
Findings of the Association for Computational Linguistics: EACL 2024, pages 2162–2174
March 17-22, 2024 c©2024 Association for Computational Linguistics

Hierarchical and Dynamic Prompt Compression
for Efficient Zero-shot API Usage

Yichen Jiang∗ 1 Marco Del Vecchio2 Mohit Bansal1 Anders Johannsen2

1UNC Chapel Hill 2Apple
{yichenj}@cs.unc.edu

Abstract

Long prompts present a significant challenge
for practical LLM-based systems that need to
operate with low latency and limited resources.
We investigate prompt compression for zero-
shot dialogue systems that learn to use unseen
APIs directly in-context from their documen-
tation, which may take up hundreds of prompt
tokens per API. We start from a recently intro-
duced approach (Mu et al., 2023) that learns
to compress the prompt into a few “gist token”
activations during finetuning. However, this
simple idea is ineffective in compressing API
documentation, resulting in low accuracy com-
pared to the baseline using an uncompressed
prompt. In this work, we introduce two major
improvements. First, we specialize gist tokens
for different hierarchies within an API: we use
one Gistarg token for compressing an argument
and one Gistvalue token for compressing an ac-
ceptable value of a categorical argument. We
then dynamically reveal Gistvalue tokens only
when they are needed. Second, we add a recon-
struction loss to predict the API documentation
from the gist tokens. On multiple API-calling
tasks, our proposed system keeps the simplic-
ity, efficiency, and large compression factor
(20x on SGD) of the gist token approach while
achieving significantly better accuracy.1

1 Introduction

Large Language Models (LLM) have been shown
to be able to use external tools or APIs in a zero-
shot manner by in-context learning from APIs’ doc-
umentation (Shen et al., 2023). Specifically, the
LLM is given a prompt that includes a detailed
description of an API’s functionality and its accept-
able arguments and values. It is also presented with
a user’s request or a conversation between the user
and the system. The model is then asked to gener-

∗Work partially done while at Apple.
1Our code is publicly available at

https://github.com/jiangycTarheel/HD-Gist.

ate an API call that covers all the user’s requests so
far. We show an example in Fig. 1.

Despite the benefits of learning new APIs in-
context, deploying such a model is challenging for
latency-critical and resource-constrained settings.
This is partially because of the time and memory it
takes to compute the attention weights between the
newly generated token and all tokens in the API
documentation (Pope et al., 2023). For example,
generating an API from the documentation of 103
tokens using LLaMA (Touvron et al., 2023) 7B
costs an extra of 42 ms, 1729 GFLOPS of com-
pute and 9.1 GB memory compared to generating
it without the documentation.2 In this work, we
aim to accelerate the generation of the API call by
compressing the documentation into Hierarchical
and Dynamic “HD-Gist tokens”. First, we pro-
pose a scheme to compress an API documentation
hierarchically: we insert one “argument gist to-
ken” (Gistarg in Fig. 2b) after every argument’s
description; for those categorical arguments, we ad-
ditionally insert one “value gist token” (Gistvalue
in Fig. 2b) after every acceptable value of the ar-
gument. Intuitively, each argument is coarsely en-
coded into a Gistarg token, while a categorical ar-
gument’s values are additionally encoded into a
set of Gistvalue tokens. We can train the proposed
hierarchical HD-Gist model with no additional cost
over the standard finetuning (following Mu et al.
(2023)), by simply modifying the attention mask.
The model first encodes the API documentation
with the inserted gist tokens from left to right nor-
mally. Then, as the model encodes the user’s con-
versation and generates the API call, we mask out
all but those Gistarg tokens. This encourages the
model to compress the API documentation into
gist tokens, that can then be attended to during the
generation of the API call.

Second, we allow the model to ‘zoom’ in/out of a

2Benchmarked on a single NVIDIA A100 40GB.

2162

https://github.com/jiangycTarheel/HD-Gist

API: Set Alarm.
Arguments:

• a1: Time of the alarm

• a3: Whether and when to repeat

the alarm

• a3.1: everyday

• a3.2: weekday

• a3.3: weekend

• a4: Name of the alarm (Optional)

• a5: Ring tone

• a5.1: radar

• a5.2: vibration only

• a5.3: both

... ...
turn left LTURN

walk left and walk twice LTURN WALK WALK WALK

WALKwalk
Keys Values

... ...
look LOOK

WALKwalk
Keys Values

Row
1

2

...

10

Row
1

2

...

Memorization

sprint left and jog twice LTURN SPRINT JOG JOG99998

pull left and run twice LTURN PULL RUN RUN99999

I can't memorize
all of them!

O
rig

in
al

 D
at

a
M

or
e

C
om

pl
ex

 D
at

a

walk left and walk twice

Composition

WALKLTURN WALK WALK

walk walkleft twice

sprint left and jog twice

SPRINTLTURN JOG JOG

sprint jogleft twice

Now I'd rather
compose.

Dataset Complexity Example Difficulty

Difficult (4 unique primitives per example)

Easy (2 unique primitives per example)

walk left and jog twice and sprint right and look

LTURN WALK JOG JOG SPRINTRTURN LOOK

walk left and jog twice and jog left and walk

walk left jog twice jog left walk

LTURN WALK JOG JOG LTURN JOG WALK

jog = JOG
walk = WALK

? = WALK ? = LOOK
? = SPRINT ? = JOG

Memorizing
them is easy!

look left and push twice LTURN LOOK PUSH PUSH99998

Set an alarm for me at 8 AM tomorrow.

Of course! Do you want me to repeat this alarm?

Yes. Please set it for every weekday!

... ...
turn left LTURN

walk left and walk twice LTURN WALK WALK WALK

WALKwalk
Keys Values

... ...
look LOOK

WALKwalk
Keys Values

Row
1

2

...

10

Row
1

2

...

Memorization

sprint left and jog twice LTURN SPRINT JOG JOG99998

pull left and run twice LTURN PULL RUN RUN99999

I can't memorize
all of them!

O
rig

in
al

 D
at

a
M

or
e

C
om

pl
ex

 D
at

a

walk left and walk twice

Composition

WALKLTURN WALK WALK

walk walkleft twice

sprint left and jog twice

SPRINTLTURN JOG JOG

sprint jogleft twice

Now I'd rather
compose.

