@inproceedings{bayani-2024-testing,
title = "Testing the Depth of {C}hat{GPT}{'}s Comprehension via Cross-Modal Tasks Based on {ASCII}-Art: {GPT}3.5{'}s Abilities in Regard to Recognizing and Generating {ASCII}-Art Are Not Totally Lacking",
author = "Bayani, David",
editor = "Graham, Yvette and
Purver, Matthew",
booktitle = "Findings of the Association for Computational Linguistics: EACL 2024",
month = mar,
year = "2024",
address = "St. Julian{'}s, Malta",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.findings-eacl.139",
pages = "2063--2077",
abstract = "In the months since its release, ChatGPT and its underlying model, GPT3.5, have garnered massive attention, due to their potent mix of capability and accessibility. While a niche industry of papers have emerged examining the scope of capabilities these models possess, language {---} whether natural or stylized like code {---} has been the vehicle to exchange information with the network. Drawing inspiration from the multi-modal knowledge we{'}d expect an agent with true understanding to possess, we examine GPT3.5{'}s aptitude for visual tasks, where the inputs feature ASCII-art without overt distillation into a lingual summary. In particular, we scrutinize its performance on carefully designed image recognition and generation tasks. An extended version of this write-up is available at: https://arxiv.org/abs/2307.16806 .",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="bayani-2024-testing">
<titleInfo>
<title>Testing the Depth of ChatGPT’s Comprehension via Cross-Modal Tasks Based on ASCII-Art: GPT3.5’s Abilities in Regard to Recognizing and Generating ASCII-Art Are Not Totally Lacking</title>
</titleInfo>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Bayani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-03</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EACL 2024</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yvette</namePart>
<namePart type="family">Graham</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Matthew</namePart>
<namePart type="family">Purver</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">St. Julian’s, Malta</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In the months since its release, ChatGPT and its underlying model, GPT3.5, have garnered massive attention, due to their potent mix of capability and accessibility. While a niche industry of papers have emerged examining the scope of capabilities these models possess, language — whether natural or stylized like code — has been the vehicle to exchange information with the network. Drawing inspiration from the multi-modal knowledge we’d expect an agent with true understanding to possess, we examine GPT3.5’s aptitude for visual tasks, where the inputs feature ASCII-art without overt distillation into a lingual summary. In particular, we scrutinize its performance on carefully designed image recognition and generation tasks. An extended version of this write-up is available at: https://arxiv.org/abs/2307.16806 .</abstract>
<identifier type="citekey">bayani-2024-testing</identifier>
<location>
<url>https://aclanthology.org/2024.findings-eacl.139</url>
</location>
<part>
<date>2024-03</date>
<extent unit="page">
<start>2063</start>
<end>2077</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Testing the Depth of ChatGPT’s Comprehension via Cross-Modal Tasks Based on ASCII-Art: GPT3.5’s Abilities in Regard to Recognizing and Generating ASCII-Art Are Not Totally Lacking
%A Bayani, David
%Y Graham, Yvette
%Y Purver, Matthew
%S Findings of the Association for Computational Linguistics: EACL 2024
%D 2024
%8 March
%I Association for Computational Linguistics
%C St. Julian’s, Malta
%F bayani-2024-testing
%X In the months since its release, ChatGPT and its underlying model, GPT3.5, have garnered massive attention, due to their potent mix of capability and accessibility. While a niche industry of papers have emerged examining the scope of capabilities these models possess, language — whether natural or stylized like code — has been the vehicle to exchange information with the network. Drawing inspiration from the multi-modal knowledge we’d expect an agent with true understanding to possess, we examine GPT3.5’s aptitude for visual tasks, where the inputs feature ASCII-art without overt distillation into a lingual summary. In particular, we scrutinize its performance on carefully designed image recognition and generation tasks. An extended version of this write-up is available at: https://arxiv.org/abs/2307.16806 .
%U https://aclanthology.org/2024.findings-eacl.139
%P 2063-2077
Markdown (Informal)
[Testing the Depth of ChatGPT’s Comprehension via Cross-Modal Tasks Based on ASCII-Art: GPT3.5’s Abilities in Regard to Recognizing and Generating ASCII-Art Are Not Totally Lacking](https://aclanthology.org/2024.findings-eacl.139) (Bayani, Findings 2024)
ACL