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Abstract

Coherence in discourse is fundamental for com-
prehension and perception. Much research
on coherence modeling has focused on better
model architectures and training setups opti-
mizing on the permuted document task, where
random permutations of a coherent document
are considered incoherent. However, there’s
very limited work on creating "informed" syn-
thetic incoherent samples that better represent
or mimic incoherence. We source a diverse
positive corpus for local coherence and pro-
pose six rule-based methods leveraging infor-
mation from Constituency trees, Part-of-speech,
semantic overlap and more, for "informed" neg-
ative sample synthesis for better representation
of incoherence. We keep a straightforward
training setup for local coherence modeling by
fine-tuning popular transformer models, and
aggregate local scores for global coherence.
We evaluate on a battery of independent down-
stream tasks to assess the impact of improved
negative sample quality. We assert that a step
towards optimality for coherence modeling re-
quires better negative sample synthesis in tan-
dem with model improvements.

1 Introduction and Motivation

Coherence is the bridge between elements of dis-
course which imposes strong logical connections,
semantic relationships, smooth transitions, and the-
matic progressions. Halliday and Hasan (1976)
formally defined coherence as a text’s interpre-
tive unity through cohesion, introducing Local and
Global Coherence concepts, the former addressing
connections between adjacent text units, while the
latter looking at the broader discourse organization
for a document. van Dijk (1977) additionally em-
phasizes the role of macrostructures and cognitive
processes, going beyond mere textual properties.
Coherence modeling has been a fundamental task
in discourse and pragmatics, with applications in
text generation, dialogue systems, and reasoning,

yet presents formidable challenges in modeling and
a veritable lack of quality data.

Entity-based models (Barzilay and Lapata, 2008;
Elsner and Charniak, 2011) capture patterns of en-
tity distribution in text by focusing on the roles
of salient entities (Grosz et al., 1995). To this,
Tien Nguyen and Joty (2017) apply a neural ap-
proach using convnets. Rhetorical Structure Theory
(RST) based methods formalize coherence as dis-
course relations (Louis and Nenkova, 2012; Mann
and Thompson, 1988). Li and Hovy (2014) fea-
ture recurrent layers to encode individual sentences
within 3-sentence windows. Li and Jurafsky (2017)
use an encoder-decoder architecture to incorpo-
rate global topic information. Mesgar and Strube
(2018) model changes in salient semantic infor-
mation. The transferable Neural model (Xu et al.,
2019) focuses on local coherence, training forward
and backward models on adjacent sentences, along
with generative pre-training of sentence encoders.
The Unified Coherence model, proposed by Moon
et al. (2019), is highly regarded for its impressive
results, employing a Siamese framework with a bi-
linear layer and lightweight convolution pooling.

Coherence models often learn and evaluate using
a pairwise-ranking task on the Wall Street Journal
(WSJ) Corpus Documents. An original document
serves as a coherent "positive" sample, while its
permuted version is the incoherent "negative" sam-
ple. The primary goal is to train models to predict
a higher coherence score for the original than its
random permutations and determine total accuracy.
Introduced by Barzilay and Lapata (2008), the cor-
pus and task have been prime sets for most research
in modeling and evaluating coherence. Mohiud-
din et al. (2021) assessed state-of-the-art models
trained on the WSJ permuted data. While the mod-
els excelled in the permuted document task, they
struggled in downstream evaluations. Pishdad et al.
(2020) note that success on the permuted document
task doesn’t fully reflect true coherence modeling
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abilities advocating for broader evaluations of these
models.

Jwalapuram et al. (2022) present the state-of-
the-art for the pairwise WSJ task using an ex-
tensive contrastive setup that contrasts positive
samples with permuted negatives via automatic
hard negative mining to harness "harder" samples
during training. This approach, leveraging hard-
mining negative samples during training, achieves
improved results. Shen et al. (2021) adopted a dif-
ferent approach from random permutations, focus-
ing on intruder-detection. To formulate incoherent
documents using the CNN and Wikipedia corpora,
they substitute a sentence from a coherent docu-
ment with a comparable sentence from a different
document. Through bigram hashing and TF-IDF
matching, they retrieve 10 similar documents, then
choose a random non-opening sentence from these
to create 10 potential replacements. They further
refine the substitution using filters based on TF-IDF
similarity, thereby making an "informed" change
that turns a positive document into a negative one.
Their findings indicate that fine-tuned transformer
models excel at this task.

Based on this we propose that relatively straight-
forward training setups akin to document classifica-
tion using pre-trained models and aggregation can
yield comparative or better scores against promi-
nent models for coherence, achieved by creating
more sophisticated “informed” synthetic samples
for incoherent data leveraging granular and nu-
anced syntactic and semantic text information, as
opposed to the simpler data curations based on ran-
dom permutations that many complex models and
setups currently rely on.

Incoherent "negative" samples from six, rule-
based-heuristic, "informed" negative data synthe-
sis processes are crafted from a novel 3-sentence
locally coherent "positive" text corpora obtained
from diverse sources after a curated extraction pro-
cess. These 3-sentence local windows are used to
fine-tune transformer models, from which a sim-
ple aggregation method yields a global document
coherence estimation system. This system is then
evaluated on a battery of downstream evaluations
and compared against prominent models.