Dataset Complexity Example Difficulty

Difficult (4 unique primitives per example)

Easy (2 unique primitives per example)

walk left and jog twice and sprint right and look

LTURN WALK JOG JOG SPRINTRTURN LOOK

walk left and jog twice and jog left and walk

walk left jog twice jog left walk

LTURN WALK JOG JOG LTURN JOG WALK

jog = JOG
walk = WALK

? = WALK ? = LOOK
? = SPRINT ? = JOG

Memorizing
them is easy!

look left and push twice LTURN LOOK PUSH PUSH99998

Sure! Do you prefer a radar ringtone or a vibration, or both?

I want both. I’m a deep sleeper.

... ...
turn left LTURN

walk left and walk twice LTURN WALK WALK WALK

WALKwalk
Keys Values

... ...
look LOOK

WALKwalk
Keys Values

Row
1

2

...

10

Row
1

2

...

Memorization

sprint left and jog twice LTURN SPRINT JOG JOG99998

pull left and run twice LTURN PULL RUN RUN99999

I can't memorize
all of them!

O
rig

in
al

 D
at

a
M

or
e

C
om

pl
ex

 D
at

a

walk left and walk twice

Composition

WALKLTURN WALK WALK

walk walkleft twice

sprint left and jog twice

SPRINTLTURN JOG JOG

sprint jogleft twice

Now I'd rather
compose.

Dataset Complexity Example Difficulty

Difficult (4 unique primitives per example)

Easy (2 unique primitives per example)

walk left and jog twice and sprint right and look

LTURN WALK JOG JOG SPRINTRTURN LOOK

walk left and jog twice and jog left and walk

walk left jog twice jog left walk

LTURN WALK JOG JOG LTURN JOG WALK

jog = JOG
walk = WALK

? = WALK ? = LOOK
? = SPRINT ? = JOG

Memorizing
them is easy!

look left and push twice LTURN LOOK PUSH PUSH99998

SetAlarm(a1=8AM)

SetAlarm(a1=8AM, a3=a3.2)

SetAlarm(a1=8AM, a3=a3.2,

a5=a5.3)
Done!

Input: User’s Request Output Input: API Documentation

Figure 1: An example of the task discussed in this work. The model is given its conversation with the user and the
API documentation. It then predicts the API call to fulfill the user’s request.

compressed, categorical argument by dynamically
adjusting the gist mask: the model unmasks the
Gistvalue tokens of an argument right after it has
generated this argument in the API call, and re-
masks these tokens after it has predicted the value.
Finally, we also optimize the model to reconstruct
the API documentation from the HD-Gist tokens
only. We again only unmask the Gistvalue tokens
of an argument when the model is reconstructing
its description and acceptable values. This recon-
struction objective regularizes the model to hierar-
chically compress all crucial information about the
arguments and values into the HD-Gist tokens.

We finetune a LLaMA 7B model (Touvron et al.,
2023) with different compression methods to gen-
erate the API call in the SGD training set (Ras-
togi et al., 2020). We then evaluate the model on
unseen APIs and conversations on the SGD and
SGD-X (Lee et al., 2022) test sets. First, the pro-
posed model with HD-Gist tokens obtains higher
accuracy (56.68% on SGD and 54.83% on SGD-
X) than any models with a fixed number of static
gist tokens (41.43% on SGD and 39.53% on SGD-
X with 20 gist tokens). Next, our experiments
show that our reconstruction objective improves
the accuracy of both the static gist model and HD-
Gist model, while the HD-Gist model still main-
tains a sizable advantage (71.22% VS 46.47% on
SGD). Notably, the proposed HD-Gist model is
only 1.44% lower than the LLaMA baseline with
uncompressed documentation. On the SGD-X test
set, it even outperforms the LLaMA baseline by
4.5% in the accuracy, suggesting that compress-
ing the documentation can even act as a regular-
izer to improve the out-of-domain generalization.
We further show that HD-Gist is generalizable: on
the APIBench dataset (Patil et al., 2023), it again
achieves stronger results than all static gist models.
Last but not least, the proposed method maintains

a similar amount of compute and memory usage to
the static gist model (Mu et al., 2023). Compared
to the LLaMA baseline with uncompressed API
documentation, using HD-Gist tokens achieves a
5.6% speedup in CUDA time, 29.9% reduction in
compute, and 32.5% reduction in memory usage.

To understand the improvement of the proposed
model, we also perform an error analysis on the
SGD validation set. First and foremost, we find
that static gist baseline predicts a wrong value for
a categorical argument in more than 46% of the ex-
amples. Using the HD-Gist tokens can significantly
reduce this error to 17% and adding the reconstruc-
tion loss further reduce it to 14%. Moreover, our
proposed model also makes fewer errors in missing
arguments, generating extra arguments, and halluci-
nating arguments that is not in the documentation.

Overall, by only attending to an average of 5.08
tokens in the API documentation per generation
step, our proposed HD-Gist model significantly
improves upon the previous state-of-the-art com-
pression method. It closes the accuracy gap to the
baseline that needs to attend to an average of 108.94
tokens in the API documentation, while requiring
30% less compute and memory usage.

2 Background and Related Work

Language models using external tools. With the
recent tide of advancement in large language mod-
els (LLMs) comes further investigations into their
weaknesses (e.g., incapability in math (Cobbe et al.,
2021), hallucinating contents (Dziri et al., 2022),
etc). Researchers have been trying to augment
LLMs with external tools including web brows-
ing (Nakano et al., 2021; Lazaridou et al., 2022;
Komeili et al., 2022), calculators (Cobbe et al.,
2021; He-Yueya et al., 2023), translation, code in-
terpreters (Gao et al., 2023), or a combination of
them (Thoppilan et al., 2022; Schick et al., 2023).

2163

These preliminary efforts mostly focus on train-
ing/prompting LLMs to use a single tool or a lim-
ited pool of tools and cannot generalize to unseen
tools without retraining or prompt engineering.

