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Abstract

This article proposes a new family of LLM-
based topic coherence metrics called Contex-
tualized Topic Coherence (CTC) and inspired
by standard human topic evaluation meth-
ods. CTC metrics simulate human-centered
coherence evaluation while maintaining the
efficiency of other automated methods. We
compare the performance of our CTC metrics
and five other baseline metrics on seven topic
models and show that CTC metrics better re-
flect human judgment, particularly for topics
extracted from short text collections by avoid-
ing highly scored topics that are meaningless
to humans.

§ https://github.com/hamedR96/CTC

1 Introduction

Topic models are a family of text-mining algo-
rithms that identify themes in a large corpus of
text data (Blei, 2012). These models (Churchill
and Singh, 2022) are widely used for exploratory
data analysis with the aim of organizing, under-
standing, and summarizing large amounts of text
data (Abdelrazek et al., 2022). Numerous tech-
niques, algorithms, and tools have been employed
to develop a variety of topic models for differ-
ent tasks and purposes (Srivastava and Sutton,
2017) including much recent work on neural topic
models (Grootendorst, 2022). However, due to
their nature as unsupervised models, comparing
topic outputs, hyperparameter settings, and over-
all model quality has traditionally been difficult
(Hoyle et al., 2022).

∗ hamed.rahimi@sorbonne-universite.fr

Topic Coherence (TC) metrics measure the in-
terpretability of topics generated by topic models.
These metrics are categorized into two classes:
automated TC metrics and human-annotated TC
metrics (Hoyle et al., 2021). Automated TC met-
rics estimate the interpretability of topic mod-
els with respect to various factors such as co-
occurrence or semantic similarity of topic words.
On the other hand, human-annotated TC metrics
are protocols for designing surveys that rate or
score the interpretability of topic models. Human
judgment is often used to validate topic coher-
ence metrics to provide an accurate assessment
of the semantic coherence and meaningfulness of
a given set of topics (Newman et al., 2009; Ale-
tras and Stevenson, 2013; Mimno et al., 2011).
While human-annotated TC metrics incorporate
subjective human judgments and provide a more
accurate and nuanced understanding of how well
topic models are performing (e.g. in terms of their
ability to capture the underlying themes in a text
corpus), they are expensive, time-consuming, and
require multiple human-subjects to avoid personal
biases. On the other hand, automated metrics are
more cost-effective than human-annotated meth-
ods, as they do not require the hiring and training
of human annotators, which results in their abil-
ity to evaluate large amounts of data and iterate
through many model comparisons.

Automated metrics are intended to align more
closely with human judgment, providing a bet-
ter measure of the interpretability of topic words.
The risk of such approximations, however, is that
they themselves become the target of optimiza-
tion rather than the underlying property they were
intended to measure. Several recent works sug-
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gest that this has occurred especially in the con-
text of neural topic models. Doogan and Buntine
(2021) argue that interpretability is ambiguous
and conclude that current automated topic coher-
ence metrics are unreliable for evaluating topic
models in short-text data collections and may be
incompatible with newer neural topic models. In
a similar study, Hoyle et al. (2021) show that top-
ics generated by neural models are often qualita-
tively distinct from traditional topic models while
they receive higher scores from current automated
topic coherence metrics. Hoyle et al. (2021) con-
clude that the validity of the results produced by
fully automated evaluations, as currently prac-
ticed, is questionable, and they only help when
human evaluations cannot be performed. Hoyle
et al. (2022) in another recent work shows that
neural topic models fail to improve on the tradi-
tional topic models such as Gibbs LDA (Griffiths
and Steyvers, 2004; McCallum, 2002) and con-
sider neural topic broken as they do not function
well for their intended use.

To address these problems, we introduce
Contextualized Topic Coherence (CTC) metrics
which are a context-aware family of topic co-
herence metrics based on the pre-trained Large
Language Models (LLM). Taking Advantage of
LLMs elevates the understanding of language at a
very sophisticated level incorporating its linguis-
tic nuances, contexts, and relationships. CTC is
much less susceptible to being fooled by mean-
ingless topics that often receive high scores with
traditional topic coherence metrics.

2 Automated Topic Coherence Metrics

Topic coherence (TC) metrics measure the con-
sistency of topic word representations (topic la-
bels) to evaluate the interpretability and meaning-
fulness of a topic. Most coherence measure are
based on the analysis of topic word co-occurrence
distributions within the model input documents.
A high TC value indicates that the words in the
topic labels are related and describe some seman-
tic notion within a specific context or domain.

Newman et al. (2009, 2010b) claim that Point-
wise Mutual Information (PMI) based metrics

