 0.9720 ± 0.0050

Pruning with re-training 0.9390 ± 0.0018 0.3854 ± 0.0016 0.9166 ± 0.0006 0.9222 ± 0.0019 0.9420 ± 0.0050 0.9716 ± 0.0031

Random subset 0.9342 ± 0.0011 0.3394 ± 0.0026 0.9142 ± 0.0026 0.9183 ± 0.0030 0.9420 ± 0.0041 0.9676 ± 0.0015

Regularized FT (L1, 0.01) 0.9326 ± 0.0009 0.4279 ± 0.0007 0.9206 ± 0.0018 0.9275 ± 0.0016 0.9413 ± 0.0023 0.9752 ± 0.0016

Regularized FT (L1, 0.10) 0.9177 ± 0.0006 0.4328 ± 0.0005 0.9194 ± 0.0012 0.9284 ± 0.0011 0.9401 ± 0.0019 0.9772 ± 0.0020

Regularized FT (L2, 0.01) 0.9436 ± 0.0009 0.4034 ± 0.0008 0.9198 ± 0.0009 0.9256 ± 0.0011 0.9411 ± 0.0028 0.9736 ± 0.0031

Regularized FT (L2, 0.10) 0.9438 ± 0.0009 0.4169 ± 0.0012 0.9196 ± 0.0015 0.9269 ± 0.0019 0.9394 ± 0.0026 0.9736 ± 0.0042

TREC-6

Bitfit 0.9592 ± 0.0024 0.3505 ± 0.0024 0.9192 ± 0.0010 0.9306 ± 0.0004 0.9415 ± 0.0039 0.9720 ± 0.0028

Combined gradient stats 0.9644 ± 0.0012 0.2936 ± 0.0043 0.9161 ± 0.0007 0.9252 ± 0.0027 0.9378 ± 0.0040 0.9744 ± 0.0026

Full fine-tuning 0.9752 ± 0.0019 0.3669 ± 0.0032 0.9197 ± 0.0008 0.9290 ± 0.0021 0.9420 ± 0.0041 0.9732 ± 0.0016

Largest downstr. sq-grad 0.9580 ± 0.0020 0.2781 ± 0.0058 0.9169 ± 0.0012 0.9237 ± 0.0015 0.9365 ± 0.0018 0.9688 ± 0.0051

Largest pretr. sq-grad 0.9552 ± 0.0025 0.2354 ± 0.0049 0.9154 ± 0.0014 0.9205 ± 0.0027 0.9365 ± 0.0029 0.9640 ± 0.0067

LoRA (rank 4) 0.9708 ± 0.0017 0.3659 ± 0.0039 0.9178 ± 0.0008 0.9227 ± 0.0022 0.9411 ± 0.0021 0.9700 ± 0.0012

Pruning w/o re-training 0.9556 ± 0.0009 0.4149 ± 0.0013 0.9207 ± 0.0020 0.9285 ± 0.0011 0.9486 ± 0.0022 0.9740 ± 0.0021

Pruning with re-training 0.9696 ± 0.0007 0.4097 ± 0.0016 0.9206 ± 0.0014 0.9252 ± 0.0012 0.9427 ± 0.0021 0.9740 ± 0.0028

Random subset 0.9720 ± 0.0013 0.4135 ± 0.0015 0.9200 ± 0.0011 0.9275 ± 0.0020 0.9415 ± 0.0012 0.9748 ± 0.0036

Regularized FT (L1, 0.01) 0.9528 ± 0.0009 0.4203 ± 0.0002 0.9216 ± 0.0021 0.9250 ± 0.0015 0.9378 ± 0.0049 0.9724 ± 0.0040

Regularized FT (L1, 0.10) 0.9296 ± 0.0010 0.4133 ± 0.0006 0.9201 ± 0.0008 0.9269 ± 0.0019 0.9424 ± 0.0022 0.9764 ± 0.0023

Regularized FT (L2, 0.01) 0.9720 ± 0.0027 0.4011 ± 0.0025 0.9217 ± 0.0017 0.9265 ± 0.0013 0.9438 ± 0.0033 0.9716 ± 0.0029

Regularized FT (L2, 0.10) 0.9724 ± 0.0013 0.4166 ± 0.0010 0.9207 ± 0.0016 0.9268 ± 0.0013 0.9397 ± 0.0015 0.9680 ± 0.0041

Table 10: Performance of full fine-tuning on a secondary task after a applying each variant on the primary task using
a RoBERTa (base). All scores are averaged over 5 runs (std in parentheses).