Zero-shot API usage by in-context learning from
API documentation. More recent works (Shen
et al., 2023; Liang et al., 2023) try to enable LLMs
to use an infinite set of tools by exploring their
ability to learn API documentation in-context and
make API calls. Patil et al. (2023) introduced the
APIBench dataset consisting of APIs from Hug-
gingFace, TorchHub, and TensorHub and user re-
quests. In this work, we also use the Schema-
guided Dialogue (SGD) dataset (Rastogi et al.,
2020) that challenges models to track dialogue
states from a user-system dialogue following a
schema of the service required. Based on the SGD
dataset, Lee et al. (2022) further introduced SGD-
X by rephrasing the API/argument’s name and de-
scription. We use the schema of a specific intent
(e.g., FindHotel) as the API documentation and ask
the model to predict the value of all active argu-
ments (e.g., check-in date) of the API.

Compressing prompts into gist tokens. In-
context learning from API documentation enables
LLMs to use potentially any tools. However, the
length of API documentation grows with its com-
plexity, including the number of acceptable argu-
ments, different use cases, and so on. There has
been a series of works that aim to compress Trans-
former’s information-redundant, hidden activations
into a small set of soft, compact vectors that can
be used as the attention’s keys and values in pro-
cessing later tokens. Rae et al. (2020) first tried to
compress activations using compression functions
like pooling and convolution. Later works instead
rely on the Transformer itself to compress a long
sequence of activations into a shorter sequence of
activations. Mu et al. (2023) proposed to append
a few special “gist” tokens after the prompt and
compress the prompt into the gist tokens’ activa-
tions. The model can only attend to the gist tokens
when encoding and decoding later context. This
significantly speeds up the decoding, but at the
cost of accuracy for knowledge-intensive tasks like
API calling. More concurrent works (Jiang et al.,
2023; Zhang et al., 2024) further improved upon
gist-tokens in multiple aspects. For example, Ren
et al. (2023) proposed to use a pair of sentinel to-
kens (similar to gist tokens) to mark the boundary
of the span to be compressed, and achieve a wide

range of compression ratios in a longer context.
Chevalier et al. (2023) finetuned LLMs to compress
segments of long context into individual memory
vectors. To reduce information loss in compression,
Ge et al. (2023) compressed long context into a few
“memory tokens” using an additional LLM encoder.
They pretrained this encoder with a fixed LLM
decoder on language modeling and reconstruction
objectives. They then finetuned the encoder on
instruction-following data. In an alternative direc-
tion, Li et al. (2023) proposed “Selective Context”
to directly prune redundant content in a given in-
put context. Jung and Kim (2023) compressed the
prompts with reinforcement learning.

In a parallel direction, Xiao et al. (2023) pro-
posed to keep a sliding window plus the 4 initial to-
kens’ Key-Values in the cache as an “attention sink”
during the inference. This method specializes in
local language modeling at the cost of losing direct
attention to distant contexts. In comparison, the
gist-tokens methods focus on providing efficient
but fine-grained access to distant context, which
is essential in API-calling that requires copying
specific parameter names. In this work, we inherit
the lightweight compression method from Mu et al.
(2023) that simply modifies the attention masks of
tokens after the documentation without introducing
a separate encoder. We further incorporate the auto-
encoding objective (Ge et al., 2023) to improve the
quality of compressed gist representations. Dif-
ferent from recent works that compress activations
into static “gist” vectors, we introduce multiple sets
of hierarchical and dynamic gist tokens to encode
information at different granularities, and further
allow automatic switching on/off a set to zoom
in/out.

3 Method

In this section, we first explain the data preprocess-
ing steps (Sec. 3.1). We then introduce the details
about the HD-Gist tokens (Sec. 3.2) and reconstruct
the API Documentation from HD-Gist (Sec. 3.3).

3.1 Preprocessing

Indexing the arguments and categorical values.
When training a language model to follow API doc-
umentation, the model could quickly memorize the
APIs in parameters and then operate independently
of the documentation.This overfitting to seen APIs
significantly harms the model’s generalization to
call unseen APIs at test time. To overcome this

2164

| API Documentation | User Request | Model Output |

Alarm

time
a1

a3
repeat

everyday
a3.1

a3.2
weekday

Alarm
at

8AM
everyday

a1

Set

8AM

a3.3
No

!

:

a3

a3.1
:

!

Set Alarm a1 time a3 repeat
a3.1 everyday

a3.2 weekday
a3.3 No ! ! Alarm at 8AMeveryday

a1 : 8AM a3 : a3.1

(a) Static gist baseline (Mu et al., 2023).

| API Documentation | User Request | Model Output |

Alarm

time

a1

a3

repeat

everyday

a3.1

a3.2

weekday

Alarm

Set

a3.3

!!"#

!$!%

at

8AM

everyday

a1

8AM

No

a3.1

:

:

a3

!$!%
!!"#

!$!%

Alar
m

tim
e

a1 a3 rep
ea

t

ev
ery

day

a3
.1

a3
.2

wee
kd

ay

Alar
m

Se
t

a3
.3! "#
$

! %"
&

at 8A
M

ev
ery

day
a1 8A

M

No a3
.1:: a3! %"
&

! "#
$

! %"
&

(b) The proposed HD-Gist method.

Figure 2: The modified attention mask from the model with static gist (G) tokens (Mu et al., 2023) and our proposed
model with HD-Gist tokens (including hierarchical Gistarg and Gistvalue). The causal attention mask shown is
for a decoder-only model (e.g., LLaMA). Gray cells are zeros in the mask and other colored cells are ones in the
mask. Blue cells represent attention to static gist tokens and argument-level Gistarg tokens. Purple cells represent
attention to the dynamic, value-level Gistvalue tokens. Model outputs are highlighted in curly brackets and yellow.
We show the modified attention mask from HD-Gist model trained with the reconstruction loss in Fig. 3.

problem, we convert argument names and categori-
cal values into structured indexes (e.g., “a1: Des-
tination, a3: The number of stops in the itinerary,
values=[a3.1: 1, a3.2: 0]”). The model is then
asked to predict argument indices paired with ei-
ther textual values or indexed categorical values
(“a1=‘NYC’, a3=a3.2”). This indexing scheme is
based on the fact that argument and value names are
simply symbols that can be replaced with anything,
and it is the descriptions that actually encodes their
meanings (Zhao et al., 2022).

Randomizing argument and value orders.
Within an API documentation, we randomize the
order of the arguments as well as the acceptable
values of categorical arguments across different ex-
amples that share this API. This further prevents the
model from memorizing the API documentation
and helps the model to generalize.

