@inproceedings{liu-etal-2024-self,
title = "Self-training Strategies for Sentiment Analysis: An Empirical Study",
author = "Liu, Haochen and
Rallabandi, Sai and
Wu, Yijing and
Dakle, Parag and
Raghavan, Preethi",
editor = "Graham, Yvette and
Purver, Matthew",
booktitle = "Findings of the Association for Computational Linguistics: EACL 2024",
month = mar,
year = "2024",
address = "St. Julian{'}s, Malta",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.findings-eacl.131",
pages = "1944--1954",
abstract = "Sentiment analysis is a crucial task in natural language processing that involves identifying and extracting subjective sentiment from text. Self-training has recently emerged as an economical and efficient technique for developing sentiment analysis models by leveraging a small amount of labeled data and a large amount of unlabeled data. However, given a set of training data, how to utilize them to conduct self-training makes a significant difference in the final performance of the model. We refer to this methodology as the self-training strategy. In this paper, we present an empirical study of various self-training strategies for sentiment analysis. First, we investigate the influence of the self-training strategy and hyper-parameters on the performance of traditional small language models (SLMs) in various few-shot settings. Second, we also explore the feasibility of leveraging large language models (LLMs) to help self-training. We propose and empirically compare several self-training strategies with the intervention of LLMs. Extensive experiments are conducted on three real-world sentiment analysis datasets.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="liu-etal-2024-self">
<titleInfo>
<title>Self-training Strategies for Sentiment Analysis: An Empirical Study</title>
</titleInfo>
<name type="personal">
<namePart type="given">Haochen</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sai</namePart>
<namePart type="family">Rallabandi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yijing</namePart>
<namePart type="family">Wu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Parag</namePart>
<namePart type="family">Dakle</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Preethi</namePart>
<namePart type="family">Raghavan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-03</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EACL 2024</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yvette</namePart>
<namePart type="family">Graham</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Matthew</namePart>
<namePart type="family">Purver</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">St. Julian’s, Malta</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Sentiment analysis is a crucial task in natural language processing that involves identifying and extracting subjective sentiment from text. Self-training has recently emerged as an economical and efficient technique for developing sentiment analysis models by leveraging a small amount of labeled data and a large amount of unlabeled data. However, given a set of training data, how to utilize them to conduct self-training makes a significant difference in the final performance of the model. We refer to this methodology as the self-training strategy. In this paper, we present an empirical study of various self-training strategies for sentiment analysis. First, we investigate the influence of the self-training strategy and hyper-parameters on the performance of traditional small language models (SLMs) in various few-shot settings. Second, we also explore the feasibility of leveraging large language models (LLMs) to help self-training. We propose and empirically compare several self-training strategies with the intervention of LLMs. Extensive experiments are conducted on three real-world sentiment analysis datasets.</abstract>
<identifier type="citekey">liu-etal-2024-self</identifier>
<location>
<url>https://aclanthology.org/2024.findings-eacl.131</url>
</location>
<part>
<date>2024-03</date>
<extent unit="page">
<start>1944</start>
<end>1954</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Self-training Strategies for Sentiment Analysis: An Empirical Study
%A Liu, Haochen
%A Rallabandi, Sai
%A Wu, Yijing
%A Dakle, Parag
%A Raghavan, Preethi
%Y Graham, Yvette
%Y Purver, Matthew
%S Findings of the Association for Computational Linguistics: EACL 2024
%D 2024
%8 March
%I Association for Computational Linguistics
%C St. Julian’s, Malta
%F liu-etal-2024-self
%X Sentiment analysis is a crucial task in natural language processing that involves identifying and extracting subjective sentiment from text. Self-training has recently emerged as an economical and efficient technique for developing sentiment analysis models by leveraging a small amount of labeled data and a large amount of unlabeled data. However, given a set of training data, how to utilize them to conduct self-training makes a significant difference in the final performance of the model. We refer to this methodology as the self-training strategy. In this paper, we present an empirical study of various self-training strategies for sentiment analysis. First, we investigate the influence of the self-training strategy and hyper-parameters on the performance of traditional small language models (SLMs) in various few-shot settings. Second, we also explore the feasibility of leveraging large language models (LLMs) to help self-training. We propose and empirically compare several self-training strategies with the intervention of LLMs. Extensive experiments are conducted on three real-world sentiment analysis datasets.
%U https://aclanthology.org/2024.findings-eacl.131
%P 1944-1954
Markdown (Informal)
[Self-training Strategies for Sentiment Analysis: An Empirical Study](https://aclanthology.org/2024.findings-eacl.131) (Liu et al., Findings 2024)
ACL