1758

Task CoNLL-2003 QNLI SST-2 TREC-6

Variant

LoRA (rank 1, 0.03%) 0.9059 ± 0.0022 0.9072 ± 0.0023 0.9353 ± 0.0038 0.9636 ± 0.0038

LoRA (rank 2, 0.06%) 0.9114 ± 0.0017 0.9133 ± 0.0020 0.9353 ± 0.0034 0.9652 ± 0.0034

LoRA (rank 3, 0.09%) 0.9129 ± 0.0010 0.9157 ± 0.0023 0.9360 ± 0.0034 0.9692 ± 0.0042

LoRA (rank 4, 0.12%) 0.9139 ± 0.0015 0.9165 ± 0.0019 0.9406 ± 0.0027 0.9708 ± 0.0036

LoRA (rank 16, 0.47%) 0.9173 ± 0.0008 0.9202 ± 0.0013 0.9404 ± 0.0047 0.9712 ± 0.0040

LoRA (rank 64, 1.89%) 0.9185 ± 0.0018 0.9217 ± 0.0008 0.9399 ± 0.0025 0.9744 ± 0.0029

Table 11: Performance of Low-Rank adoption (Hu et al., 2021) across four different tasks (five runs each) with their
95% intervals..

Primary score MLM score CoNLL-2003 QNLI SST-2 TREC-6

Primary task

CoNLL-2003 0.9139 ± 0.0007 0.3659 ± 0.0055 0.9173 ± 0.0012 0.9166 ± 0.0015 0.9385 ± 0.0041 0.9708 ± 0.0029

QNLI 0.9165 ± 0.0009 0.3776 ± 0.0049 0.9167 ± 0.0004 0.9260 ± 0.0018 0.9392 ± 0.0031 0.8792 ± 0.1750

SST-2 0.9406 ± 0.0012 0.3737 ± 0.0020 0.9173 ± 0.0008 0.9218 ± 0.0011 0.9420 ± 0.0013 0.8112 ± 0.3054

TREC-6 0.9708 ± 0.0017 0.3659 ± 0.0039 0.9178 ± 0.0008 0.9227 ± 0.0022 0.9411 ± 0.0021 0.9700 ± 0.0012

Table 12: Performance of Low-Rank adoption with a rank of 4 (Hu et al., 2021) after fine-tuning on secondary task
(five runs each; 95% intervals).

Primary score Gap MLM score CoNLL-2003 QNLI SST-2 TREC-6

Primary task Reg. Coeff.

CoNLL-2003

l1
0.01 0.9013 ± 0.0002 -0.0337 ± 0.0001 0.4044 ± 0.0004 0.9217 ± 0.0003 0.9278 ± 0.0004 0.9399 ± 0.0017 0.9712 ± 0.0016

0.10 0.8824 ± 0.0003 -0.0165 ± 0.0003 0.3869 ± 0.0006 0.9211 ± 0.0004 0.9275 ± 0.0005 0.9424 ± 0.0011 0.9744 ± 0.0015

1.00 0.8387 ± 0.0003 -0.0101 ± 0.0002 0.4106 ± 0.0002 0.9215 ± 0.0006 0.9267 ± 0.0008 0.9433 ± 0.0027 0.9752 ± 0.0008

l2
0.01 0.9203 ± 0.0002 -0.0704 ± 0.0002 0.3870 ± 0.0012 0.9211 ± 0.0011 0.9229 ± 0.0006 0.9404 ± 0.0008 0.9684 ± 0.0016

0.10 0.9210 ± 0.0006 -0.0654 ± 0.0006 0.4067 ± 0.0008 0.9213 ± 0.0010 0.9248 ± 0.0003 0.9394 ± 0.0013 0.9720 ± 0.0013

1.00 0.9192 ± 0.0004 -0.0595 ± 0.0002 0.4086 ± 0.0013 0.9223 ± 0.0006 0.9237 ± 0.0011 0.9413 ± 0.0024 0.9720 ± 0.0009

QNLI

l1
0.01 0.8701 ± 0.0002 0.0149 ± 0.0002 0.4177 ± 0.0005 0.9197 ± 0.0006 0.9258 ± 0.0004 0.9415 ± 0.0017 0.9756 ± 0.0013