3.2 Hierarchical and Dynamic Gist Token
Motivation. Recently, Mu et al. (2023) proposed
to compress instructions into the activations of a
few “gist tokens” inserted between the instruction
(“Translate this into Spanish”) and the input (“I like
to play tennis.”), by masking out the entire instruc-
tion after encoding the gist tokens. This method is
lightweight as it only added an embedding vector
of the gist token to the model parameters. However,
we argue that appending all gist tokens sequen-
tially after the API documentation may result in
a loss of the hierarchical information. For exam-
ple, for the SetAlarm API, the list of acceptable

values “everyday; weekday; No” is relevant to the
argument “repeat” only and is irrelevant to other
arguments. Such hierarchy is originally encoded
by the attention to the API documentation, but may
get lost after being compressed into the gist tokens.
We will later support this argument with a detailed
error analysis (Sec. 5.3).

In order to retain this important hierarchy of API
documentations during the compression, we intro-
duce two major improvements to the static, sequen-
tial gist token method. First, we propose a scheme
to compress an API documentation hierarchically:
we insert one “argument gist token” (Gistarg in
Fig. 2b) after every argument’s description; for
those categorical arguments (e.g., the “repeat” ar-
gument in the SetAlarm API), we additionally in-
sert one “value gist token” (Gistvalue in Fig. 2b)
after every acceptable value of the argument. Intu-
itively, each argument is coarsely encoded into a
Gistarg token, while a categorical argument’s val-
ues is additionally encoded into a set of Gistvalue
tokens. Following Mu et al. (2023), we can train
the proposed hierarchical HD-Gist model with no
additional cost over the standard finetuning, by
simply modifying the attention mask. The model
encodes the API documentation with the inserted
gist tokens from left to right normally. Therefore,
each gist token can possibly encode all preceding
arguments. However, when the model encodes the
user’s conversation and generates the API call, we
mask out all but those Gistarg tokens. This encour-
ages the model to compress the API documentation

2165

into gist tokens, that can then be attended to during
the generation of the API call.

Second, we allow the model to ‘zoom’ in/out of a
compressed, categorical argument by dynamically
adjusting the gist mask. When the model starts to
generate the value for a categorical argument (e.g.,
it has generated “a3: ”), it unmasks the Gistvalue to-
kens after every acceptable value (e.g., purple cells
in Fig. 2). It then remasks these Gistvalue tokens af-
ter predicting the value (e.g., it has generated “a3:
a3.1”). This in-context retrieval of Gistvalue to-
kens has two benefits: (1) it encourages the model
to encode the fine-grained information about one
categorical argument, exclusive of other arguments,
into its Gistvalue tokens; (2) it avoids feeding the
model with redundant tokens that would unneces-
sarily occupy memory and computation.

In summary, we insert HD-Gist tokens after dif-
ferent structures of the API hierarchy, and allow the
model to dynamically switch on a set of Gistvalue
tokens to zoom into a categorical argument.

3.3 Improving Compression Coverage by
Learning to Reconstruct API

The existing objective supervises the model to gen-
erate the correct API call given the conversation
with the user and the API documentation. However,
in most examples, the API call only invokes some,
but not all of the arguments in the documentation.
Therefore, the existing objective does not provide
the incentive for the model to compress all argu-
ments in the gist token representations. To improve
the completeness of the compressed API documen-
tation, we add a second objective that trains the
model to reconstruct the original API documenta-
tion given the argument-gist and dynamic value-
gist tokens. Specifically, in all training examples,
the model is given the API documentation and the
conversation with the user and predicts the API
call. In some training examples, we append a copy
of the API documentation after the ground truth
API call and a separator ([SEP]) token. When pre-
dicting the API documentation, the model can only
attend to the argument and value gist tokens, while
the model can additionally attend to the conversa-
tion when predicting the API call. We show the
modified attention mask for an example with the
reconstruction objective in Fig. 3.

4 Experiments

4.1 Experimental Setup

We adopt a unified setting across all datasets used
in this work, in prompting an LLM to make API
calls. The model’s input consists of the API docu-
mentation and then the user request in the form of a
single sentence or a conversation between the user
and the system. Unlike the previous work (Patil
et al., 2023), we put documentation before the user
request because we need a static documentation rep-
resentation that is independent of the user request.
The model needs to generate a list of argument-
value pairs that include all API arguments that the
user has given a value. We conduct experiments
in an oracle setting where the ground-truth API’s
documentation3 is always given to the model in
both training and evaluation without delegating to
a API retrieval system as the impact of retrieval in
a setting where the model is shown the k-best APIs
is outside the scope of this work.

4.2 Datasets

SGD (Schema-Guided Dialogue) (Rastogi et al.,
2020) is a public dataset in English that challenges
models to perform dialogue state tracking (DST) by
following a schema. We convert the original DST
task into an API prediction task by (1) discarding
arguments not used by the current API from the
output and (2) giving the model the documentation
of an API instead of a whole service. We train
the model to predict an API call using the API
documentation and the conversation between the
user and the system. In both training and test, we
also include intermediate turns where the user has
not yet provided all arguments’ values. In these
turns, we ask the model to generate a partial API
call with only those arguments mentioned by the
user so far.

SGD-X (Lee et al., 2022) is created from SGD by
asking human annotators to paraphrase the original
arguments’ names and descriptions into semanti-
cally similar yet stylistically diverse variants. SGD-
X further evaluates models’ robustness to linguistic
variations in API documentation. We use the SGD-
X/v5, which is the version with the most variation,
as the extra test set to evaluate models trained on
the original SGD training set.

3“Ground-truth API” refers to the API that can fulfill the
user’s request.

2166

| API Documentation | User Request | Model Output | Reconstructed API Documentation |
 Set Alarm a1 time &!"# a3 repeat a3.1 everyday &$!% a3.2 weekday &$!% a3.3 No &$!% &!"# Alarm at 8AM everyday { a1 : 8AM a3 : a3.1 } [SEP] Set Alarm a1 time a3 repeat a3.1 everyday a3.2 weekday a3.3 No

Alarm

time
a1

a3
repeat

everyday
a3.1

a3.2
weekday

Alarm

Set

a3.3

!!"#

!$!%

at
8AM

everyday

a1

8AM

No

a3.1
:

:

a3

!$!%
!!"#

!$!%

Alarm

time
a1

a3
repeat

everyday
a3.1

a3.2
weekday

Set

a3.3
No

[SEP]

Figure 3: The modified attention mask from the model with the HD-Gist gist tokens that also reconstructs API
documentation. There is a special token [SEP] that separates the API call and the reconstruction. After [SEP], the
model can only attend to the Gistarg tokens (blue cells) and preceding reconstruction (green cells). After the model
has reconstructed the name of a categorical argument (a3), we unmask its Gistvalue tokens (purple cells) so that the
model can access the encoded fine-grained information when generating its details, including all acceptable values.

