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Abstract

Despite advances in machine learning based
hate speech detection, the need for larges
amounts of labeled training data for state-of-
the-art approaches remains a challenge for
their application. Semi-supervised learning ad-
dresses this problem by leveraging unlabeled
data and thus reducing the amount of anno-
tated data required. Underlying this approach
is the assumption that labeled and unlabeled
data follow similar distributions. This assump-
tion however may not always hold, with conse-
quences for real world applications. We address
this problem by investigating the dynamics of
pseudo-labeling, a commonly employed form
of semi-supervised learning, in the context of
hate speech detection. Concretely we anal-
ysed the influence of data characteristics and of
two strategies for selecting pseudo-labeled sam-
ples: threshold- and ratio-based. The results
show that the influence of data characteristics
on the pseudo-labeling performances depends
on other factors, such as pseudo-label selection
strategies or model biases. Furthermore, the ef-
fectiveness of pseudo-labeling in classification
performance is determined by the interaction
between the number, hate ratio and accuracy
of the selected pseudo-labels. Analysis of the
results suggests an advantage of the threshold-
based approach when labeled and unlabeled
data arise from the same domain, whilst the
ratio-based approach may be recommended in
the opposite situation.

Author contacts are given in the footnotes. 1

1 Introduction

Topic shifts in online hate speech arising from
changing social media trends or news poses a chal-
lenge for hate speech detection systems (Florio
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Figure 1: Pseudo-Labeling Framework. After teacher
model training (a), it is used to predict pseudo-labels
(c) for pre-selected unlabeled data points (b). After the
selection of reliable pseudo-labels (d), a student model
is trained with labeled and pseudo-labeled data (e).

et al., 2020). In order to keep the pace and fol-
low such dynamic changes developers of such sys-
tems need to adapt their models to the continuously
changing contexts and linguistic patterns (Ludwig
et al., 2022). Since these models rely on large
amounts of annotated training data (Challa et al.,
2020) the dynamic nature of abusive language in
online discourses complicates the application of
state-of-the-art deep learning models. Gathering
high quality training data is time-consuming and
often requires human expertise to be involved in
the annotation process (Yang et al., 2022). Semi-
supervised learning address these challenges by
training models with a small amount of data an-
notated (labeled) for the specific use case together
with a large amount of unlabeled data. These ap-
proaches improve model performance over purely
supervised learning approaches by using informa-
tion that is present in the unlabeled data (Van En-
gelen and Hoos, 2020), and are therefore being
actively explored in dynamic domains such as auto-
matic hate speech detection, where data efficiency
is crucial.

Since unlabeled data seems to be easy to ob-
tain, recent research in the field of semi-supervised
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hate speech detection focuses on the learning al-
gorithms themselves rather than the training data.
The underlying assumption is that the labeled and
unlabeled data share the same characteristics and
therefore follow the same data distribution. This
assumption however does not hold in real world
scenarios where the high pace of change of on-
line hate speech is accompanied by changes in the
characteristics of associated data. Therefore, we
investigate the influence of data characteristics on
semi-supervised model performances. As we in-
vestigate pseudo-labeling based semi-supervised
learning (Alsafari and Sadaoui, 2021a,b; Ludwig
et al., 2022; Zia et al., 2022) we are especially in-
terested in the different benefits regarding model
performance of two common pseudo-label selec-
tion strategies. In summary, the contributions of
this work are:

(i) exploration, how different characteristics of
unlabeled data affect the semi-supervised training
of hate speech detection models, (ii) clarification of
the interaction between characteristics of unlabeled
data, model bias and different pseudo-label selec-
tion strategies, and (iii) recommendations for real-
world applications using pseudo-labeling based ap-
proaches for hate speech detection.