We achieve results comparable to state-of-the-art
models trained explicitly on the WSJ permutation
training set, with fast convergence and significantly
better performance on a logical coherence eval-
uation test. We conduct an ablation analysis ex-
amining the incoherent sample synthesis methods,

SRC Samples AWC VS
WKI 54,991 67.95 97,278
ROC 59,890 30.04 19,149
ARX 27,228 70.89 31,197
BKP 12,258 64.82 38,288

Table 1: Positive Summary: The number of samples,
average word count per window, and vocabulary size
for the windows in each set.

followed by a discussion. Our conclusion empha-
sizes the importance of nuanced incoherent data
synthesis that mimics natural incoherence. Scripts
made available1 (refer ethics statement).

2 Extracting Coherent Samples

We select a 3-sentence window for our local coher-
ence analysis (Li and Hovy, 2014; Moon et al.,
2022). Our locally coherent “positive” set is
curated after an extraction and filtration process
from four diverse sources of text: Arxiv Ab-
stracts - ARX - Summaries of academic literature,
Wikipedia "Good" - WKI - Articles tagged to
be "good" on Wikipedia 2, ROC Stories - ROC -
Short commonsense stories (Mostafazadeh et al.,
2016), Book Plots - BKP - Book plot texts 3. For
ROC we eliminate all samples that may have any
overlap with the StoryCloze test which we evaluate
on later (1571 samples). Text from all sources is
human-written.

We iterate over and parse documents from each
source into lists of sentences using a parser except
for ROC where sentences are pre-parsed. From
these sentence lists, we extract three-sentence win-
dows. Every sentence undergoes cleaning to re-
move unicode errors and filter URLs/tags. More-
over, as an additional filtration heuristic, each sen-
tence is evaluated for linguistic acceptability using
the ‘textattack/roberta-base-CoLA’ model (Morris
et al., 2020) trained on COLA (Warstadt et al.,
2019). If a sentence in a window fails the check,
the window is discarded. On average, 5.21% of
windows per set are rejected. We ensure significant
distance and no overlaps between windows from
the same document. The detailed extraction pro-
cess is explained in Algorithm 1. The summary of
the positive corpus is presented in Table 1.

1github.com/shubh11220/Coherence (refer ethics)
2en.wikipedia.org/wiki/Wikipedia:Good_articles
3kaggle.com/datasets/athu1105/book-genre-prediction
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Algorithm 1 Window Extraction
Require: Source Files FSRC
Ensure: All other functions are defined

1: for f in FSRC do
2: for doc in f do
3: sents← Parser(doc)
4: if len(sents) < 3 then continue
5: end if
6: Split sents to groups (2 < LEN < 7)
7: for each G in groups do
8: Lg ← len(G)
9: i← random(0, Lg − 3)

10: w ← [G[i], G[i+ 1], G[i+ 2]]
11: for sen in w do
12: C ← Clean(sen)
13: if not Acceptability(C) then
14: continue to next group
15: end if
16: end for
17: Add w to Windows
18: end for
19: end for
20: Store Windows in a DataFrame and save
21: end for
Ensure: Individual source sets saved at FDEST

3 Negative Samples

We craft incoherent samples using six methods
to perturb samples directly from the positive set,
ensuring positive-negative samples remain within
the same general space.

M1 and M2 incorporate syntactic details from
sentences to execute informed substitutions. They
primarily focus on modifying the contextual and
descriptive elements of the sentences:

M1. Constituency Subtree Substitution: Sub-
tree substitution has been an explored topic in the
NLP predicament especially for data augmentation
(Shi et al., 2021; Yang et al., 2022). We substi-
tute Prepositional Phrases (PP), Adjective Phrases
(ADJP) and Adverb Phrases (ADVP) in positive
sample sentences. By replacing the ADJP, ADVP,
or PP modifiers, we change the "Where," "How,"
and "Why" of a sentence, not the "Who" or "What”.

Using a neural constituency parser (Kitaev
and Klein, 2018), we flatten the positive cor-
pus, extract a subset, iterate over sentences, and
form a dictionary of ADJPs, ADVPs, and PPs
called Bank (B). For a given sentence S and
B with keys: ADJP,ADV P, and PP , if con-

stituency parse tree structure S contains subtree
with key ∈ {ADJP,ADV P, PP}, it generates
a set of 5 candidate replacements S′

candidates =
{S1, S2, . . . , S5}, where each Si is a variant of
S with the key text substituted from B[key].
The candidate S′ is chosen such that S′ =
argmaxi(Acceptability(Si)) (Acceptability is mod-
eled similarly to the positive method). This process
is applied to a maximum of two sentences in each
positive window W , with the number of substitu-
tions constrained by 1 ≤ substitutions ≤ 2. A
visual depiction is provided in Figure 1(a).