APIBench (Patil et al., 2023) is a public dataset
consisting of APIs from HuggingFace, TorchHub,
and TensorHub as well as user question prompts in
English generated from Self-Instruct (Wang et al.,
2023). Because the sole purpose of this work is to
train and evaluate models to follow API documen-
tation, we discard the undocumented arguments
of the API calls and only ask the model to pre-
dict (1) one out of three available APIs (Hugging-
Face, TorchHub, TensorHub), and (2) the value
(pretrained model card’s url) of the only argument
of an API. Therefore, we insert an API-level gist
token after every API, insert a Gistvalue token after
the description of every model card, and omit the
Gistarg token since there is only one argument per
API. We provide more details regarding the SGD
and APIBench datasets in Appendix B.1.

4.3 Evaluation Metrics
Following Rastogi et al. (2020), we evaluate mod-
els on SGD and SGD-X using joint-goal accuracy.
For arguments that are both in the ground truth
and the predicted API call, we calculate the exact-
match scores for values of categorical arguments,
and calculate fuzzy soft-matching scores4 for other
arguments. A matching score of 0 is assigned for
both of the following errors: (i) arguments that in
the ground truth but missed in the prediction, (ii)
arguments in the prediction but not the ground truth.

4For example, predicting “New York” while the ground-
truth is “New York City” results in a fuzzy-matching score of
0.76.

The joint-goal accuracy is the product of matching
scores of all arguments in the API documentation.
For APIBench that has no non-categorical argu-
ment, we use the exact-match accuracy only.

5 Results

5.1 Results on the SGD Datasets

Based on the results shown in Table 1, we can ob-
serve that the model with the argument-level gist
tokens (Gistarg) outperforms all static gist mod-
els (Mu et al., 2023) with up to 40 gist tokens
(41.43% on SGD and 39.53% on SGD-X with 20
gist tokens). The proposed model with HD-Gist
tokens obtains even better accuracy (56.68% on
SGD and 54.83% on SGD-X) than all other models
with compressed API documentation. This model
only needs to store an average of 10.84 Gistarg and
Gistvalue tokens in memory, and attend to an aver-
age of 5.08 gist tokens per generation step. This is a
significant reduction from the more than 108 tokens
that need to be kept in memory and attended by the
LLaMA baseline. We further supervise the models
to reconstruct the API documentation from the gist
tokens in 30% of the training examples. We ob-
serve that both the static and HD-Gist models ben-
efit from this extra objective, while the proposed
HD-Gist model still maintains a significant advan-
tage (71.22% VS 46.47% on SGD and 69.24% VS
41.52% on SGD-X).

2167

Models API Doc Tokens in Accuracy
Attn Memory SGD SGD-X

LLaMA 108.94 108.94 72.66±1.7 64.78±0.7

Without Reconstruction Objective
2 Gist 2 2 35.71±1.1 31.56±0.5

5 Gist 5 5 35.68±0.8 32.51±1.6

10 Gist 10 10 39.96±0.4 35.84±2.4

20 Gist 20 20 41.43±4.4 39.53±4.0

40 Gist 40 40 39.01±2.1 36.54±2.1

Gistarg 4.59 4.59 48.78±1.7 47.85±1.2

HD-Gist 5.08 10.84 56.68±2.3 54.83±1.7

With Reconstruction Objective
2 Gist 2 2 37.85±1.9 32.57±2.9

5 Gist 5 5 38.15±2.3 36.42±3.5

10 Gist 10 10 46.47±2.5 41.35±3.0

20 Gist 20 20 42.65±0.6 37.50±2.4

40 Gist 40 40 42.79±2.0 41.52±0.7

Gistarg 4.59 4.59 51.34±0.3 48.68±0.4

HD-Gist 5.08 10.84 71.22±3.0 69.24±2.0

Table 1: Joint-goal accuracy on SGD (Rastogi et al.,
2020) and SGD-X/v5 (Lee et al., 2022) test sets. All
models are finetuned from a LLaMA 7B (Touvron
et al., 2023) model. We report the results of static gist
model (Mu et al., 2023) with up to 40 gist tokens. The
best results from a model using the compressed API
documentation are in bold. We report the mean and
standard deviation across three random seeds.

Models API Doc Tokens In AccuracyAttention Memory

LLaMA 551.75 551.75 84.38
With Reconstruction Objective

2 Gist 2 2 33.51
5 Gist 5 2 36.42
10 Gist 10 10 45.14
20 Gist 20 20 33.77
40 Gist 40 40 35.78
HD-Gist 4.15 12 55.64

Table 2: Accuracy of predicting the API and the model
card on the APIBench (Patil et al., 2023) evaluation set.

5.2 Results on the APIBench Dataset

Next, we discuss the results on the APIBench (Patil
et al., 2023) dataset. As shown in Table 2, the
proposed HD-Gist model achieves a higher accu-
racy (55.65%) than all static gist-token models
(45.14%). However, the gap (29%) to the LLaMA
baseline with uncompressed API doc (84.38%) is
much larger than it is on the SGD datasets. We
believe this is because the documentation (e.g.,
descriptions of AI models) in APIBench is much
longer than the documentation in SGD, which is
demonstrated by the average number of tokens in
the uncompressed API documentation (108.94 VS
551.75). In terms of the average compression ratio
(original token to gist token ratio), one Gistvalue
token of the lowest hierarchy only needs to encode

a single value (e.g., “everyday” in Fig. 3) in SGD,
while a same token of the lowest hierarchy is ex-
pected to encode the description of a model card
(61.3 tokens on average) in APIBench. Given these
difficulties, our proposed HD-Gist method still
achieves decent performance gain, which demon-
strates the generalizability of our method and intu-
ition. The noticeable gap between the model with a
full context raises another research question: when
the lowest hierarchy of the input is still very long,
it is necessary to either increase the capacity of
the gist compression (more than 1 gist tokens) or
introduce a finer-grained hierarchy (e.g., sentence)
in the compression. We leave the exploration of
this question to future work.