2 Related Work

Various approaches for automatic hate speech de-
tection have been proposed in recent years (Ja-
han and Oussalah, 2023), reaching from lexical
(Alkomah and Ma, 2022; Frenda et al., 2019) to
traditional machine learning (Waseem and Hovy,
2016; Aziz et al., 2021) to deep learning based
approaches (Vashistha and Zubiaga, 2021; Khan
et al., 2023; Wadud et al., 2023). Due to the high
demand for labeled data of current approaches
(Yin and Zubiaga, 2021), semi-supervised train-
ing methods have emerged as an active line of
research in the context of hate speech detection
(Zia et al., 2022; d’Sa et al., 2020; Santos et al.,
2022). For instance Zia et al. investigated the use
of self-training to improve hate speech detection
performance in multilingual settings. Similarly,
(Alsafari and Sadaoui, 2021b) used self-training
to enhance hate speech detection models, having
reported an improvement of 7% relative to super-
vised baselines. Whilst imbalanced class ratios and
the complexities in the detection of implicit hate
speech were identified as challenges in the training
process, no thorough examination of their impact

on the self-training performances was conducted.
In a previous study by the same authors (Alsa-
fari and Sadaoui, 2021a), an ensemble of different
classification models was trained on a seed hate
speech dataset to predict pseudo-labels for a large
unlabeled dataset. The authors evaluated various
ways to combine predictions from multiple mod-
els within the ensemble in order to obtain reliable
pseudo-labels. While these works applied pseudo-
labeling and other semi-supervised learning tech-
niques to improve hate speech classifiers, they did
not analyze how these approaches are affected by
typical challenges in the hate speech detection do-
main. In our work, we thoroughly investigate how
data properties, specific to the hate speech domain,
and their interaction with other components, such
as pseudo-label selection strategies, affect the per-
formance of pseudo-labeling-based approaches.

The influence of different data and pseudo-label
characteristics has also been studied in other areas.
Wei et al. reported on the negative effect of imbal-
anced pseudo-labels on model performance. Fur-
thermore, they reported improvements over other
pseudo-labeling based approaches by applying an
iterative re-balancing framework for pseudo-labels,
indicating the importance of a balanced class ratio
in the pseudo-labels. The influence of the accu-
racy of pseudo-labels was investigated in turn by
Li et al., in the task of sentiment analysis. The au-
thors found that the accuracy of the pseudo-labels
strongly affects model performance. In relation
to these works, our work focuses on the specific
domain of hate speech detection with its unique
challenges. More over, in contrast to previous
works we analyse how the interaction of multiple
components, such as data and pseudo-label charac-
teristics, model biases and pseudo-label selection
strategy affects the performance of the investigated
approaches. Based on our findings, we further pro-
vide recommendations for real-world applications
of semi-supervised learning in the domain of hate
speech detection.

3 Methods and Experiments

3.1 Data

We use the dataset created by Kennedy et al.
(2020), which is an English hate speech dataset
compiled from YouTube, Twitter, and Reddit, and
refer to it as Seed dataset. The dataset consists
of 31, 000 data samples, each annotated with
continuous real valued hate scores ranging from
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−8 to 6, designed to quantify the magnitude
of hate. Negative scores indicate "normal"
comments, while positive scores denote "hate
speech." This unique annotation scheme enables
us to study how estimated toxicity and thus
magnitude of hate speech impacts the performance
of semi-supervised learning algorithms, along with
the impact of sample quantity and hate speech
ratios. We provide data samples for different
toxicity values in appendix A, visualizations and
information about the test data and unlabeled data
used in this work in the B section.

We split our data into training validation and test
sets using a stratified random split, implemented
via Scikit-learn 2. We followed the standard pre-
processing procedure for XLM-RoBERTa model,
which includes the the addition of model specific
special tokens to the raw text samples as well as
the tokenization of these samples with the XLM-
RoBERTa specific bytepair tokenizer. The pre-
processing and tokenization procedure was imple-
mented with the tokenizers library from hugging-
face 3.

3.2 Model Architecture

The classifier utilized in this work is composed
by a pre-trained XLM-RoBERTa model (Conneau
et al., 2020) as backbone, followed by a linear
layer and a Softmax activation layer. We imple-
mented our models utilizing the deep learning
framework PyTorch, whereby we especially rely
on the pre-trained XLM-RoBERTa model provided
by the Transformers library. 4 In order to reduce
memory consumption and to enable the conduction
of a larger number of experiments, we trained our
models with a parameter efficient finetuning ap-
proach by utilizing the PEFT library (Mangrulkar
et al., 2022). More specifically, we apply the LoRA
technique (Hu et al., 2021) with α = 16, dropout
p = 0.1 and a rank r = 8.