achieve ratings which are highly correlated with
human-annoted ratings. They define UCI which
measures the strength of the association between
pairs of words based on their co-occurrence in a
sliding window of length-l words. Mimno et al.
(2011) proposes UMass, an asymmetric confirma-
tion measure that estimates the coherence degree
of topic labels by calculating the log ratio fre-
quency of label word co-occurrences in the corpus
of documents. UMass counts the number of times
a pair of words co-occur in a given corpus and
compares this number to the expected number of
co-occurrences of word pairs which are randomly
distributed across the whole corpus. Aletras and
Stevenson (2013) proposes context vector repre-
sentations for topic words w to generate the fre-
quency of word co-occurrences within windows
of ±1 words surrounding all instances of w. They
showed that NPMI (Bouma, 2009) has a larger
correlation with human topic ratings compared
to UCI and UMass. Additionally, NPMI takes
into account the fact that some words are more
common than others and adjusts the frequency of
individual words accordingly (Lau et al., 2014).
While NPMI is generally more sensitive to rare
words and can handle small datasets, UMass fo-
cuses on the fast computation of coherence scores
over large corpora. Stevens et al. (2012) showed
that a smaller value of ϵ tends to yield better
results than the default value of ϵ = 1 used in
the original paper since it emphasizes more the
word combinations that are completely unattested.
Röder et al. (2015) proposes a unifying frame-
work of coherence measures that can be freely
combined to form a configuration space of co-
herence definitions, allowing their main elemen-
tary components to be combined in the context
of coherence quantification. For example, they
propose the CV metric, which uses a variation of
NPMI to compute topic coherence over a sliding
window of size N and adds a weight γ to assign
more strength to more related words. Accord-
ing to (Campagnolo et al., 2022), the CV metric
is more sensitive to noisy information and dirty
data than CUMass and CUCI. Nikolenko (2016) and
Schnabel et al. (2015) propose the TCDWR metric
based on the Distributed Word Representations
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(DWR) (Mikolov et al., 2013b,a) which are better
correlated to human judgment. Similarly, Ram-
rakhiyani et al. (2017) presents a coherence mea-
sure based on grouping topic words into buckets
and using Singular Value Decomposition (SVD)
and integer linear programming-based optimiza-
tion to create coherent word buckets from the gen-
erated embedding vectors. Korenčić et al. (2018)
proposes several topic coherence metrics based on
topic documents rather than topic words. The ap-
proach essentially extracts topic documents, vec-
torizes them using several methods such as word
embedding aggregation, and computes a coher-
ence score based on the document vectors. Lund
et al. (2019) proposes an automated evaluation
metric for local-level topic models by introducing
a task designed to elicit human judgment and re-
flect token-level topic quality. Bilal et al. (2021)
investigate the evaluation of thematic coherence
in microblog clusters and concludes that Text gen-
eration metrics (TGMs) proved most reliable, be-
ing less sensitive to time windows. Similar to this
work, Stammbach et al. (2023) explores the use
of LLMs in evaluating topic models and deter-
mining the optimal number of topics in large text
collections.

3 Contextualised Topic Coherence

In this section we introduce Contextualized Topic
Coherence (CTC), a new family of topic coher-
ence metrics that benefit from the recent devel-
opment of Large Language Models (LLM). We
present two approaches. The first approach uses
LLMs to compute contextualized estimates of the
Pointwise Mutual Information (CPMI) between
topic words. In the second approach, we use
ChatGPT (OpenAI, 2022) to evaluate topic coher-
ence by simulating to human-annotated evalua-
tion methods.

3.1 Automated CTC

CPMI. Recent work by Hoover et al. (2021)
uses conditional PMI estimates to analyze the re-
lationship between linguistic and statistical word
dependencies. They propose Contextualized PMI
(CPMI) as a new method for estimating the con-

Figure 1: Calculating CPMI for two topic words in a
segment of a document.

ditional PMI between words in context using a
pre-trained language model. The CPMI between
two words wi and wj in a sentence s is defined
by the following equation:

CPMI(wi, wj | s) = log
p(wi | s−wi)

p(wi | s−wij )
(1)

where s is a sentence, s−wi represents s with one
masked word wi (top in Figure 1) and s−wij is
s with two masked words wi and wj (bottom in
Figure 1). The conditional probability p(wi |
s−wij ) estimates the occurrence probability of wi

in s−wij based on a pre-trained masked language
model (MLM) such as BERT.

We adopt CPMI to introduce a new automated
Contextualized Topic Coherence (CTC) metric.
Automated CTC estimates the the coherence of a
topic by computing the CPMI value for each pair
of topic words along a sliding window applied to
the dataset. For this, the corpus is divided into a
set of sliding window segments of length w and
overlap k with previous and following segments
to compute the average CPMI over all topic word
pairs in all window segments:

1

n ∗
(
m
2

)
n∑

i=1

m∑

r=2

r−1∑

s=1

CPMI(wr
i , w

s
i | cu) (2)

where cu ⊂ corpus D is a window segment with
length of w that has k words overlapping with its
adjacent window segments, n is the number of
topics and m is the number of topic words.
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3.2 Semi-automated CTC
Word Intrusion Task. Chang et al. (2009) pro-
posed the topic words intrusion task to assess
topic coherence by identifying a coherent latent
category for each topic and discovering the words
that do not belong to that category. In this task,
human subjects detect topic intruder words to as-
sess the quality of topic models and to measure
a coherence score that assigns a low probability
for intruder words to belong to a topic. We ap-
ply this idea by replacing humans with ChatGPT
(OpenAI, 2022) answering to prompts (see Ap-
pendix B.1) which provide the topic words and
ask for a category and intruder words.

Rating Task. The topic rating task consists
in rating topics by their usefulness for a given
task (for example, document search). While hu-
man topic ratings are expensive to produce, they
serve as the gold standard for coherence evalu-
ation (Röder et al., 2015). For example, Syed
and Spruit (2017) uses human ratings to explore
the coherence of topics generated by LDA top-
ics across full texts and abstracts. Newman et al.
(2010a) provides human annotators with a rubric
and guidelines for judging whether a topic is use-
ful or useless. The annotators evaluate a randomly
selected subset of topics for their usefulness in
retrieving documents on a given topic and score
each topic on a 3-point scale, where 3=highly co-
herent and 1=useless (less coherent). Following
(Newman et al., 2010a), Aletras and Stevenson
(2013) presented topics without intruder words to
Amazon Mechanical Turk to score them on a 3-
point ordinal scale. Similar to the intrusion task,
we adapt this method to ChatGPT by defining
prompts (see Appendix B.2) which provide Chat-
GPT with the topic words and ask it to rate the
usefulness of the various topic words for retriev-
ing documents on a given topic. The CTCRating
for a topic model is obtained by the average sum
of all ratings over all topics.