5.3 Error Analysis
We break down 5 different types of errors that mod-
els make on SGD and count the percentage of vali-
dation examples where the model makes a specific
error. We divide the 5 errors into two categories:
argument error and value error. Argument error
is when a model (I) misses an argument that is
in the ground-truth API call, (II) predicts an ex-
tra argument from the documentation but is not in
the ground-truth API call, or (III) hallucinates an
argument that is not even in the documentation.

The second category, value error (IV), is when
a model predicts the wrong value for a categorical
argument, or (V) it predicts the wrong value for
a regular argument. For Type IV error, the model
could predict the wrong category (e.g., “s3.1 in-
stead of s3.2”, or predict a value instead of the
desired index. We show the results in Table 3. We
can observe that all static gist models (row 2-4)
as well as the Gistarg model predict the wrong
value for a categorical argument (Type IV error) in
more than 44% of the examples. The addition of
the dynamic Gistvalue tokens significantly reduces
the type IV error rate to 17.1% and adding recon-
struction loss further reduces it to only 2.4%. This
evidence corroborates our argument that the model
can utilize more fine-grained information about
an argument (e.g., its acceptable values) from the
dynamic Gistvalue gist tokens.

5.4 Study on the Reconstruction Frequency
We then conduct a study on the percentage of train-
ing examples with the reconstruction loss. The
results are shown in Table 4. On SGD-X, HD-Gist
model achieves the best performance when we add
the reconstruction loss in 10% of the training ex-

2168

Models Argument Error (%) Value Error (%)

Miss (I) Extra (II) Hallu. (III) Categorical (IV) Regular (V)

LLaMA 7B 5.5 2.5 0.02 0.1 6.7
Append 2 Gist 11.3 8.5 1.1 47.0 15.8
Append 5 Gist 14.9 8.2 2.2 46.2 13.6
Append 10 Gist 9.9 3.2 1.3 46.6 7.4
Gistarg Only 7.5 2.5 0.9 44.9 6.9
HD-Gist 10.5 2.8 0.3 17.1 7.2
+Reconstruction 6.7 0.0 2.7 2.4 7.2

Table 3: The absolute percentage of different errors made by different models on SGD validation set.

Rec. HD-Gist 10 Gist
Ratio SGD SGD-X SGD SGD-X

0.0 70.47±3.2 60.38±2.8 45.36±0.4 36.18±1.6

0.1 87.81±2.4 83.37±1.0 56.78±1.3 43.47±0.4

0.3 85.21±4.9 77.83±1.6 70.62±2.0 55.84±3.4

0.5 87.98±1.0 75.36±2.3 63.52±3.2 47.34±0.7

0.9 87.36±2.0 70.61±2.8 49.23±6.9 37.48±5.1

1.0 89.98±0.8 72.94±4.2 61.87±3.5 43.32±9.6

Table 4: Joint-goal accuracy (average and standard devi-
ation over 3 seeds) of the models trained with different
ratios of examples with reconstruction. We report the
model with 10 static gist tokens and the model with
HD-Gist, evaluated on SGD and SGD-X validation sets.

Caching Time Compute Memory
Strategy (ms) (GFLOPS) (GB)

None 743.4 5788.7 26.5
API Doc 727.6 4079.1 21.8

Static Gist Caching
2 Gist 704.9 4059.0 17.6
5 Gist 706.0 4059.5 17.7
10 Gist 711.6 4060.3 17.8
20 Gist 710.7 4061.9 18.1
40 Gist 710.0 4065.1 18.8

Dynamic Gist Caching
HD-Gist 705.7 4060.6 17.9

Table 5: Efficiency of different caching methods, eval-
uated on 100 SGD validation examples. We report the
average CUDA time (millisecond), computation (giga-
FLOPS), and memory usage (gigabyte) for generating
the ground-truth API call.

amples, while the static gist model achieves the
best performance with 30% training examples with
reconstruction. Reconstructing in more or less ex-
amples also achieves improvements on the baseline
with no reconstruction.

6 Efficiency Evaluation

6.1 Benchmarking Setup
In this section, we compare the efficiency of the
HD-Gist model to the static gist-token model as
well as the baseline with no prompt compression.
We aim to answer one important question: does our

proposed method still maintain the efficiency of
the static gist-token model in terms of its compute,
memory, and storage requirements? To answer this
question, we compare the compute requirements
(CUDA wall time, FLOPs) and memory usage dur-
ing inference using different models and strategies
to cache the API documentation:

• No Caching. We just encode the API docu-
mentation from scratch for every example.

• API Doc Caching. We cache the activations
of the full API documentation (keys and val-
ues for all layers). This is the KV caching
commonly used in the inference of a decoder-
only Transformer (Pope et al., 2023).

• Static Gist Caching (Mu et al., 2023) com-
presses the API documentation into N gist
tokens, and caches their activations.

• Dynamic Gist Caching compresses the API
documentation into the proposed HD-Gist to-
kens, and caches their activations as well as a
dictionary that maps a categorical argument’s
name (e.g., “s3:”) to an attention mask that
unmasks its Gistvalue tokens.

We benchmark the prediction step that gener-
ates an entire output instead of a single forward
pass (at the first decoding step) as is done in Mu
et al. (2023). This is because we want to take into
account the extra time to switch between the gen-
eral attention mask that only unmasks Gistarg and
targeted masks that additionally unmask a set of
Gistvalue for a categorical argument. Since we aim
to benchmark different models (LLaMA 7B with
no compression, static gist-token model, and our
proposed model), and each model may generate
an output of different lengths, we benchmark these
models for generating the same, ground-truth API
call instead of actually decoding them. This en-
ables us to make a fair comparison between the

2169

efficiency of these models. We benchmark on a
single NVIDIA A100 40GB and report the GPU
time, compute and memory usage.

6.2 Benchmarking Results

Table 5 shows the results of profiling an entire pre-
diction step with PyTorch (Paszke et al., 2019) 2.0,
averaged across 100 random validation examples.
First, we note that all caching methods achieve sig-
nificant speedup, less compute and memory than
“No Caching” that encodes the API documentation
from scratch for every example. This demonstrates
the efficiency of caching and reusing the API docu-
mentation’s encodings.