3.3 Pseudo-Labeling Framework

Pseudo-Labeling is a popular form of semi-
supervised learning, involving the following steps
(Figure 1):

2https://scikit-learn.org/stable/modules/
generated/sklearn.model_selection.
StratifiedKFold.html

3https://github.com/huggingface/tokenizers
4https://huggingface.co/docs/transformers/index

a) Training of a teacher model Φ on a small
amount of labeled data DL

b) (optionally) Pre-selection of the unlabeled
data (e.g. data cleaning)

c) Prediction of pseudo-labels for a larger pool
of unlabeled data

d) Selection of reliable pseudo-labels together
with their corresponding data samples

e) Training of a student model Θ with labeled
and selected pseudo-labeled data

In our study, we investigate two strategies for
pseudo-label selection, threshold-based selection
and ratio-based selection, as these selection strate-
gies are widely used in practice, which makes their
understanding important. Moreover, both selection
strategies provide clarity on their interaction with
model biases and data properties, which helps us
to understand their role precisely.

3.3.1 Threshold-based selection
Threshold-based approaches select pseudo-labels,
for which the prediction confidence of the model
is above a pre-defined threshold τ ∈ [0, 1]. In our
work, we set the confidence threshold τ = 0.80.

3.3.2 Ratio-based selection
Ratio-based approaches select the most confident
pseudo-labels for each predicted class according to
a pre-defined ratio r ∈ [0, 1]. For each predicted
class, the top r ·100% most confident pseudo-labels
are selected. We chose a fixed ratio r of 0.1.

3.4 Classifier Fitting
In the first and in the last steps of the pseudo-
labeling framework, models are fitted to labeled
and pseudo-labeled data respectively. Here, we
used two different training approaches for fitting
the classifier:

3.4.1 Single-Stage Training
In the single stage training strategy, all trainable
model parameters were trained on labeled (or
pseudo-labeled) data using the Cross-Entropy loss,
which is defined as:

LCE = −
B∑

i=1

yilog(pi) (1)

where B corresponds to the minibatch size, yi to
the class label 5 and pi to the predicted probability
5In our setups, yi can also be a pseudo-label
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of the ith class. We trained our models with a
maximal batch size of 256. Parameter optimization
was performed using Adam (Kingma and Ba, 2014)
for 5.000 iterations and a learning rate of 3 · e−5.

3.4.2 Two-Stage Training
The two-stage training strategy started with the
pre-training of the backbone modules via metric
learning, since this showed strong results in terms
of data efficient learning. The goal of this training
stage is to train an encoder fΦ(x) : RF → RD,
which maps data points that belong to the same
class to metrically close points in RD, and vice-
versa data points that belong to different classes
to metrically distant points in RD. We used the
XLM-RoBERTa module as encoder fΦ and trained
it using a triplet loss defined as:

Ltri(Φ) =
∑

a,p,n

[m+D(xa, xp)−D(xa, xn)]+

(2)
where xa is an anchor point, xp is a positive

point belonging to the same class as the anchor
point and xn is a negative point belonging to an-
other class than the anchor point. This loss function
ensures that positive points xp are closer to anchor
points xa than negative points xn by at least a mar-
gin m, given a distance function D. A specific
configuration of xa, xp and xn is called a triplet.
We employed batch-semi-hard triplet mining (Har-
wood et al., 2017), which has proven to improve
the robustness of training. As distance function
D we used the cosine-distance. In this approach,
backbone models were pre-trained for 5.000 iter-
ations with a batch size of 768. We used Adam
optimizer (Kingma and Ba, 2014) with a learning
rate of 3 · e−5.

After backbone training, the linear classifier was
fitted using Cross-Entropy loss (equation 1) with
labeled (or pseudo-labeled) data samples, while
freezing the weights of the backbone module. In
this step, we again used Adam optimizer (Kingma
and Ba, 2014) with a learning rate of 1 · e−3 and
train the linear layer for 100 iterations.

3.5 Model Evaluation
The performance of the classifier was evaluated
after each training epoch with the evaluation set.
We stored the model that achieved the best macro
average F1-score on the validation set. After model
training we apply beta-calibration (Kull et al.) in or-
der to retrieve reliable predictions from the model.
The final model performance reported in this work

was computed on a separate test set, which was
used only once after completion of all model train-
ing, selection and calibration steps.