0.10 0.8323 ± 0.0002 0.0198 ± 0.0003 0.4259 ± 0.0004 0.9211 ± 0.0010 0.9267 ± 0.0005 0.9415 ± 0.0020 0.9748 ± 0.0010

1.00 0.6640 ± 0.0001 0.0086 ± 0.0001 0.4434 ± 0.0003 0.9218 ± 0.0008 0.9276 ± 0.0008 0.9436 ± 0.0017 0.9760 ± 0.0019

l2
0.01 0.9270 ± 0.0004 -0.0203 ± 0.0004 0.4146 ± 0.0008 0.9196 ± 0.0006 0.9310 ± 0.0006 0.9385 ± 0.0015 0.9760 ± 0.0017

0.10 0.9242 ± 0.0004 -0.0174 ± 0.0003 0.4210 ± 0.0003 0.9194 ± 0.0005 0.9301 ± 0.0008 0.9344 ± 0.0015 0.9700 ± 0.0026

1.00 0.9132 ± 0.0004 -0.0041 ± 0.0003 0.4247 ± 0.0006 0.9189 ± 0.0008 0.9306 ± 0.0008 0.9443 ± 0.0017 0.9776 ± 0.0012

SST-2

l1
0.01 0.9326 ± 0.0005 -0.0026 ± 0.0005 0.4279 ± 0.0004 0.9206 ± 0.0009 0.9275 ± 0.0008 0.9413 ± 0.0012 0.9752 ± 0.0008

0.10 0.9177 ± 0.0003 -0.0023 ± 0.0003 0.4328 ± 0.0003 0.9194 ± 0.0006 0.9284 ± 0.0006 0.9401 ± 0.0010 0.9772 ± 0.0010

1.00 0.8711 ± 0.0003 0.0170 ± 0.0003 0.4400 ± 0.0003 0.9182 ± 0.0012 0.9277 ± 0.0011 0.9392 ± 0.0015 0.9776 ± 0.0010

l2
0.01 0.9436 ± 0.0005 -0.0386 ± 0.0005 0.4034 ± 0.0004 0.9198 ± 0.0005 0.9256 ± 0.0005 0.9411 ± 0.0014 0.9736 ± 0.0016

0.10 0.9438 ± 0.0005 -0.0255 ± 0.0004 0.4169 ± 0.0006 0.9196 ± 0.0007 0.9269 ± 0.0010 0.9394 ± 0.0013 0.9736 ± 0.0021

1.00 0.9429 ± 0.0003 -0.0118 ± 0.0002 0.4266 ± 0.0003 0.9198 ± 0.0008 0.9257 ± 0.0002 0.9417 ± 0.0008 0.9752 ± 0.0014

TREC-6

l1
0.01 0.9528 ± 0.0005 0.0114 ± 0.0005 0.4203 ± 0.0001 0.9216 ± 0.0011 0.9250 ± 0.0008 0.9378 ± 0.0025 0.9724 ± 0.0020

0.10 0.9296 ± 0.0005 0.0262 ± 0.0008 0.4133 ± 0.0003 0.9201 ± 0.0004 0.9269 ± 0.0009 0.9424 ± 0.0011 0.9764 ± 0.0012

1.00 0.4836 ± 0.0007 0.0568 ± 0.0013 0.4434 ± 0.0004 0.9190 ± 0.0006 0.9288 ± 0.0004 0.9411 ± 0.0007 0.9756 ± 0.0007

l2
0.01 0.9720 ± 0.0014 -0.0209 ± 0.0012 0.4011 ± 0.0013 0.9217 ± 0.0008 0.9265 ± 0.0006 0.9438 ± 0.0017 0.9716 ± 0.0015

0.10 0.9724 ± 0.0007 -0.0159 ± 0.0006 0.4166 ± 0.0005 0.9207 ± 0.0008 0.9268 ± 0.0006 0.9397 ± 0.0008 0.9680 ± 0.0021

1.00 0.9680 ± 0.0011 -0.0086 ± 0.0013 0.4233 ± 0.0008 0.9203 ± 0.0009 0.9263 ± 0.0009 0.9417 ± 0.0018 0.9716 ± 0.0007

Table 13: Effect of regularization on primary and secondary scores.

1759