Second, we observe that all static gist caching
as well as the proposed dynamic gist caching only
obtains a small speedup and reduction of compute
compared to the “API Doc Caching”. A similar
trend is also observed in Mu et al. (2023) and it is
because the FLOPs required for a Transformer for-
ward pass is dominated by encoding the newly gen-
erated token (e.g., passing it through feed-forward
layers), which is unchanged across all caching
strategies, rather than computing the self-attention
weights with the cached key-values. Although the
improvements in speed are limited, using “Dy-
namic Gist caching” reduces memory usage by
17.9%. As is shown in Table 1, caching the entire
API documentation requires caching the activations
of 108.94 tokens on average, while the dynamic
gist method only requires caching the activations
of 10.84 gist tokens on average.

7 Discussion

In this section, we discuss HD-Gist’s strong perfor-
mance that even beats LLaMA with uncompressed
API in SGD-X, and its potential of generalizing to
compress any APIs and free text.

Compression as Regularization. One unex-
pected, but interesting finding in this work is that
LLaMA with HD-Gist-compressed documentation
outperforms LLaMA with uncompressed docu-
mentation in SGD-X (Table 1), whose arguments’
names and descriptions are paraphrased by human
annotators. The opposite is observed in the original
SGD test set whose arguments’ names and descrip-
tions follow the same annotation as the training set.
We believe this is because, after finetuning, LLaMA
with uncompressed documentation overfits to the
training examples. Therefore, when the arguments
are paraphrased in the test set, the model is still

predicting based on its memory of training APIs.
LLaMA with HD-Gist-compressed documentation,
on the other hand, is exposed to a minimum but
sufficient amount of information about the API
through HD-Gist tokens during training. Thus it
is more robust to test-time variations in APIs and
generalizes better according to the information bot-
tleneck theory (Tishby and Zaslavsky, 2015).

Generalizing to Compress any APIs. In the real
world, API documentations mostly follow a sim-
ilar hierarchical structure: starting with a coarse-
grained API description, then a list of arguments
and their descriptions, and further fine-grained de-
scriptions of acceptable values for categorical argu-
ments. Therefore, for any API documentations, we
can append a Gistvalue token after the description
of a value, and append an Gistarg token after the
description of an argument. If the model needs to
chain multiple API calls in the same expression,
we can also append an API-level Gist token after
an API documentation and hence include multiple
APIs in the context. This allows HD-Gist to be
generalized to compress any APIs.

Generalizing to Compress Free Text. We argue
that HD-Gist can also be applied to compress free
text where we have the ground-truth label on which
part of the text the model should be attending. For
example, in Multi-Hop Question Answering (Yang
et al., 2018) with a long context containing multiple
paragraphs, we know the golden paragraphs that
contain the intermediate and final answers. There-
fore we can add paragraph-level and sentence-level
gist tokens to the context. The model only attends
to paragraph-level gist tokens for the best efficiency,
and then unmasks the sentence-level gist tokens
once it predicts to use a certain paragraph in a
chain-of-thought reasoning step.

8 Conclusion

In this work, we propose to compress API docu-
mentation into a few sets of hierarchical and dy-
namic gist tokens. We enable the model to unmask
value-level gist tokens to zoom into more details of
a categorical argument. We further present a recon-
struction objective that improves the compressed
gist representation. Empirical results on multiple
datasets demonstrate the significant improvement
upon a single set of static gist tokens without sacri-
ficing the speed or incrementing FLOPs.

2170

9 Limitations

Generalization to compress other texts. In this
work, we propose to hierarchically compress an
API documentation into a set of Gistarg tokens and
a sets of Gistvalue tokens. Each Gistarg token is
appended after the description of an argument and
coarsely encodes this argument, while Gistvalue
token is appended after an acceptable value of a
categorical argument and finely encodes this spe-
cific value. The model can automatically zoom
into/out of information about an argument of inter-
est by dynamically unmasking and remasking its
Gistvalue tokens. The decision of when to unmask
and remask the Gistvalue tokens of a categorical
argument and which argument’s Gistvalue tokens
to unmask is solely based on the partially generated
API call (output). For example, when the partial
output ends with a categorical argument “a3: ”,
we unmask the Gistvalue tokens after every possi-
ble value of a3 (e.g., “[a3.0: 1 Gistvalue, a3.1: 0
Gistvalue]”). After the model finishes predicting
the value (“a3=a3.0,”), we mask these Gistvalue
tokens again. Therefore, our method can be applied
to compress any API documentation (e.g., python,
pytorch, etc.) that has a naturally hierarchical struc-
ture.5 As long as the API call output refers to the
argument name as it is in the documentation, which
is true in almost all programming languages, the
model can automatically decide when to unmask
the Gistvalue tokens of which argument.

One future direction is to extend the proposed
hierarchical gist to compress unstructured, long
context. To achieve this, one can explore some nat-
ural hierarchy (article, paragraph, sentence) within
unstructured text and define and place gist tokens
of different hierarchies. However, the output of
a general prompt does not include signal tokens
(e.g., argument names in API) that can be used to
match to a component within the prompt hierar-
chy. Therefore, a crucial challenge is to let the
model decide which paragraphs/sentences are rel-
evant to the current decoding step and hence un-
mask the corresponding gist tokens. A potential
solution is to quantify the “importance” of each
paragraph/sentence within an article/paragraph us-
ing the attention weights on the paragraph/sentence
gist tokens. We can then unmask the gist tokens
in the most “important” paragraph/sentence to the

5Each API has multiple required and optional arguments,
among which some arguments are categorical and have a finite
set of acceptable values.

current step.

Pretraining with compressed context. Another
potentially impactful direction is to incorporate
the gist compression into the pretraining language
modeling objective, instead of finetuning a pre-
trained model to compress the context as is done
in this work and Mu et al. (2023). This can sig-
nificantly increase the length of the context win-
dow, which is a crucial factor in the pretraining of
LLMs as the memory usage scales quadratically
with the context length. For example, the longest
context length of LLaMA is 2048 and further con-
text longer than 2048 has to be truncated. Assume
each paragraph in a corpus has 100 tokens. We can
train the LLaMA model to attend to a token that is
409600 ahead by compressing each paragraph into
a gist token.