M2. Salient Token Substitution: A method
to model entity-based incoherencies. Draws
parallels with the prior method. We identify
contextually salient Part-Of-Speech (POS) Tags
that are linked to salient tokens in the sentence,
specifically nouns, verbs, and adjectives L =
{NN,NNS,NNP,NNPS, V B, V BD, V BG,
V BN,PRP, JJ, JJR, JJS}. These tags convey
salient information regarding the sentence’s
entities and their interrelations. Analogous to MI,
we construct a Bank B by flattening the positive
corpus, parsing, and mapping POS tags to token
replacement lists. From the positive window, a
single sentence is chosen at random, parsed, and
tokens bearing these vital POS tags are identified
and appended to a salient token set. On randomly
discarding 70% of these tokens from the set, the
remaining 30% are substituted in the sentence
using dictionary tokens having an identical tag.
We discard 70% tokens to so as to not drastically
perturb the sample. The sentence is reinserted
into the window. This is done for each window
in every positive source set. We choose the top
35% linguistically acceptable windows at the end.
Contrasting with M1, this methodology introduces
incoherencies concerning correctness as well. A
visual illustration of this method can be seen in
Figure 1(b).

M3 and M4 are intruder sentence injection meth-
ods, selecting a sentence from a positive sample
for substitution based on similarity and saliency
heuristics. M3 and M4 flatten each source set in
the positive corpus individually to bags of sen-
tences to select intruder sentences. Both iterate on
each window substituting a single sentence.

M3. Similarity Intruder Injection: Given a
positive source set P , for each window W in
P , we first select 12 candidate intruder sentences
Icandidates = {I1, . . . , I12} at random from P ’s
corresponding bag BP, where BP is a flattened list
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Figure 1: A rough overview of M1 and M2 pipelines visualised.

of all sentences in all windows in P . For each
candidate Ij , the cosine similarity cos(Ij ,W ) is
computed against the entire window’s document
embeddings using Sentence Transformers (Reimers
and Gurevych, 2019). We select the sentence I∗

such that: I∗ = argmaxj(cos(Ij ,W )). The se-
lected intruder I∗ is then used to substitute any one
of the three sentences in the window W , provided:
cos(I∗,W ) ≥ 0.2. An observational grid-search-
like process determined this minimum threshold
and the parameter of twelve candidate replace-
ments. These parameters ensure that the intruder
sentence maintains some similarity with the win-
dow while preserving a degree of randomness to
ensure incoherence.

M4. Token Overlap Intruder Injection: Let L
denote the salient Part-Of-Speech (POS) list from
M2. In M4, we enhance L to also include pro-
nouns: LM4 = L ∪ {PRP$,WP,WP$,WRB}.
For a given positive source set P each window
W in P has a saliency representation of tokens
SW =

[
{t11, . . . , t1m}, {t21, . . . , t2n}, {t31, . . . , t3o}

]
.

The flattened window saliency set, FW = {...},
accumulates the saliency sets from its sentences.
Each token in every saliency set is lemmatized.
We construct a bag BP per source set, like M3,
containing linked saliency sets for each sentence.
We define a selection value W in P as num =
len(P ) × 0.1. For each W , after selecting num
random sentences from BP and obtaining FW , the
overlap between FW and all candidate replacement
saliency sets in BP is calculated. The overlap for
a candidate set C is denoted by Overlap(FW , C)
with the chosen candidate replacement, C∗, satisfy-

ing C∗ = argmaxC(Overlap(FW , C)) constrained
within 0.3 ≤ Overlap(FW , C∗) ≤ 0.6. These con-
straint and selection values are derived from ob-
servational analysis like in M3. Ultimately, C∗

substitutes a random sentence in W .
M5 and M6 serve as supplementary methods,

introducing incoherencies related to the correctness
and structural integrity of sentences. While these
aspects may not be paramount in broader discourse,
they can be integral on a more granular level. For
a given positive source set P with each window
W in P we apply them to a single sentence S in
the window. For both M5 and M6 we construct the
saliency set for S like in M4:

M5. Intra-Sentence Permutation Like in M2
we shorten this set by randomly discarding 70% of
total tokens. The remaining tokens in the set are
permuted for their positions with each other in the
sentence.

M6. Context Dissipation Unlike M5 we do not
permute the 30% set tokens from the sentence but
simply delete them.

The final summary of negative samples is pre-
sented in Table 2. Our methodology for generat-
ing negative samples aimed for a theoretical max-
imum of six negatives per positive instance, uti-
lizing methods M1 through M6. The actual yield
was moderated by the application of thresholds and
heuristic cutoffs, particularly in M3 and M4, to
preclude drastically perturbed samples, alongside
linguistic acceptability criteria in M1, M2, M5, and
M6. The resultant ratio represents the viable nega-
tives effectively utilized. Examples for these are
present in the Appendix section of the paper.

1898



Method Samples
M1. 52,255
M2. 60,834
M3. 61,178
M4. 39,943
M5. 15,906
M6. 10,091

Table 2: Negative Sets Summary

4 Coherence Modeling

Our main model is the local coherence model
which is based on a fairly straightforward fine-
tuning setup. The global document coherence mod-
eling (DCM) setup is based on the local model
itself.

4.1 Local Coherence Model

Local coherence modeling is framed as a binary
classification task. A model takes in 3-sentence text
windows and predicts a score. This method bears
resemblance to BERT’s Next Sentence Prediction
(NSP) task (Devlin et al., 2019), the difference pri-
marily being the type of sentences and the context
length. We by fine-tuning prominent transformer-
based encoder models such as BERT (2019), Dis-
tilBERT (2019), XLNet (2019), RoBERTa (2019)
(and their large versions).