3.6 Baseline and Upperbound

To estimate the performance of the investigated
semi-supervised learning algorithms, we trained
reference models in a fully supervised manner. Ref-
erence baseline models were trained with 200 la-
beled data samples, which were later also used
as labeled data in the semi-supervised learning
experiments. The number of normal samples
was set equal to the number of hateful samples.
We trained two baseline models: Baseline Stan-
dard was trained using the single-stage training
approach, while Baseline Metric was trained us-
ing the two-stage training approach. In addition to
models trained with 200 samples, we also trained
upper-bound models in which the complete seed
dataset was used for training. Also in this case, we
performed single-stage training (Upperbound Stan-
dard) and two-stage training (Upperbound Metric).

3.7 Investigation of Data Characteristics

In our experiments, we explored how different char-
acteristics of the unlabeled hate speech data affect
the performances of models trained with differ-
ent pseudo-labeling methods. This was done by
varying the following data characteristics, which
allowed us to specify and simulate precise data dis-
tributions tailored to specific data characteristics.
We used subsets of the training data from the Seed
dataset as unlabeled data, along with 200 labeled
data samples, which were also used to train the
baseline models. This was realized by employing
the baseline metric model as teacher model in the
pseudo-labeling framework. After that, we used
the single-stage training approach for fitting the
student models.

3.7.1 Number of unlabeled Samples
To narrow down the performance of the semi-
supervised learning algorithms, we investigate how
it is affected by the number of unlabeled data sam-
ples. This helps us to perform a performance com-
parison between the semi-supervised learning ap-
proaches and the baseline and upper bound models.
In order to investigate the influence of the num-
ber of unlabeled samples, subsets of 200, 400, 600,
1000, 1500, 2000, 5000, 10000 and 20000 unla-
beled data points were randomly sampled from the
original Seed dataset composed by 31453 samples.
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Approach F1 Precision Recall AUC
Naive Classifier (ZeroR) .39 .32 .50 /
Baseline Std. .67 .67 .67 .74
Baseline Met. .69 .69 .69 .78
Upper-Bound Std. .76 .77 .75 .87
Upper-Bound Met. .72 .74 .71 .84

Table 1: Classification metrics, achieved by a naive zero rate
classifier and by the supervised reference models. Baseline
models are trained with 200 labeled samples while upper-
bound models are trained with over 31.000 samples.

3.7.2 Ratio of Hate Speech

We consider the proportion of hate speech as an
important feature, since it can vary significantly
across different hate speech datasets and real-world
use cases. To examine the effect of the proportion
of hate speech in the unlabeled dataset, a subset
of 1000 unlabeled samples was selected to achieve
the required proportion of hate samples. The pro-
portion of hate speech in the unlabeled data was
varied from 10%, to 20%, 40%, 50%, 60%, 80%,
and 90%.

3.7.3 Toxicity of Hate Speech

The toxicity of hate speech, although not usu-
ally commented on, is another dataset-independent
characteristic that is therefore generalizable across
different categories of hate speech and thus impor-
tant to understand. In this series of experiments,
the unlabeled hate samples were selected based on
their toxicity level. The following ranges of tox-
icity were considered: 0.0 - 1.0, 1.0 - 2.0, 2.0 -
3.0, and > 3.0. The ratio of hate speech was set at
0.3, while the total number of samples in all these
experiments was set at 1000.

4 Results and Discussion

This section starts by presenting and discussing
the results of the supervised reference models, as
well as the prediction confidences and pseudo-label
accuracies of the baseline metric model for the un-
labeled portion of the base dataset. Afterwards we
present the performances of the semi-supervised
learning approaches with respect to different char-
acteristics of the unlabeled data, and discuss these
results in face of the characteristics of the corre-
sponding selected pseudo-labels, the distributions
of the predicted hate speech probability and of the
annotated toxicity values of the selected hate sam-
ples. The section finalises with a summary of the
main observations/results.

Figure 2: Histogram and accuracy values of our base-
line model with respect to hate speech probabilities,
which have been computed over all unlabeled data
samples of the seed dataset. The model tends to make
more predictions in favor of the normal class. More-
over, these predictions have a higher degree of accu-
racy than the hate speech class.