4 Experiments

In this section, we expect to observe that the base-
line metrics (UCI, UMass, NPMI, CV , DWR)
rank topic models differently from CTC. We also

expect CTC rankings favor interpretable topics
and handle short text datasets more effectively
than the baseline metrics (Doogan and Buntine,
2021; Hoyle et al., 2021). This implies that base-
line metrics often yield high scores for incoherent
topics, while conversely assigning low scores to
well-interpretable topics. In contrast, CTC has a
better model of language and can better evaluate
topical similarity as it would appear to a human
reader. Therefore, we expect to see that base-
line metrics and CTC would differ at extremes of
highest or lowest coherency.

4.1 Experimental setup

Datasets. The experiments incorporate two
datasets including the 20Newsgroups dataset
(Lang, 1995) and a collection of 17K tweets by
Elon Musk published between 2017 and 2022 by
(Raza, 2023).

Topic Models. The experiments involve six
different topic models including Gibbs LDA
(Griffiths and Steyvers, 2004), Embedded Topic
Model (ETM) (Dieng et al., 2020), Adversarial-
neural Topic Models (ATM) (Wang et al., 2019),
Top2Vec (Angelov, 2020), and Contextualized
Topic Model (CTM) (Bianchi et al., 2021), and
BERTopic (Grootendorst, 2022).

Topic Coherence Metrics. The topics gener-
ated by the topic models are evaluated using
the proposed Contextualized Topic Coherence
(CTC) metrics, which are then compared to the
well-established automated topic coherence met-
rics CV, UCI, UMass, NPMI, and DWR. For
CTCCPMI, we segmented the 20Newsgroup and
Elon Musk’s Tweets datasets into chunks of 15
and 20 words, respectively, without intersections.
We then extracted the CPMI for all word pairs in
each segment using the pre-trained language mod-
els bert-base-uncased and Tesla K80 15 GB GPU
from Google Colab (Bisong and Bisong, 2019).
This pre-computing step took about 7 hours but
allowed us to compute CTCCPMI for any topic
model in the order of a few seconds. For evaluat-
ing CTCIntrusion and CTCRating, we made a request
for each topic to ChatGPT with GPT 3.5 Turbo,
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which cost less than a dollar for all the experi-
ments.

4.2 Results

Tables 1 and 2 represent the results of the eval-
uation of the topic models obtained from the
20Newsgroup and Elon Musk’s Tweets datasets,
respectively, using CTC and the baseline met-
rics. The highest value for each metric is shown
in bold to compare the models in terms of topic
coherence metrics. The highest values for each
metric within each topic model are noted in italic
font. This helps us determine the optimal num-
ber of topics for all models except Top2Vec and
BERTopic, which don’t require this input param-
eter.

General observations. Before analyzing the
results in Tables 1 and 2 in detail, we exam-
ine the relationship between the CTC metrics
and the baseline metrics by performing Pearson’s
correlation coefficient analysis (Sedgwick, 2012)
on the results from Tables 1 and 2 similar to
(Doogan and Buntine, 2021). As shown in Fig-
ure 2a, for 20Newsgroup, the baseline metrics
UCI and UMass are highly correlated with CPMI
but not with CTCRating and CTCIntrusion, which
are more correlated with the baseline measures
NPMI and CV and DWR (which are also highly
correlated). On the other hand, for the short text
EM Tweets dataset, Figure 2b shows that CPMI
has a high correlation with all baseline methods,
while CTCIntrusion and CTCRating are completely
independent of CPMI and the baseline measures.

Concerning our expectation that baseline met-
rics rank topic models differently from CTC met-
rics, Table 1 reports that the baseline metrics (ex-
cept for UMass) point to Top2Vec while CTC
metrics (except for CTCRating) point to ETM for
achieving the highest scores. Similarly, Table 2
reports that the baseline metrics (except for CV)
point to ETM while CTC metrics (except for
CTCCPMI) point to CTM for achieving the highest
scores. These contradictions between CTC and
baseline metrics are aligned with our expectations
and we will explore them with a meta-analysis of
topics generated by these topic models and the

scores they have received from CTC and baseline
metrics.

Meta-analysis. To check the performance of
different coherence metrics, we will compare the
interpretability of their high and low-scoring top-
ics. Note that CTC metrics observe contextual
patterns between topic words, and therefore, we
expect them to provide more consistent coher-
ence scores according to the interpretability of
the generated topics for all topic models.