For a window W comprising 3 sentences (sen1,
sen2, sen3) (whitespace separated), our model
leverages representations from BERT-based en-
coders (characterized by ϕ) to determine a coher-
ence score for the sentences together as a docu-
ment separated by white spaces. Specifically, for
a document di having k tokens (w1, w2, . . . , wk),
transformer encoder models transform each token
wt into its vector form vt ∈ Rd, where d signi-
fies the embedding’s dimension. Additionally, the
entire input D is converted into a document vec-
tor z ∈ Rd, representing the [CLS] token. A lin-
ear layer is then appended to transform this docu-
ment vector z, producing the final coherence score:
fθ(D) = w⊤z + b. Here, w and b represent the
weight and bias of the added linear layer.

4.2 Document Coherence Modeling Setup

For our global, document coherence setup, we tar-
get documents in a 4 to 10 sentence range. This
aligns with prevailing research practices, where the
segment of a document under consideration typi-

System Acc. Prec. Rec. F1

BERT base No FT 77.5 72.5 81.7 76.8
BERT base 89.8 81.3 93.5 87.0
BERT large 91.9 83.9 95.0 89.1
DistilBERT 91.0 84.1 93.9 88.7
XLNET base 90.3 82.8 94.8 88.4
XLNET large 92.5 86.8 95.1 90.8
RoBERTa base 92.1 85.7 94.7 90.0
RoBERTa large 93.5 88.5 95.8 92.1

Table 3: Test Accuracy, Precision, Recall and F1 score.

cally reflects a paragraph or a section with up to
10 sentences. For larger documents, segmentation
may be required.

Given a document D of length n, our approach
employs the local coherence model to infer a global
coherence score. This score is conceived as a mean
of the local coherence scores found within the doc-
ument. To decompose the document structure, we
employ a sliding window mechanism, using a 3-
sentence context window that moves from the be-
ginning of the document with a single stride, while
abstaining from any padding. This approach results
in n− 2 windows for the given document length.

To these windows we additionally incorporate
one-hop windows (which augment our data and
capture information at a distance) from the docu-
ment where the window consists of sentences at i,
i+2, and i+4. We obtain all within-range one-hop
windows. Thus, our total set of windows encom-
passes no-hop and 1-hop windows (Although, we
noticed only marginal improvements after includ-
ing the 1-hop windows in the downstream tasks).
Using the local coherence model, we compute the
local coherence scores for all these windows. The
final score Sg for the document D is the mean of
window scores.

We maintain this setup to be straightforward and
clear to ensure that any comparisons in our per-
formance on downstream evaluations are largely
attributed to the quality of our corpora, rather than
innovations in model architecture or training setups.
We aim to evaluate how our strategy, which empha-
sizes diverse positive data and curated "informed"
negative samples, compares to the more complex
state-of-the-art models and training setups.

4.3 Training
We compile our dataset from positive (154K sam-
ples) and negative sets (240K samples, detailed in
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Table 2), resulting in around 394K samples split
into train, test and dev sets at a 70/20/10 ratio. Con-
sistent fine-tuning hyperparameters are used across
pre-trained models with a dropout rate of 0.2 on
the base model and linear layer, and a reduced max
length. Training spans 3 epochs with the AdamW
optimizer (Loshchilov and Hutter, 2019), with a lin-
early decreasing rate scheduler with Binary Cross-
Entropy (BCE) Loss. We train on Nvidia A100
GPU instances. Inference metrics like accuracy,
precision, recall, and F1 score from the test set are
in Table 3. The results reported are a mean of 5
runs.

We observe that the RoBERTa-large model per-
forms the best for all metrics and we use the XLNet
large and RoBERTa large variants for our docu-
ment coherence modeling (DCM) setup for further
downstream evaluation. We record lower precision
scores than recall for most of our models, which is
informative as it tells us that our negative samples
are sufficiently hard which are then being classified
as positive.

5 Downstream Evaluations

We test our document coherence modeling (DCM)
approach on a battery of downstream task-
independent pairwise test sets similar to Jwalapu-
ram et al. (2022). These include the WSJ Test
Set, SummEval Annotated Set (Fabbri et al., 2021),
INSteD-CNN - INSteD-Wiki Sets (Shen et al.,
2021) and the StoryCloze Test (Mostafazadeh et al.,
2016).

We use a pairwise setup where the score of a pos-
itive sample is ranked against a negative one, mea-
suring on total accuracy. Pairwise comparisons are
scale-invariant, they focus on relative score posi-
tions thus, despite varied task or dataset scales, the
evaluation is consistent. We also test on the GCDC
test sets (Lai and Tetreault, 2018) for pairwise rank-
ing and minority class prediction to compare with
benchmarks and assess natural use cases.

We compare against state-of-the-art baseline
models with previously reported scores on these
tasks: Local Coherence Discriminator (LCD)
model (Xu et al., 2019): (i) LCD-G with GloVe
representations (Pennington et al., 2014), (ii) LCD-
I using InferSent (Conneau et al., 2017), and
LCD-L from an RNN-trained language model;
(UNC) model (Moon et al., 2019) and the Con-
trastive and Contrastive with Hard-Mined Nega-
tives (HMN) model (Jwalapuram et al., 2022). For

GCDC we have the LEXGRAPH (Barzilay and
Lapata, 2008), EGRAPH (Guinaudeau and Strube,
2013), CLIQUE (Li and Jurafsky, 2017) and SEN-
TAVG, SENTSEQ/PARSEQ models from Lai and
Tetreault. All these prominent models allow for a
good comparison as they have exhibited excellent
results on a myriad of downstream sets in the past.