4.1 Reference Model Performance

All of our reference models are able to clearly out-
perform the lowerbound performance, achieved by
a naive zero rate classifier. When data resources
are low, the metric learning approach outperformed
the standard training approach (table 1), showing,
inline with results from previous works (Ran et al.,
2023; Matsumi and Yamada, 2021), the effective-
ness of metric learning in few shot settings. Normal
pseudo-labels (probabilities < 0.5), computed by
the baseline metric model (which also served as
teacher model in our experiments), showed higher
accuracy and average prediction confidence com-
pared to hateful pseudo-labels (Figure 2), suggest-
ing a model bias towards the normal class. This
bias was observed even though the model was
trained with balanced data, a behavior also ob-
served in previous studies (Wang et al., 2022). No-
tably, the bias particularly distorted the prediction
of high-confidence pseudo-labels, affecting them
more than the average pseudo-labels in terms of
quantity and accuracy.

4.2 Influence of Data Characteristics

While the positive correlation between the num-
ber of unlabeled samples and the performances of
the pseudo-labeling approaches (Figure 3a) was
expected (Ludwig et al., 2022), the ambiguous in-
fluence of the hate ratio and of the toxicity level on
model performance was surprising.

4.2.1 Proportion of Hate Speech
The threshold-based selection strategy achieved
reasonable stable performances for hate speech ra-
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(a) F1-Score as a function of the number
of unlabeled samples for the standard and
upperbound approaches as well for the
two semi-supervised learning strategies.

(b) F1-score with respect to the pro-
portion of hate speech in the unlabeled
data, for the two semi-supervised learn-
ing strategies.

(c) F1-Score as a function of the toxicity
of unlabeled hate samples, for the two
semi-supervised learning approaches.

Figure 3: Effect of characteristics of unlabeled data on model performance for the two semi-supervised training
approaches investigated. For a valid comparison, the total number of unlabeled samples in experiments 3b and 3c
was fixed to 1.000 samples.

tios varying from 0.1 to 0.5, but its performance
decreased significantly for higher hate speech ra-
tios, achieving partially worse results than the base-
line model (Figure 3b, orange curve). The cor-
responding pseudo-label characteristics (Figures
4a - 4c, orange curves) revealed, that the num-
ber and the accuracy of the pseudo-labels selected
by the threshold-based approach decreases with
increasing proportion of hate speech in the unla-
beled samples, while the proportion of hate speech
in the selected samples increases. Previous stud-
ies showed the disadvantageous effect of class-
imbalanced pseudo-labels (Zou et al., 2018) and
the positive impact of increasing pseudo-labels ac-
curacy on model performance (Liu et al., 2022;
Rizve et al., 2021), mainly focusing on individual
pseudo-labels characteristics. In our opinion, how-
ever, the stable performance of the threshold-based
approach at low hate ratios cannot be explained
by considering the dynamics of the pseudo-label
characteristics individually, but by analyzing their
interaction. Our results indicate that the increas-
ing proportion of hate speech and thus decreasing
class-imbalance in the selected samples (Figure
4b) can to a certain amount compensate for the de-
creasing number of selected pseudo-labels (4a) and
the decreasing accuracy of the pseudo-labels (4c),
thus stabilising the performance of the approach at
lower hate ratios.

The ratio-based selection approach achieved its
best performance when the ratio between normal
samples and hateful samples in the unlabeled data
was balanced, but its performance declined when
the distribution of the normal and hate speech

classes became unbalanced (Figure 3b, blue curve).
In contrast to the performance of the threshold-
based approach, the performance drop is observ-
able regardless of which of the classes becomes the
majority class. The characteristics of the pseudo-
labels, selected by this approach, indicate that the
performance is mainly driven by the proportion of
hate speech in the selected pseudo-labels (Figure
4b, blue curve), which varied from values below
0.4 to almost 0.6, while the number of selected
samples (Figure 4a, blue curve) showed no varia-
tion. The best performance of this approach was
reached when the proportion of hate/normal speech
in the selected pseudo-labels was balanced. The
accuracy of the selected pseudo-labels (Figure 4c,
blue curve) could support the performance trend,
but in our opinion, the hate ratio is the main reason
for the performance variation of this approach, as
the highest pseudo-label accuracy is not aligned
with the strongest results achieved by the approach.