To verify the consistency of some representa-
tive scores in Table 1, we examine the topics for
20 Newsgroup generated by Top2Vec, which have
high and low baseline metrics scores, and ETM,
which have high and low CTC metrics scores.
Table 3 compares the top-2 and bottom-2 top-
ics ranked by CV and CTCCPMI. The choice of
these metrics is motivated by our correlation anal-
ysis (see Figure 2a in Appendix C), which has
the least correlation among CTC and baseline
metrics in CTCCPMI and CV. First, we notice
that the top-2 topics returned by CV for Top2Vec
are not readily interpretable but are statistically
meaningful: dsl, geb, cadre, shameful, jxp are
fragments of an email signature that occurs 82
times, while tor, nyi, det, chi, bos are abbrevia-
tions for hockey teams. This is not surprising,
since Top2Vec produces what we call “trash top-
ics”, which is a common problem for clustering-
based topic models that cannot handle so-called
“trash clusters” (Giannotti et al., 2002). CTCCPMI
returns a more coherent ranking for Top2Vec (the
top 2 topics appear coherent, while the bottom
topics are incoherent for human evaluation). This
supports our assumption that traditional topic co-
herence metrics such as CV fail to evaluate neural
topic models and, in this case, even give the high-
est scores to trash topics. This happens because
they only consider the syntactic co-occurrence of
words in a window of text and cannot observe
the underlying relationship between topic words.
CTCCPMI, on the other hand, can detect these
trash topics and scores them more accurately be-
cause it is supported by LLMs that have rich in-
formation about linguistic dependencies between
topic words. Therefore, CTCCPMI also might be
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Table 1: Scores of Topic Coherence Metrics on 20Newsgroup dataset.

Topic Models Baseline Metrics CTC Metrics

#T UCI UMass NPMI CV DWR Rating Intrusion CPMI

Gibbs LDA (2003)
20 0.260 -2.338 0.043 0.512 0.211 1.3 0.225 9.92
50 -0.121 -2.771 0.023 0.479 0.191 1.16 0.220 5.99
100 -0.690 -3.030 0.002 0.450 0.149 1.14 0.267 3.25

ETM (2020)
20 0.478 -2.08 0.067 0.563 0.292 0.7 0.452 19.16
50 0.380 -1.903 0.054 0.532 0.330 1.22 0.348 20.35
100 0.351 -1.962 0.049 0.522 0.312 1.23 0.41 22.58

ATM (2019)
20 -1.431 -3.014 -0.059 0.338 0.151 0.92 0.305 0.03
50 -0.940 -2.902 -0.046 0.342 0.077 1.15 0.275 0.18
100 -0.735 -2.741 -0.032 0.362 0.053 1.12 0.340 1.72

CTM (2021)
20 -1.707 -4.082 0.005 0.601 0.268 1.25 0.385 5.93
50 -0.724 -3.008 0.046 0.590 0.236 1.56 0.380 7.02
100 -0.926 -3.118 0.027 0.561 0.210 1.31 0.392 6.16

Top2Vec (2020) 85 0.910 -2.449 0.192 0.785 0.473 1.670 0.399 3.77

BERTopic (2022) 145 -1.023 -5.033 0.098 0.681 0.309 1.517 0.359 2.91

Table 2: Scores of Topic Coherence Metrics on Elon Musk’s Tweets dataset

Topic Models Baseline Metrics CTC Metrics

#T UCI UMass NPMI CV DWR Rating Intrusion CPMI

Gibbs LDA (2003)
10 -0.441 -3.790 0.016 0.498 0.838 1.6 0.29 2.19
20 -1.834 -5.415 -0.049 0.395 0.798 1.5 0.225 1.04
30 -3.068 -6.390 -0.099 0.336 0.783 1.466 0.33 0.86

ETM (2020)
10 0.205 -3.209 0.051 0.560 0.952 1.1 0.24 5.41
20 0.155 -3.079 0.028 0.538 0.974 1.433 0.233 4.48
30 0.025 -3.215 0.022 0.515 0.978 1.05 0.195 4.30

ATM (2019)
10 -9.021 -12.859 -0.324 0.364 0.730 1.2 0.211 -0.004
20 -7.967 -11.770 -0.283 0.343 0.694 1.1 0.177 0
30 -7.278 -11.301 -0.258 0.350 0.753 0.933 0.214 -0.03

CTM (2021)
10 -2.614 -7.049 -0.030 0.580 0.888 2.0 0.439 1
20 -3.720 -8.336 -0.070 0.534 0.880 1.45 0.185 3.04
30 -3.589 -8.063 -0.064 0.573 0.873 1.766 0.276 2.56

Top2Vec (2020) 164 -6.272 -10.536 -0.152 0.401 0.847 1.481 0.274 2.08

BERTopic (2022) 217 -4.131 -11.883 -0.020 0.432 0.541 1.539 0.276 1.52

a good measure to filter "trash topics" obtained
by some cluster-based topic model. The second
observation in Table 3 is that all eight topics re-
turned for ETM are coherent. This is because
ETM, which is a semantically-enabled probabilis-
tic topic model, produces decent topics that are
overall highly ranked by CTCCPMI (see Figure 3b
in Appendix C).

In the same way we verify the consistency of
some representative scores in Table 2 by check-
ing the interpretability of topics for Elon Musk’s
tweets generated by ETM, which has high base-
line scores, and by CTM, which has high CTC
scores. These metrics are among those with the
lowest correlation between CTC and baseline met-
rics (see Figure 2b in Appendix C). We compare
the top 2 and bottom 2 topics ranked by NPMI
and CTCRating shown in Table 4.