5.1 Tasks
WSJ: Benchmark for global coherence tasks con-
trasts a document against 20 of its random sentence
permutations, excluding any matching the original.
Documents undergo 20 permutations in a pairwise
test, comparing coherence scores. Testing uses
Moon et al. (2019)’s set with 20,411 pairs from
1053 documents (Sections 14-24 of the WSJ cor-
pus).

SummEval: The SummEval collection of hu-
man judgments of model generated summaries on
the CNN Dailymail dataset (Fabbri et al., 2021)
consists 1600 model generated summaries by 16
generation systems on 100 articles (Chen et al.,
2016). Each summary has coherence ratings from
three expert annotators using a Likert-like scale.
Jwalapuram et al. (2022) adapts this to a pair-
wise setup pairing summaries for every system and
unique source article. The summary with superior
coherence becomes the positive document, while
its counterpart is the negative one. This yields(
16
2

)
× 100 = 12, 000 pairs for assessment. A con-

straint to consider is the notably low inter-annotator
agreement (Krippendorff’s alpha - 0.492 For work-
ers, 0.413 for experts, improved to 0.712).

Story Cloze Test: This is an independent com-
monsense reasoning set proposed. Following on
Pishdad et al. (2020), we assess models using the
StoryCloze dataset (Mostafazadeh et al., 2016).
This dataset offers short narratives with two end-
ings, one being implausible and logically incoher-
ent. Using the validation set (as test labels are
private), we pair narratives with correct endings as
positive and incorrect ones as negative, yielding
1,571 evaluation pairs. As outlined in section 2,
any windows that contained even a single sentence
from these test samples were removed from our
ROC set prior to training.

INSteD: As introduced previously, the task pre-
sented by Shen et al. (2021) to assess the coher-
ence abilities of pre-trained language models by
detecting intruding sentences is again adapted to
a pairwise setting. The pairwise framework pairs
the original document with its corrupted incoherent
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System SummEval StoryCloze INSteD-CNN INSteD-Wiki WSJ

LCD-G 54.15±0.83 51.76±1.22 61.24±0.71 55.09±0.46 90.39±0.28

LCD-I 51.71±0.99 52.69±0.69 60.23±0.86 53.50±0.37 91.56±0.16

LCD-L 53.56±1.20 50.09±1.57 55.07±0.26 51.04±0.47 90.24±0.36

UNC 46.28±0.80 49.39±1.81 67.21±0.55 55.97±0.45 94.11±0.29

Contrastive 66.93±1.10 72.83±2.89 92.84±0.61 71.86±0.69 98.59±0.20

Contrastive-HMN 67.19±0.63∗ 74.62±2.79 93.36±0.49∗ 72.04±1.05∗ 98.58±0.18∗

XLNet-large-DCM 61.89±1.20 76.32±1.37 91.11±0.61 70.16±0.65 92.42±0.53

RoBERTa-large-DCM 62.45±1.17 77.42±1.81∗ 92.32±0.28 71.33±0.87 93.79±0.41

Table 4: Results (net pairwise-accuracy on various independent evaluations. All models except for ours are trained
explicitly on the WSJ permute task. Results are a mean of 5 runs. {∗} Represents the top scores. All models except
for ours are trained explicitly on the WSJ data as detailed in Jwalapuram et al. (2022)

System Yahoo Clinton Enron Yelp

EGRAPH 64.0 75.3 75.9 59.5
LEXGRAPH 62.5 78.3 77.9 60.8
CLIQUE 57.8 89.4 88.7 64.6
SENTSEQ 58.3 88.0 87.1 74.2
XLNet-lg.-DCM 62.7 89.1 86.9 72.1
RoBERTa-lg.-DCM 63.8 90.2 89.4 73.3

Table 5: Pairwise Sentence ordering accuracy on GCDC
test sets. The top score is highlighted for each set.

counterpart. This provides 7,168 pairs from their
CNN test set (INSteD-CNN) and 3,666 from the
Wikipedia set (INSteD-WIKI) for evaluation.

GCDC: Lai and Tetreault (2018) provide a real-
world text corpus to model coherence, the Gram-
marly Corpus of Discourse Coherence (GCDC), in-
corporating texts from the Yahoo Answers L6 Cor-
pus, Clinton & Enron Mails Corpora, and the Yelp
Open Dataset, with 200 test samples from each
source. Our evaluation delves into two primary
tests of this dataset: sentence ordering (pairwise
setting) and minority class prediction. The former
follows a setting similar to the WSJ evaluation (20
random permutations), specifically targeting texts
with high coherence (gold rating 3). For sets Ya-
hoo, Clinton, Enron and Yelp containing 76, 111,
88 and 108 positive samples respectively we get
a total of 7660 test samples. The minority class
prediction aims to categorize a subset where only
15-20% is labeled as low coherence. Texts are des-
ignated "low coherence". The F0.5 score, which
favors precision over recall serves as the evaluation
metric. Echoing the patterns in SummEval anno-
tations, there’s a discernible low inter-annotator

System Yahoo Clinton Enron Yelp

EGRAPH 0.308 0.382 0.278 0.117
CLIQUE 0.055 0.000 0.077 0.146
SENTAVG 0.481 0.332 0.393 0.199
PARSEQ 0.447 0.296 0.373 0.112
XLNet-lg.-DCM 0.431 0.310 0.374 0.194
RoBERTa-lg.-DCM 0.462 0.336 0.384 0.211

Table 6: Minority class predictions, F0.5 score on GCDC
test sets. The top score is highlighted for each set.

agreement across these datasets: Mean Intra-Class
Correlation coeff. (ICC) for experts for all sets
being 0.422.