4.2.2 Toxicity of Hate Samples
While the performance of the threshold-based se-
lection approach decreased with increasing toxicity
levels of the hate samples, the opposite was ob-
served for the ratio-based selection strategy (Figure
3c). Overall, the threshold-based selection strategy
achieved better results than the ratio-based selec-
tion strategy across the whole toxicity range.

The superior performance of the threshold-based
selection strategy is attributed to its higher number
of selected pseudo-labels compared to the ratio-
based approach in each experiment (Figure 4d).
The threshold-based approach tends to select fewer
pseudo-labels as toxicity increases, resulting in de-
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(a) While the number of selected
samples remains constant for the
ratio-based approach, the number
drops with increasing hate ratio for
the threshold-based approach.

(b) For both selection strategies, the
hate ratio in the selected samples in-
creases with increasing ratio in the
input samples, with higher values
for the ratio-based selection strat-
egy.

(c) While the pseudo-label accuracy
for the threshold-based strategy de-
creases with the hate fraction in the
input samples, it remains almost
constant for the ratio-based strategy.

(d) While the number of selected
samples slightly drops with increas-
ing hate ratio for the threshold-based
approach, the number remains con-
stant for the ratio-based approach.

(e) The hate ratio of the selected
data constantly increases with in-
creasing toxicity in the input data for
the ratio-based approach and barely
increases for the threshold-based ap-
proach.

(f) The pseudo-label accuracy in
the selected data increases for both,
threshold-based and ratio-based se-
lection approaches with increasing
toxicity in the input data.

Figure 4: Influence of hate speech characteristics on predicted and selected pseudo-labels.

creasing model performance, although the hate ra-
tio and accuracy for these pseudo-labels tend to
increase (Figures 4e and 4f, orange curves). Again,
the interplay between pseudo-label characteristics
determine the performances of the approach. In
contrast, the ratio-based approach selected a con-
stant number of pseudo-labels (Figure 4d, blue
curve). Its performance improvement with increas-
ing toxicity values is caused by an increasing accu-
racy and a more balanced hate ratio of the selected
pseudo-labels (Figures 4f and 4e, blue curves).

4.3 Interplay of Biases, Data Properties, and
Pseudo-Label Selection Strategy

The characteristics of the pseudo-labels selected
by the threshold-based approach are more sensitive
to the hate speech ratio in the unlabeled data than
those selected by the ratio-based approach (Fig-
ures 4a - 4c). This can be explained by the fact,
that the threshold-based approach relies exclusively

on pseudo-labels with high confidence, which are
disproportionately affected by the model bias (see
section 4.1). Accordingly, the characteristics of
the pseudo-labels selected by this approach heavily
rely on the proportion of samples favored (in our
case the normal samples) and disfavored (in our
case the hateful samples) by the model bias. In
contrast, the toxicity of the hate samples does not
strongly affect the performance of the threshold-
based selection strategy. This indicates, contrary
to expectations, that the annotated toxicity does
not necessarily correlate with the prediction confi-
dence of the model, since the threshold-based ap-
proach does not select more hateful samples with
increasing toxicity of these samples. This finding is
also supported by the visualizations of the distribu-
tions of annotated toxicity values and hate speech
probabilities in Figure 5. While the differences
in the distributions of the annotated toxicity val-
ues are clearly observable, these differences are
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Figure 5: Raincloud plots (Allen et al., 2019) of annotated toxicities and predicted hate speech probabilities for
different toxicity ranges of hate samples. While the differences in the distributions of the annotated toxicity values
are clearly observable, these differences are not reflected in the predicted hate speech probabilities.

