@inproceedings{song-etal-2024-evidentiality,
title = "Evidentiality-aware Retrieval for Overcoming Abstractiveness in Open-Domain Question Answering",
author = "Song, Yongho and
Lee, Dahyun and
Jang, Myungha and
Hwang, Seung-won and
Lee, Kyungjae and
Lee, Dongha and
Yeo, Jinyoung",
editor = "Graham, Yvette and
Purver, Matthew",
booktitle = "Findings of the Association for Computational Linguistics: EACL 2024",
month = mar,
year = "2024",
address = "St. Julian{'}s, Malta",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.findings-eacl.130",
pages = "1930--1943",
abstract = "The long-standing goal of dense retrievers in abtractive open-domain question answering (ODQA) tasks is to learn to capture evidence passages among relevant passages for any given query, such that the reader produce factually correct outputs from evidence passages. One of the key challenge is the insufficient amount of training data with the supervision of the answerability of the passages. Recent studies rely on iterative pipelines to annotate answerability using signals from the reader, but their high computational costs hamper practical applications. In this paper, we instead focus on a data-driven approach and propose Evidentiality-Aware Dense Passage Retrieval (EADPR), which leverages synthetic distractor samples to learn to discriminate evidence passages from distractors. We conduct extensive experiments to validate the effectiveness of our proposed method on multiple abstractive ODQA tasks.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="song-etal-2024-evidentiality">
<titleInfo>
<title>Evidentiality-aware Retrieval for Overcoming Abstractiveness in Open-Domain Question Answering</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yongho</namePart>
<namePart type="family">Song</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dahyun</namePart>
<namePart type="family">Lee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Myungha</namePart>
<namePart type="family">Jang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Seung-won</namePart>
<namePart type="family">Hwang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kyungjae</namePart>
<namePart type="family">Lee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dongha</namePart>
<namePart type="family">Lee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jinyoung</namePart>
<namePart type="family">Yeo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-03</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EACL 2024</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yvette</namePart>
<namePart type="family">Graham</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Matthew</namePart>
<namePart type="family">Purver</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">St. Julian’s, Malta</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The long-standing goal of dense retrievers in abtractive open-domain question answering (ODQA) tasks is to learn to capture evidence passages among relevant passages for any given query, such that the reader produce factually correct outputs from evidence passages. One of the key challenge is the insufficient amount of training data with the supervision of the answerability of the passages. Recent studies rely on iterative pipelines to annotate answerability using signals from the reader, but their high computational costs hamper practical applications. In this paper, we instead focus on a data-driven approach and propose Evidentiality-Aware Dense Passage Retrieval (EADPR), which leverages synthetic distractor samples to learn to discriminate evidence passages from distractors. We conduct extensive experiments to validate the effectiveness of our proposed method on multiple abstractive ODQA tasks.</abstract>
<identifier type="citekey">song-etal-2024-evidentiality</identifier>
<location>
<url>https://aclanthology.org/2024.findings-eacl.130</url>
</location>
<part>
<date>2024-03</date>
<extent unit="page">
<start>1930</start>
<end>1943</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Evidentiality-aware Retrieval for Overcoming Abstractiveness in Open-Domain Question Answering
%A Song, Yongho
%A Lee, Dahyun
%A Jang, Myungha
%A Hwang, Seung-won
%A Lee, Kyungjae
%A Lee, Dongha
%A Yeo, Jinyoung
%Y Graham, Yvette
%Y Purver, Matthew
%S Findings of the Association for Computational Linguistics: EACL 2024
%D 2024
%8 March
%I Association for Computational Linguistics
%C St. Julian’s, Malta
%F song-etal-2024-evidentiality
%X The long-standing goal of dense retrievers in abtractive open-domain question answering (ODQA) tasks is to learn to capture evidence passages among relevant passages for any given query, such that the reader produce factually correct outputs from evidence passages. One of the key challenge is the insufficient amount of training data with the supervision of the answerability of the passages. Recent studies rely on iterative pipelines to annotate answerability using signals from the reader, but their high computational costs hamper practical applications. In this paper, we instead focus on a data-driven approach and propose Evidentiality-Aware Dense Passage Retrieval (EADPR), which leverages synthetic distractor samples to learn to discriminate evidence passages from distractors. We conduct extensive experiments to validate the effectiveness of our proposed method on multiple abstractive ODQA tasks.
%U https://aclanthology.org/2024.findings-eacl.130
%P 1930-1943
Markdown (Informal)
[Evidentiality-aware Retrieval for Overcoming Abstractiveness in Open-Domain Question Answering](https://aclanthology.org/2024.findings-eacl.130) (Song et al., Findings 2024)
ACL