A notable finding for CTM topics is that topics
ranked highest by the CTCRating metric tend to be
more interpretable compared to those ranked high-
est by NPMI. Similarly, topics ranked lowest by
the CTCRating metric tend to be less interpretable
compared to those ranked lowest by NPMI. These
observations also apply to ETM, as the CTCRating
metric is not affected by the scarcity of short text
records. This is because CTCRating is comple-
mented by a chatbot that mitigates the impact of
limited data availability. It is also interesting to
note that the topics generated by CTM are overall
more interpretable and coherent than those gener-
ated by ETM. This demonstrates the validity of
CTCRating and CTCIntrusion over baseline metrics,
as we observed in Table 2. It also reveals the
superiority of CTM over ETM (see Figure 3d in
Appendix C) for short text datasets as a result of
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(a) 20Newsgroup (b) Elon Musk Tweets

Figure 2: Pearson’s correlation coefficient on CTC and baseline

Table 3: Top-2 and bottom-2 topics of ETM(100) and Top2Vec on 20Newsgroup

Topic Model Ranked By Topics CV CPMI

ETM(100) (2020)

Highest CV

god, christian, people, believe, jesus 0.740 0.017
drive, card, scsi, disk, mb, 0.739 0.037

Lowest CV

book, number, problem, read, call 0.369 0.018
line, use, power, bit, high 0.458 0.018

Highest CPMI
year, time, day, one, ago, week 0.559 0.709
game, year, team, player, play 0.706 0.242

Lowest CPMI
new, number, also, well, call, order, used 0.340 -0.007
people, right, drug, state, world, country 0.529 -0.002

Top2Vec (2020)

Highest CV

dsl, geb, cadre, shameful, jxp 0.995 0.009
tor, nyi, det, chi, bos 0.989 0.012

Lowest CV

hacker, computer, privacy, uci, ethic 0.255 -0.0001
battery, acid, charged, storage, floor 0.344 0.006

Highest CPMI
mailing, list, mail, address, send 0.792 0.154

icon, window, manager, file, application 0.770 0.076

Lowest CPMI
lc, lciii, fpu, slot, nubus, iisi 0.853 -0.004

ci, ic, incoming, gif, edu 0.644 -0.002

Table 4: Top-2 and bottom-2 topics of ETM(30) and CTM(30) on Elon Musk’s Tweets

Topic Model Ranked By Topics NPMI Rating Intrusion

CTM(30) (2021)

Highest NPMI
erdayastronaut, engine, booster, starship, amp 0.122 3 0.1

year, week, next, month, wholemarsblog 0.057 2 0.1

Lowest NPMI
transport, backup, ensure, installed, transaction -0.480 2 0.1
achieving, transition, late, transport, precision -0.459 1 0.1

Highest Rating
tesla, rt, model, car, supercharger -0.152 3 0.5

spacex, dragon, launch, falcon, nasa -0.283 3 0.4

Lowest Rating
ppathole, soon, justpaulinelol, yes, sure -0.330 1 0.5

achieving, transition, late, transport, precision -0.459 1 0.1

ETM(30) (2020)

Highest NPMI
amp, time, people, like, would, many 0.001 2 0.7

engine, booster, starship, heavy, raptor -0.023 2 0.1

Lowest NPMI
amp, rt, tesla, im, yes -0.283 1 0.1

amp, tesla, year, twitter, work -0.228 1 0.1

Highest Rating
amp, twitter, like, tesla, dont -0.186 2 0.8

amp, time, people, like, would 0.001 2 0.7

Lowest Rating
amp, tesla, year, twitter, work -0.228 1 0.1

amp, tesla, one, like, time -0.204 1 0.1

(a) 20Newsgroup | CV (b) 20Newsgroup | CPMI (c) Twitter | NPMI (d) Twitter | Intrusion

Figure 3: Comparison Between Topic Models based on Topic Coherence Evaluation
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Table 5: Top-5 topics among the topics generated by Gibbs LDA, DVAE and ETM on NYT News

Top-5
Sorted by Model Topic Scores

CV Human CTC

CV

DVAE inc, 9mo, earns, otc, qtr, rev 0.98 1.2 0.9

DVAE inc, 6mo, earns, otc, rev, qtr 0.98 1.2 1.3

DVAE inc, otc, qtr, earns, rev, 6mo 0.97 1.3 0.8

DVAE arafat, hamas, gaza, palestinians, west_bank 0.97 2.1 1.5

DVAE condolences, mourns, mourn, board_of_directors, heartfelt, deepest 0.97 0.6 1.3

Human Score

Gibbs LDA film, theater, movie, play, director, films 0.73 3 2.7

DVAE skirts, dresses, chanel, couture, fashion 0.91 3 1.3

DVAE tenants, tenant, zoning, rents, landlords, developers 0.86 3 1.2

DVAE paintings, sculptures, galleries, picasso, sculpture, drawings, 0.91 2.9 2.1

DVAE television, network, news, cable, nbc, year, cbs 0.68 2.8 1.9

CTC

Gibbs LDA film, theater, movie, play, director, films 0.73 3 2.7

ETM court, judge, law, case, federal, lawyer, trial 0.80 2.8 2.6

Gibbs LDA court, law, judge, case, state, federal, legal, 0.72 2.6 2.2

Gibbs LDA music, dance, opera, program, work, orchestra, performance 0.73 1.1 2.1

ETM film, movie, story, films, directed, movies, star, character 0.79 2.7 2.1

a contextualized element in its architecture.

5 Human Evaluation

The goal of automated topic coherence metrics
is to accurately approximate human judgment
on topics without the need for expensive, time-
consuming studies that require multiple annota-
tors to avoid bias. In this section we compare
the proposed metric with a human evaluation data
provided by Hoyle et al. (2021). This data in-
cludes human evaluation scores (intrusion and
ranking) for 50 topics generated by three topic
models (Gibbs LDA (McCallum, 2002), DVAE
(Srivastava and Sutton, 2017), and ETM (Dieng
et al., 2020)) applied on the (New York Times)
dataset. We evaluate the generated topics with
CTCCPMI, CTCintrusion and CTCranking, which are
comparable to human intrusion and human rank-
ing.