5.2 Results

Results for the pairwise independent sets are pre-
sented in Table 4. Tables 5 and 6 present results for
the GCDC test sets.

In the independent pairwise tests, both our
setups, XLNet-large-DCM and RoBERTa-large-
DCM (DCM: Doucment Coherence Modeling),
notably outperformed the non-contrastive models
(LCD-G, LCD-I, LCD-L, and UNC) across all eval-
uation tasks. When compared with contrastive mod-
els, our models exhibited competitive performance.
Specifically, our approaches closely matched the
highest scores, with a notably higher performance
in the StoryCloze test aimed at detecting incoheren-
cies in logical and narrative flow, where they sur-
passed others by a significant margin. In other
tasks, our models showed close performance to the
Contrastive and Contrastive-HMN models, with the
margin being relatively small. This is a significant
result, emphasizing the capability of our models to
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Removed Acc. SE Cloze IN-CNN

None 90.9 55.8 71.6 83.4
M1, M2 92.8 55.2 66.3 81.2
M3, M4 93.4 54.8 67.2 80.6
M5, M6 90.1 52.4 72.3 83.1

Table 7: Ablation results (net pairwise-accuracy) on
various independent downstream evaluations.

perform on par with state-of-the-art models. We
didn’t achieve a comparable score for the WSJ
task, largely because other models were specifi-
cally trained on the WSJ train set. For the GCDC
sentence ordering tasks, we are able to outperform
the others on the Clinton and Enron sets. Similarly,
on the minority class prediction task we outperform
on the Yelp set. On all the other sets for both the
tasks our results are competitive.

Our results are well distributed, competitive and
go on to show that better quality data in termed of
diversity and "informed" negative samples for the
task, is a parallel facet of this research.

5.3 Ablation Analysis

We carry out a restricted ablation analysis to ad-
dress two primary questions: 1. Among the meth-
ods of generating negative samples, which are "eas-
ier" for a model to grasp? 2. How do these methods
influence specific independent tasks? Our approach
involves randomly selecting 80K positive samples
and 120K negative samples, ensuring a higher num-
ber of negatives. From the complete set of negative
samples, we exclude pairs of related sets, specif-
ically [M1, M2], [M3, M4], and [M5, M6], and
then select the 120K samples. We then fine-tune the
RoBERTa-base model on this collective 220K sam-
ple set with consistent conditions. We use down-
graded settings and model for better distinction in
our study. We set a baseline for these settings in
which we don’t remove any negative set. We evalu-
ate on test accuracy (within the training samples)
and pairwise SummEval (SE), StoryCloze (Cloze)
and INSteD-CNN (I-CNN) downstream sets.

We report the results in Table 7. In response
to our first question, we noted the test accuracy
is lowest when [M5, M6] are removed, and it’s
higher when other methods are excluded, given the
prevalence of M5, M6 samples in the 120k quota
when other sets are removed. Thus incoherencies
related to structure and correctness are the easiest
for a model to grasp. On the contrary, when we

remove [M1, M2] or [M3, M4] we observe that
the test accuracy goes up indicating they are indeed
’harder’ samples when compared to M5 and M6.

We noticed that removing M5 and M6 causes
the most significant drop in SummEval accuracy.
StoryCloze’s accuracy diminishes with the exclu-
sion of [M1, M2] and [M3, M4], but less so when
[M5, M6] are removed, suggesting the first four
methods mainly influence logic-based incoheren-
cies. INSteD-CNN’s value drops most notably
without [M3, M4], with a comparable decrease
when [M1, M2] are excluded. Overall, informed
negative samples significantly impact results.

6 Conclusion and Future Work

In this paper, we take a parallel approach to co-
herence modeling as opposed to optimization on
the permuted document task by sourcing a diverse
positive corpus and synthesizing "informed" inco-
herent samples from the positive corpus with six
methods utilising constituency parse information,
POS, semantic similarity and more. We perform
local coherence model training using a simple fine-
tuning setup and form a score aggregation method
for global document coherence modeling. Using
this setup we test on multiple independent down-
stream tasks which capture some form on incoher-
ence in the text. Our nuanced approach to forming
negative samples and obtaining scores results in
getting comparable performance in the tasks (par-
ticularly standing out in a few) against many pop-
ular models and training setups developed for this
task. The efficacy of our models in diverse evalua-
tions, along with our findings, highlights the pivotal
role of sophisticated, "informed" negative sample
synthesis in advancing the field of coherence mod-
eling. In the future, we plan to expand our scope
by training more curated models on this training
data such as contrastive models, siamese networks,
and more. While these methods are designed to be
domain-agnostic, there is an interest in exploring
the nuances of incoherence within specific, context-
rich discourse domains, such as the medical or le-
gal fields, effectively investigating domain-specific
incoherence. We’re interested in exploring how
generative techniques, such as GANs or human-in-
the-loop systems, can aid in producing incoherent
samples and assist in mining hard negatives during
the incoherent text generation phase. A multilin-
gual angle for this can also be explored.
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Limitations