not reflected in the distribution of high confident
pseudo-labels. This demonstrates both the diffi-
culty of quantifying hate speech and the subjec-
tivity of hate speech perception, as toxic samples
clearly identified as hate speech by human com-
mentators are not necessarily easily classified as
hate speech by the machine learning model. The
subjectivity of hate speech perception as well as
the difficulty of annotating hate speech has previ-
ously been discussed in various studies, such as
(Ross et al., 2017; Yin et al., 2023; Waseem, 2016).
While differences in high confident pseudo-labels
are barely visible, there is a noticeable decrease
in the number of wrong pseudo-labels (probability
values < 0.5) and, consequently, a reduction in false
negatives with increasing toxicity of hate samples,
as shown in Figure 5. The decreasing number of
false negative pseudo-labels in the ratio-based ap-
proach (Figure 4f, blue curve) is accompanied by
a growing proportion of hate speech within the se-
lected labels (Figure 4e, blue curve), a trend which
is a direct result of the proportional selection of
hateful samples based on the number of samples
classified as hateful.

4.4 Summary of Main Findings

First, the influence of data characteristics on
pseudo-labeling performance is ambiguous and de-
pends on other factors such as pseudo-label selec-
tion strategies. While a balanced ratio between
normal and hateful samples tends to provide fa-
vorable results, it is not possible to make a clear
statement about the influence of toxicity in the hate
samples without accounting for these factors.

Second, our results indicate that the performance
of pseudo-labeling approaches relies on the inter-
action between several characteristics of selected
pseudo-labels, including their total number, hate
speech proportion, and accuracy. To understand
the performances of the investigated approaches, it
is therefore necessary to analyse these characteris-
tics together. Consequently, optimizing only one
of these features is not a guarantee of a good final
performance. For example, selecting a large num-
ber of pseudo-labels, beneficial in principle, could
lead to low accuracy, undermining performance,
and vice versa.

Third, biases of the teacher model affect the
threshold-based selection approach more than the
ratio-based approach. This leads to superior per-
formance of the threshold-based approach when
the data distribution favors the effects of model bi-
ases, e.g., when the proportion of majority class in
the unlabeled data is high. Conversely, the ratio-
based approach outperforms the threshold-based
approach in situations where the data distribution
is unfavorable to the effects of model biases.

5 Recommendations for Real-World
Applications

Our findings suggest, that the threshold-based ap-
proach should be applied if the characteristics of un-
labeled data favor the effects of the teacher model
bias, leading a larger number of confident pseudo-
labels. This is typically the case when labeled and
unlabeled data arise from the same domain, e.g.,
when they share the same target groups of hate
speech. The ratio-based approach provided bet-
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ter results in opposite scenarios. Especially when
domain adaptation is needed due to a lack of la-
beled data in the target domain, the ratio-based
approach should be considered. Prediction confi-
dences can be analyzed, for example, by computing
a histogram, which can be a valuable tool for decid-
ing which selection strategy to use. When a large
number of confident pseudo-labels are obtained,
the threshold-based selection strategy should be
preferred, otherwise the ratio-based strategy.

Additionally, given the good model perfor-
mances achieved for (nearly) balanced data, it is
recommended to include a reasonable amount of
hate speech in the unlabeled data. Public real-world
or synthetic hate speech datasets can be used to this
end. Although these datasets may be annotated
with different annotation schemes, the "hate" labels
contained in these datasets may be similar to the
labeled data in the specific use case, and therefore
already more "informative" to the model than ran-
domly crawled data, which typically contain a very
small amount of hate speech (Meza et al., 2016).

6 Conclusion

In this work, we investigated two pseudo-labeling
based approaches for semi-supervised training of
hate speech detection models and therefore con-
tributed to the understanding of the complex in-
teraction between data properties, model biases,
and pseudo-label selection strategies. We showed
that selection of pseudo-labels is determinant to
the final performance of the approaches. In view
of real-world applications, the results suggest an
advantage of threshold-based pseudo-label selec-
tion strategies over ratio-based selection strategies
when labeled and unlabeled hate speech data arise
from the same domain, since a larger number of
confident pseudo-labels can be expected in this sce-
nario. In turn, ratio-based selection strategies are
preferable when labeled and unlabeled data arise
from different domains. These results show the
need for further exploration and investigation of
alternative pseudo-label selection strategies as well
as other families of semi-supervised learning algo-
rithms.