As shown in Table 6, human evaluators tend to
see little quantifiable difference between Gibbs
LDA and DVAE, while traditional metrics show
pronounced differences. In contrast, we find that
CTC metrics more closely match human prefer-
ences (or lack thereof). It is possible that this
result is simply due to a miscalibration of relative
scores. We also report Spearman’s Rank Corre-

Table 6: Topic Coherence Scores of Gibbs LDA,
DVAE, ETM on NYT News

Topic Models (T = 50)
Metrics Gibbs LDA DVAE ETM

Baseline

UCI 1.42 2.43 1.01
UMass -7.6 -15 -7.4

CV 0.69 0.84 0.60
NPMI 0.15 0.25 0.11

Human Intrusion 0.71 0.74 0.64
Rating 2.66 2.48 2.38

CTC
Intrusion 2.12 2.05 2.06
Rating 0.62 0.67 0.64
CPMI 4.18 0.61 3.72

lation (Myers and Sirois, 2004) results to assess
the strength and direction of the monotonic re-
lationship between the ranking of topics in each
metric. The CTC metrics have an overall higher
correlation with human ratings than the baseline
metrics (see Figure 4 in Appendix C).

We also can examine and compare different
coherence metrics by analysing the topic words
of high and low scoring topics. As shown in
Tables 5 and 7, CV generates top topics which
probably would not be chosen by a human. For
example, the topic inc, 9mo, earns, otc, qtr, rev
gets the highest score, even though it has little
clear interpretability. On the other hand, CTC
metrics score topics relative to their contextual
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Table 7: Bottom-5 topics among the topics generated by Gibbs LDA, DVAE and ETM on NYT News

Botton-5
Sorted by Model Topic Scores

CV Human CTC

CV

DVAE spade, derby, belmont, colt, spades, dummy, preakness 0.23 1.5 0.4

ETM like, making, important, based, strong, including, recent 0.35 2 0.3

ETM time, half, center, open, away, place, high 0.37 1.6 0.2

ETM today, group, including, called, led, known, began, built, early, 0.37 2 0.3

Gibbs LDA people, editor, time, world, good, years, public, long, 0.37 0.1 1.1

Human Score

Gibbs LDA people, editor, time, world, good, years, public, 0.37 0.1 1.1

ETM week, article, page, march, tuesday, june, july 0.57 0.4 1.3

Gibbs LDA street, tickets, sunday, avenue, information, free 0.75 0.4 0.3

ETM new_york, yesterday, director, manhattan, brooklyn, received 0.49 0.4 1

Gibbs LDA bedroom, room, bath, taxes, year, market, listed, kitchen, broker 0.72 0.4 1.3

CTC

Gibbs LDA city, mayor, state, new_york, new_york_city, officials 0.61 2.5 0.1

ETM power, number, control, according, increase, large 0.44 0.9 0.2

Gibbs LDA officials, board, report, union, members, agency, yesterday 0.51 0.8 0.3

ETM time, half, center, open, away, place, high, day, run 0.37 1.2 0.3

ETM net, share, inc, earns, company, reports, loss, lead 0.73 1.8 0.3

relationship and are very close to human scores.
For example, the topic film, theater, movie, play,
director, movies receives the highest score by both
CTC and human scoring.

6 Conclusion

This paper introduces a new family of topic co-
herence metrics called Contextualized Topic Co-
herence Metrics (CTC) that benefits from the
recent development of Large Language Models
(LLM). CTC includes two approaches that are
motivated to offer flexibility and accuracy in eval-
uating neural topic models under different circum-
stances. Our results show that automated CTC
outperforms the baseline metrics on large-scale
datasets while semi-automated CTC outperforms
the baseline metrics on short-text datasets. After a
comprehensive comparison between recent neural
topic models and dominant classical topic mod-
els, our results indicate that some neural topic
models which optimize traditional topic coher-
ence metrics, often receive high scores for topics
that are overly sensitive to idiosyncrasies such as
repeated text, and lack face validity. We show
with our experiments that CTC is not susceptible
to being deceived by these meaningless topics by
leveraging the ability of LLMs to better model hu-

man expectations for language and evaluate topics
within and outside their contextual framework.
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Limitations

CTC metrics come with several limitations, such
as latency, accuracy, and the potential for bi-
ased results. For instance, CPMI can be a time-
consuming process, as it involves running all sen-
tences through LLMs and calculating word co-
occurrences for every pair of words across all
topics. Additionally, the results for Rating and
Intrusion may vary with each query to LLMs.
Therefore, it is necessary to configure the LLM’s
temperature and iterate through multiple queries
to obtain normalized values. Furthermore, it’s
important to be aware that LLMs can exhibit bias,
and their utilization for topic coherence evalua-
tion could potentially perpetuate such biases.

1768



References
Aly Abdelrazek, Yomna Eid, Eman Gawish, Walaa

Medhat, and Ahmed Hassan. 2022. Topic modeling
algorithms and applications: A survey. Information
Systems, page 102131.

Nikolaos Aletras and Mark Stevenson. 2013. Evaluat-
ing topic coherence using distributional semantics.
In Proceedings of the 10th international conference
on computational semantics (IWCS 2013)–Long
Papers, pages 13–22.

Dimo Angelov. 2020. Top2vec: Distributed represen-
tations of topics. arXiv preprint arXiv:2008.09470.