We aim to address several limitations in our future
work. Firstly, the inherent limitations or biases
in pre-trained transformers can influence the out-
comes, and alternative architectures might be better
suited for the task. Secondly, our described train-
ing setup, although straightforward, might not be
robust enough to address intricate incoherence or
capture nuances present in more complex training
environments. Lastly, while the insights from our
ablation analysis are valuable, they may not be
exhaustive, and there might be unidentified under-
lying factors impacting performance. We do not
propose a direct training model but methods that
may improve modeling on the task. There may be
more such linguistically grounded methods to craft
negative samples which must be explored.

Ethics Statement

Adhering to ethical standards, particularly with
data sources (both positive source and downstream
evaluation sets) requiring permissions, we provide
scripts and partial data rather than full datasets,
emphasizing our commitment to responsible data
sharing and practical application within ethical
guidelines. Our methods, versatile and multilin-
gual, apply to various text types and extend to tasks
like dialogue response generation. Additionally,
some models and scripts are designed for poten-
tial production use in our own proprietary text
evaluation systems.
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S1 It was the show’s creator Gene Roddenberry who argued in favor of her sudden demise as he felt it was suitable for a
security officer.

S2 Roddenberry also argued against killing Armus in retaliation.
S3 Shearer later described the decision, saying Gene felt we couldn’t kill the creature, because it is not up to us as human

beings to make a moral judgement on any creature that we encounter, because we are not God.
-
S1 It was the show’s creator Gene Roddenberry who argued in favor of her sudden demise as he felt it was suitable for a

security officer.
S2 Roddenberry also argued with Miss Lawson.
S3 Shearer later described the decision, saying Gene felt we couldn’t kill the creature, because it is not as a kid to make a

moral judgement on any creature that we encounter, because we are not God.

S1 He was confused at first when seeing the cold white snow.
S2 He sniffed and pawed at it at first.
S3 By the end of the day he was jumping around and having fun.
-
S1 He was confused at first when seeing the cold white snow.
S2 He sniffed and pawed at it at first.
S3 To an online boggle game he was jumping around and having fun.

S1 The digging of the ditch coincided with a near famine in Medina.
S2 Women and children were moved to the inner city.
S3 The Medinans harvested all their crops early, so the Confederate armies would have to rely on their own food reserves.
-
S1 The digging for a party she is planning coincided with a near famine in Medina.
S2 Women and children were moved to the woods.
S3 The Medinans harvested all their crops early, so the Confederate armies would have to rely on their own food reserves.

Table 8: Examples for M1, constituency parse tree based substitutions. The upper half of an example depicts the
coherent source and the bottom half depics the perturbed negative window. The pertubations are emphasized.

S1 Gina wanted her brother’s room when he left.
S2 Her parents had set it up as a family room.
S3 One day she came home and the family room was moved.
-
S1 Gina wanted her brother’s room when he left.
S2 Her parents had set it up as a family room.
S3 One day she came home and the family frigate was reanimated.

S1 It begins to feed in the morning, and is more active during the cooler parts of the day.
S2 Loud calls from males indicate the group is ready to move to another tree to feed.
S3 This monkey is mainly a foliovore, and on average, half of the leaves consumed are young leaves.
-
S1 It begins to feed in the morning, and is more active during the cooler parts of the day.
S2 plentiful calls from males indicate the group is ready to remove to another stand to evacuate.
S3 This monkey is mainly a foliovore, and on average, half of the leaves consumed are young leaves.

S1 Capitalizing on the ability of Neural Networks techniques for approximating the solution of PDE’s, we incorporate
Deep Learning (DL) methods into a DA framework.

S2 More precisely, we exploit the latent structure provided by autoencoders (AEs) to design an Ensemble Transform
Kalman Filter with model error (ETKF-Q) in the latent space.

S3 Model dynamics are also propagated within the latent space via a surrogate neural network.
-
S1 Rebelling on the parent of Rats Khalidorans techniques for approximating the solution of PDE’s, we incorporate Deep

Learning (croup) methods into a DA arm.
S2 More precisely, we exploit the latent structure provided by autoencoders (AEs) to design an Ensemble Transform

Kalman Filter with model error (ETKF-Q) in the latent space.
S3 Model dynamics are also propagated within the latent space via a surrogate neural network.

Table 9: Examples for M2, salient Part-of-speech based substitutions. The upper half of an example depicts the
coherent source and the bottom half depics the perturbed negative window. The pertubations are emphasized.
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S1 A later meeting at a boat dock in London crushes Gemma’s hope that they could be together.
S2 Kartik enlists as a sailor for the HMS Orlando to escape from Gemma and the Rakshana.
S3 He refuses to reveal to Gemma the details of his business with the Rakshana or what he will do beyond being a sailor.
-
S1 When the ship is close enough, and the rope high enough above the weed to ensure a safe passage, the narrator rides a

breeches buoy to the ship, where he receives a hero’s welcome.
S2 Kartik enlists as a sailor for the HMS Orlando to escape from Gemma and the Rakshana.
S3 He refuses to reveal to Gemma the details of his business with the Rakshana or what he will do beyond being a sailor.