7 Limitations

In this work, we focused on two pseudo-label selec-
tion strategies, the threshold-based strategy and the
ratio-based strategy. For both strategies, we set the
corresponding hyperparameters threshold and ratio

to 0.8 and 0.1, respectively. These values were se-
lected based on the results obtained in preliminary
experiments, and allowed us to focus on the effect
of other parameters. Investigation of the effect of
these hyperparameters, for instance by means of a
hyperparameter search, is left to future work. An-
other interesting point for future work is to investi-
gate the influence of additional data characteristics,
such as the target groups of hate speech. Addi-
tionally, while the threshold-based and ratio-based
selection approaches are commonly applied and
provide clarity in their interaction with model bi-
ases and data properties, it is important to note that
alternative strategies, such as pseudo-label balanc-
ing methods (Wei et al., 2021; Wang et al., 2022)
and feature similarity-based selection (Wang and
Zhang, 2023), have also been proposed in the litera-
ture and deserve further exploration. Moreover, our
research focuses exclusively on pseudo-labeling in
the domain of semi-supervised learning, leaving
out other valuable techniques such as consistency
training (Xie et al., 2020; Sohn et al., 2020), varia-
tional autoencoders (Gururangan et al., 2019), and
GANs (Croce et al., 2020). These approaches may
have different responses to the investigated hate
speech features and we encourage researchers to
explore these approaches since they could provide a
more comprehensive understanding of hate speech
detection in semi-supervised settings.
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OFFENSIVE CONTENT WARNING: The following sections contain examples of hateful content.
This is strictly for the purpose of enabling this research. Please be aware that this content could be
offensive and cause you distress.

A Example Annotations

In table 2, samples from our seed dataset (Kennedy et al., 2020) together with their annotated toxicity
values are shown. The aim of this annotation scheme is to quantify the magnitude of hate speech. Toxicity
values < −3 indicate samples, which contain positive supportive speech as well as counter speech against
hate speech. Toxicity values between −3 and −2 indicate positive to neutral speech, while values between
−2 and −1 indicate offensive speech. Values between −1 and 0 indicate highly offensive comments,
while values > 0 indicate hate speech with various degrees of toxicity. While trends are observable,
we emphasize the subjectivity in hate speech perception, which allows for different categorizations and
assessments of the data samples.

Text Samples Toxicity Value
This is amazing! Kudos for that women for being so strong -5.94
This is why I love Asians -4.74
You say we ought to kill more women, I say no. -3.24
Everything okay here, white men? -2.42
I mean it’s totally possible they were banking on you being gay. -2.24
Only came here to downvote homophobic comments -2.20
Just stop trying to f**k her. -1.71
Or become a white man, the biggest victims in America -1.68
Oh it is, the only difference is israel uses planes and drones to kill people. -1.31
Don’t need to worry about rape when it only happens to poor people and people of colour -0.48
Proof positive that women are worse than men: they suck at ra***ng. /s -0.14
what is this f***ot shit -0.03
White people are trash. 0.46
I fucking HATE americans. I hope your country BURNS. 0.51
Have fun giving birth to a baby that someone impregnated you by ra**ng you 0.80
Shut up you little b**ch. I’ll f**k you 1.19
Inbred, racist as***les. 1.30
shut up retard, go kill yourself 1.40
Fuck off you nazi cunt. Die in a fire. 2.03
Fuck Jews, May Allah Curse Them 2.15
Black and thirty? I’m surprised he wasn’t hung by the KKK yet 2.49
Go f**k yourself. Kill yourself worthless piece of sh*t. 3.20
Kill yourself attention seeking fucking f***ot ass cunt 3.65
Put all the Jews in camps again. Make sure this time they will never leave. 4.49
Burn this b**ch down! 4.60
Gas the jews? 5.09
I wanna abuse that worthless wh**e ass for hours 6.01

Table 2: A selection of data samples together with their corresponding annotated toxicity values.
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B Data Distributions

(a) Toxicity distribution of our test dataset. (b) Toxicity distribution of the raw unlabeled dataset.

Figure 6

Figure 6 shows the toxicity distribution of test data (Figure 6a) and unlabeled data (Figure 6b), used
in this work. We treat samples with toxicity values > 0.0 as hate speech, otherwise as normal. Given
this threshold, the proportion of hate speech in the unlabeled data and in validation data was 0.36. Both
distributions are similar, with most samples centered around toxicity values of 0.
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