Federico Bianchi, Silvia Terragni, and Dirk Hovy.
2021. Pre-training is a hot topic: Contextualized
document embeddings improve topic coherence. In
Proceedings of the 59th Annual Meeting of the As-
sociation for Computational Linguistics and the
11th International Joint Conference on Natural Lan-
guage Processing (Volume 2: Short Papers), pages
759–766, Online. Association for Computational
Linguistics.

Iman Munire Bilal, Bo Wang, Maria Liakata, Rob
Procter, and Adam Tsakalidis. 2021. Evaluation of
thematic coherence in microblogs. arXiv preprint
arXiv:2106.15971.

Ekaba Bisong and Ekaba Bisong. 2019. Google co-
laboratory. Building machine learning and deep
learning models on google cloud platform: a com-
prehensive guide for beginners, pages 59–64.

David M Blei. 2012. Probabilistic topic models. Com-
munications of the ACM, 55(4):77–84.

David M Blei, Andrew Y Ng, and Michael I Jordan.
2003. Latent dirichlet allocation. Journal of ma-
chine Learning research, 3(Jan):993–1022.

Gerlof Bouma. 2009. Normalized (pointwise) mutual
information in collocation extraction. Proceedings
of GSCL, 30:31–40.

João Marcos Campagnolo, Denio Duarte, and Guill-
herme Dal Bianco. 2022. Topic coherence metrics:
How sensitive are they? Journal of Information
and Data Management, 13(4).

Jonathan Chang, Sean Gerrish, Chong Wang, Jordan
Boyd-Graber, and David Blei. 2009. Reading tea
leaves: How humans interpret topic models. Ad-
vances in neural information processing systems,
22.

Rob Churchill and Lisa Singh. 2022. The evolu-
tion of topic modeling. ACM Computing Surveys,
54(10s):1–35.

Thomas M Cover. 1999. Elements of information
theory. John Wiley & Sons.

Adji B Dieng, Francisco JR Ruiz, and David M Blei.
2020. Topic modeling in embedding spaces. Trans-
actions of the Association for Computational Lin-
guistics, 8:439–453.

Caitlin Doogan and Wray Buntine. 2021. Topic model
or topic twaddle? re-evaluating semantic inter-
pretability measures. In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 3824–3848, Online.
Association for Computational Linguistics.

Fosca Giannotti, Cristian Gozzi, and Giuseppe Manco.
2002. Clustering transactional data. In Principles
of Data Mining and Knowledge Discovery: 6th Eu-
ropean Conference, PKDD 2002 Helsinki, Finland,
August 19–23, 2002 Proceedings 6, pages 175–187.
Springer.

Thomas L Griffiths and Mark Steyvers. 2004. Find-
ing scientific topics. Proceedings of the National
academy of Sciences, 101(suppl_1):5228–5235.

Maarten Grootendorst. 2022. Bertopic: Neural topic
modeling with a class-based tf-idf procedure. arXiv
preprint arXiv:2203.05794.

Jacob Louis Hoover, Wenyu Du, Alessandro Sordoni,
and Timothy J. O’Donnell. 2021. Linguistic depen-
dencies and statistical dependence. In Proceedings
of the 2021 Conference on Empirical Methods in
Natural Language Processing, pages 2941–2963,
Online and Punta Cana, Dominican Republic. As-
sociation for Computational Linguistics.

Alexander Hoyle, Pranav Goel, Andrew Hian-Cheong,
Denis Peskov, Jordan Boyd-Graber, and Philip
Resnik. 2021. Is automated topic model evalua-
tion broken? the incoherence of coherence. Ad-
vances in Neural Information Processing Systems,
34:2018–2033.

Alexander Hoyle, Pranav Goel, Rupak Sarkar, and
Philip Resnik. 2022. Are neural topic models bro-
ken? arXiv preprint arXiv:2210.16162.
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A Automated Coherence Metrics

Topic Models were initially evaluated with held-
out perplexity as an automated metric (Blei et al.,
2003). Perplexity quantifies how well a statistical
model predicts a sample of unseen data and is
computed by taking the inverse probability of the
test set, normalized by the number of words in the
dataset. According to (Chang et al., 2009), per-
plexity has been found to be inconsistent with
human interpretability. As a result, the field
shifted towards adopting automated topics coher-
ence metrics that rely on word co-occurrence-
based methods like Point-wise Mutual Informa-
tion (PMI) (Cover, 1999).

A.1 Definition
As defined as follows, Topic coherence over PMI
(TCUCI) is defined as the average of the log2 ratio
of co-occurrence frequency of word wr

i and ws
i

within a given topic i.

TCUCI =
1

n

n∑

i=1

1(
m
2

)
m∑

r=2

r−1∑

s=1

PMI(wr
i , w

s
i ) (3)

with

PMI(wi, wj) = log2
P (wi, wj) + ϵ

P (wi)P (wj)
(4)

where n is the number of topics with m topic
words and PMI represents the pointwise mutual
information between each pair of words (wr

i and
ws
i ) in the topic i. PMI is computed by taking

the logarithm of the ratio of the joint probability
of two words P (wr

i , w
s
i ) appearing together to

the individual probabilities of the words P (wr
i ),

P (ws
i ) occurring separately. Note that ϵ = 1 is

added to avoid the logarithm of zero.
On the other hand, UMass (Mimno et al., 2011)

computes the co-document frequency of word wr
i

and ws
i divided by the document frequency of

word ws
i .

UMass(wr
i , w

s
i ) = log

D(wr
i , w

s
i ) + ϵ

D(ws
i )

(5)

where n and m are the numbers of topics and
topic words respectively. The smoothing param-
eter ϵ was initially introduced to be equal to one
and avoid the logarithm of zero.