S1 The producers had to contact Spielberg in order to clear the rights for the song so that they could use it in the episode.
S2 Paul Wee was the layout artist for the sequence.
S3 Marge’s voice actor, Julie Kavner, praised it for focusing on the animation and not having any dialog in it.
-
S1 The producers had to contact Spielberg in order to clear the rights for the song so that they could use it in the episode.
S2 Paul Wee was the layout artist for the sequence.
S3 Presto was directed by veteran Pixar animator Doug Sweetland, in his directorial debut.

S1 On seeing the captured frames, they shifted all the interior shots to outside.
S2 Filming was completed in 37 days in several locations of Rajasthan.
S3 Since most of the old palaces in Rajasthan have been converted into hotels, the crew stayed at a palace resort called

Manwar.
-
S1 The tour lasted for four years and travelled to 33 German and Austrian cities.
S2 Filming was completed in 37 days in several locations of Rajasthan.
S3 Since most of the old palaces in Rajasthan have been converted into hotels, the crew stayed at a palace resort called

Manwar.

Table 10: Examples for M3, semantic similarity based intruder substitutions. The upper half of an example depicts
the coherent source and the bottom half depics the perturbed negative window. The pertubations are emphasized.

S1 Juan was incredibly excited for his first day of middle school.
S2 He had all his supplies and new clothes, and felt prepared.
S3 But the night before, he was so excited he didn’t get a wink of sleep.
-
S1 Juan was incredibly excited for his first day of middle school.
S2 Brook’s first day of school, he mostly sat alone and didn’t talk much.
S3 But the night before, he was so excited he didn’t get a wink of sleep.

S1 It was during the time when Premchand first embarked on writing fiction based on contemporary social issues.
S2 Unlike his other works, Nirmala has a darker tone and ending, and its characters are less idealised.
S3 It was translated into English for the first time in 1988.
-
S1 It was during the time when Premchand first embarked on writing fiction based on contemporary social issues.
S2 Unlike his other works, Nirmala has a darker tone and ending, and its characters are less idealised.
S3 He said it pushed the boundaries of animation by balancing esoteric ideas with more immediately accessible ones, and

that the main difference between the film and other science fiction projects rooted in an apocalypse was its optimism.

S1 His guide will find him and help him on his quest.
S2 Torak reluctantly leaves his father as the bear comes back to kill him.
S3 Torak heads north and soon encounters an orphaned wolf cub.
-
S1 His guide will find him and help him on his quest.
S2 Torak reluctantly leaves his father as the bear comes back to kill him.
S3 They leave and Ivy’s father took her out for seafood.

Table 11: Examples for M4, salient token overlap based intruder substitutions. The upper half of an example
depicts the coherent source and the bottom half depics the perturbed negative window. The pertubations are
emphasized.
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S1 When converting lines to electric, the connections with other lines must be considered.
S2 Some electrifications have subsequently been removed because of the through traffic to non-electrified lines.
S3 If through traffic is to have any benefit, time consuming engine switches must occur to make such connections or

expensive dual mode engines must be used.
-
S1 When lines to electric, the connections converting lines with other must be considered.
S2 Some electrifications have subsequently been removed because of the through traffic to non-electrified lines.
S3 If through traffic is to have any benefit, time consuming engine switches must occur to make such connections or

expensive dual mode engines must be used.

S1 Rene went to the store to buy the meatloaf ingredients.
S2 At home, Rene prepared the meatloaf and baked it.
S3 Rene and her boyfriend had a nice meal together.
-
S1 Rene went to the store to buy the meatloaf ingredients.
S2 At home, Rene prepared the meatloaf and baked it.
S3 Rene and meal her boyfriend had a nice together.

Table 12: Examples for M5, intra-sentence token permutations. The upper half of an example depicts the coherent
source and the bottom half depics the perturbed negative window. The pertubations are emphasized.

S1 These resonances occur when Neptune’s orbital period is a precise fraction of that of the object, such as 1:2, or 3:4.
S2 If, say, an object orbits the Sun once for every two Neptune orbits, it will only complete half an orbit by the time

Neptune returns to its original position.
S3 The most heavily populated in the Kuiper with over 200 known objects, is the resonance.
-
S1 These resonances occur when Neptune’s orbital period is a precise fraction of that of the object, such as 1:2, or 3:4.
S2 If, say, an object orbits the Sun once for two it will only complete half an orbit by the Neptune returns to its position.
S3 The most heavily populated in the Kuiper with over 200 known objects, is the resonance.

S1 Tommy wanted to get his mom a nice necklace for Christmas.
S2 So he worked a lot during the month of November and December.
S3 He sold a few things from his house for more money.
-
S1 Tommy wanted to get his mom a nice necklace for Christmas.
S2 So he a lot during the of November and December.
S3 He sold a few things from his house for more money.

Table 13: Examples for M6, context dissipation. The upper half of an example depicts the coherent source and the
bottom half depics the perturbed negative window. The pertubations are emphasized.
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