Similarly, (Aletras and Stevenson, 2013) pro-
poses context vectors for each topic word w to
generate the frequency of word co-occurrences
within windows of ±1 words surrounding all in-
stances of w.

NPMI(wr
i , w

s
i ) =

log2
P (wr

i ,w
s
i )+ϵ

P (wr
i )P (ws

i )

− log2(P (wr
i , w

s
i ) + ϵ)

(6)

(Röder et al., 2015) proposes CV , which is a vari-
ation of NPMI.

CV(w
r
i , w

s
i ) = NPMIγ(wr

i , w
s
i ) (7)

One way to estimate TCDWR is to compute the
average pairwise cosine similarity between word
vectors in a topic as follows.

DWR(wr
i , w

s
i ) =

wr
i · ws

i

∥wr
i ∥ · ∥ws

i ∥
(8)

B LLM Prompts

In this section, we present LLM prompts used in
our experiments. The descriptions of the prompts
for the ratings and intrusion task are as follows.

B.1 Intrusion
System prompt: I have a topic that is described by the fol-

lowing keywords: [ topic-words ]. Provide a one-word topic

based on this list of words and identify all intruder words

in the list with respect to the topic you provided. Results

be in the following format: topic: <one-word>, intruders:

<words in a list>

The number of intrusion words (|Ii|) returned
by chatbot for each topic i, is used to define
CTCIntrusion as follows:

CTCIntrusion =
n∑

i=1

1− |Ii|
m

n
(9)
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Figure 4: Spearman’s rank correlation coefficients between evaluation metrics for three topic models

where n is the number of topics and m is the
number of topic words.

B.2 Rating

System prompt: I have a topic that is described by

the following keywords: [topic-words]. Evaluate the inter-

pretability of the topic words on a 3-point scale where 3 =

“meaningful and highly coherent” and 0 = “useless” as topic

words are usable to search and retrieve documents about a

single particular subject. Results be in the following format:

score: <score>

B.3 Normalized CPMI

To improve comparability, we also propose a nor-
malized version of CPMI that extend its generaliz-
ability and allows to mitigate potential biases that
may arise due to specific dataset characteristics or
idiosyncrasies. Additionally, it facilitates thresh-
old determination and provides a consistent scale
that allows researchers to set thresholds based on
desired coherence levels, ensuring the metric is
effectively utilized in practical applications.

B.3.1 Definition

Given a set of n topics TM 7→ {t1, t2, . . . , tn}
with m words ti 7→ {wi

1, w
i
2, . . . , w

i
m} as an out-

put of topic model TM on the corpus of e docu-
ments D = {d1, d2, . . . , de}, the CTC based on
Normalized CPMI (NCPMI) called CTCNCPMI is
defined as follows.

1

e ∗ n ∗m
e∑

d=1

n∑

i=1

m∑

j=1

NCPMI(wi
j , t

i | cd)

(10)
while NCPMI(wi

j , t
i | cd) is:

log
P (wi

j |cd−wi
j

)

P (wi
j |cd−ti

)

−log(P (wi
j | cd−wi

j
)× P (ti | cd−ti

))
(11)

where P is an estimate for the probability of
words given context based on language model
LM. The cd−wi

is the document d with word wi

masked, and cd−tj is the document d with words
of topic ti masked.

C Correlation Study

Pearson correlation is a statistical measure used
to assess the degree of linear association between
sets of data. As shown Figure 2, we applied this
method to the results of topic coherence metrics
on the topic models to evaluate how closely re-
lated or similar the quality of topics generated by
these models is. A high positive Pearson corre-
lation coefficient indicates that the topic models
produce similar results in terms of topic coher-
ence, suggesting that they are consistent and re-
liable. Conversely, a low or negative correlation
suggests inconsistency or divergence in the qual-
ity of topics generated by the different models.
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On the other hand, Spearman’s rank correla-
tion coefficient is a statistical measure used to
assess the strength and direction of the monotonic
relationship between sets of data. As show in
Figure 4, we applied this method to evaluation
topic coherence metrics for human evaluation to
determine if there is a consistent ranking of these
models in terms of their performance across dif-
ferent metrics. A high positive Spearman’s rank
correlation coefficient suggests that the rankings
of the three models across the evaluation metrics
are similar, indicating consistency in their perfor-
mance. Conversely, a low or negative correlation
suggests variability in the rankings, indicating
that different metrics may lead to different model
preferences.

D Code

CTC is implemented as a service for researchers
and engineers who aim to evaluate and fine-tune
their topic models. The source code of this python
package is provided in ./ctc and a notebook named
example.ipynb is prepared to explain how to use
this python package as follows.

D.0.1 Automated CTC

1 from ctc.main import Auto_CTC
2 #initiating the metric
3 evalu=Auto_CTC(segments_length

=15, min_segment_length =5,
segment_step =10, device="mps")

4

5 # segmenting the documents
6 docs=documents
7 evalu.segmenting_documents(docs)
8

9 # creating cpmi tree including
all co -occurence values
between all pairs of words

10 evalu.create_cpmi_tree ()
11 #evalu.load_cpmi_tree ()
12

13 # topics =[[" game","play "],["man
","devil "]] for instance

14 evalu.ctc_cpmi(topics)

D.0.2 Semi-automated CTC

1 from ctc.main import
Semi_auto_CTC

2

3 openai_key="YOUR OPENAI KEY"
4

5 y=Semi_auto_CTC(openai_key ,
topics)

6

7 y.ctc_intrusion ()
8

9 y.ctc_rating ()
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