Ethical Considerations

In this work, we finetune a LLaMA 7B (Touvron
et al., 2023) model to compress the API documen-
tation and then predict the API call based on the
user’s request. All training data are open-sourced,
and hence do not contain any private or sensitive in-
formation. Nonetheless, previous work has shown
that models trained with these large corpora can
sometimes generate outputs that are toxic (Dinan
et al., 2019) or reflect gender bias (Dinan et al.,
2020) that might be offensive to certain users. As
we are solely interested in having the model to pre-
dict the API call, we do not assess the toxicity or
faithfulness of the model in generating free-form
responses. Therefore, the model presented is only
intended to predict an API call from the API docu-
mentation and user’s request. It is not intended to
act as a chat agent on its own and we do not recom-
mend prompting this model to generate free-form
content.

References
Alexis Chevalier, Alexander Wettig, Anirudh Ajith, and

Danqi Chen. 2023. Adapting language models to
compress contexts. In Proceedings of the 2023 Con-
ference on Empirical Methods in Natural Language
Processing, pages 3829–3846, Singapore. Associa-
tion for Computational Linguistics.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168.

2171

https://doi.org/10.18653/v1/2023.emnlp-main.232
https://doi.org/10.18653/v1/2023.emnlp-main.232

Emily Dinan, Angela Fan, Adina Williams, Jack Ur-
banek, Douwe Kiela, and Jason Weston. 2020.
Queens are powerful too: Mitigating gender bias in
dialogue generation. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 8173–8188, Online. As-
sociation for Computational Linguistics.

Emily Dinan, Samuel Humeau, Bharath Chintagunta,
and Jason Weston. 2019. Build it break it fix it for
dialogue safety: Robustness from adversarial human
attack. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
4537–4546, Hong Kong, China. Association for Com-
putational Linguistics.

Nouha Dziri, Sivan Milton, Mo Yu, Osmar Zaiane, and
Siva Reddy. 2022. On the origin of hallucinations
in conversational models: Is it the datasets or the
models? In Proceedings of the 2022 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 5271–5285, Seattle, United States.
Association for Computational Linguistics.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon,
Pengfei Liu, Yiming Yang, Jamie Callan, and Gra-
ham Neubig. 2023. Pal: Program-aided language
models. In International Conference on Machine
Learning, pages 10764–10799. PMLR.

Tao Ge, Jing Hu, Xun Wang, Si-Qing Chen, and Furu
Wei. 2023. In-context autoencoder for context com-
pression in a large language model. arXiv preprint
arXiv:2307.06945.

Joy He-Yueya, Gabriel Poesia, Rose E Wang, and
Noah D Goodman. 2023. Solving math word prob-
lems by combining language models with symbolic
solvers. arXiv preprint arXiv:2304.09102.

Huiqiang Jiang, Qianhui Wu, Xufang Luo, Dongsheng
Li, Chin-Yew Lin, Yuqing Yang, and Lili Qiu. 2023.
Longllmlingua: Accelerating and enhancing llms
in long context scenarios via prompt compression.
arXiv preprint arXiv:2310.06839.

Hoyoun Jung and Kyung-Joong Kim. 2023. Discrete
prompt compression with reinforcement learning.
arXiv preprint arXiv:2308.08758.

Mojtaba Komeili, Kurt Shuster, and Jason Weston. 2022.
Internet-augmented dialogue generation. In Proceed-
ings of the 60th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 8460–8478, Dublin, Ireland. Association
for Computational Linguistics.

Angeliki Lazaridou, Elena Gribovskaya, Wojciech
Stokowiec, and Nikolai Grigorev. 2022. Internet-
augmented language models through few-shot
prompting for open-domain question answering.
arXiv preprint arXiv:2203.05115.

Harrison Lee, Raghav Gupta, Abhinav Rastogi, Yuan
Cao, Bin Zhang, and Yonghui Wu. 2022. Sgd-x:
A benchmark for robust generalization in schema-
guided dialogue systems. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 36,
pages 10938–10946.

Yucheng Li, Bo Dong, Frank Guerin, and Chenghua Lin.
2023. Compressing context to enhance inference ef-
ficiency of large language models. In Proceedings of
the 2023 Conference on Empirical Methods in Natu-
ral Language Processing, pages 6342–6353, Singa-
pore. Association for Computational Linguistics.

Yaobo Liang, Chenfei Wu, Ting Song, Wenshan Wu,
Yan Xia, Yu Liu, Yang Ou, Shuai Lu, Lei Ji,
Shaoguang Mao, et al. 2023. Taskmatrix. ai: Com-
pleting tasks by connecting foundation models with
millions of apis. arXiv preprint arXiv:2303.16434.

Jesse Mu, Xiang Lisa Li, and Noah Goodman. 2023.
Learning to compress prompts with gist tokens.

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu,
Long Ouyang, Christina Kim, Christopher Hesse,
Shantanu Jain, Vineet Kosaraju, William Saunders,
et al. 2021. Webgpt: Browser-assisted question-
answering with human feedback. arXiv preprint
arXiv:2112.09332.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, et al. 2019. Pytorch: An imperative style,
high-performance deep learning library. Advances in
neural information processing systems, 32.

Shishir G Patil, Tianjun Zhang, Xin Wang, and
Joseph E Gonzalez. 2023. Gorilla: Large language
model connected with massive apis. arXiv preprint
arXiv:2305.15334.

Reiner Pope, Sholto Douglas, Aakanksha Chowdhery,
Jacob Devlin, James Bradbury, Jonathan Heek, Kefan
Xiao, Shivani Agrawal, and Jeff Dean. 2023. Effi-
ciently scaling transformer inference. Proceedings
of Machine Learning and Systems, 5.

Jack W. Rae, Anna Potapenko, Siddhant M. Jayaku-
mar, Chloe Hillier, and Timothy P. Lillicrap. 2020.
Compressive transformers for long-range sequence
modelling. In International Conference on Learning
Representations.

Abhinav Rastogi, Xiaoxue Zang, Srinivas Sunkara,
Raghav Gupta, and Pranav Khaitan. 2020. Towards
scalable multi-domain conversational agents: The
schema-guided dialogue dataset. In Proceedings of
the AAAI conference on artificial intelligence, vol-
ume 34, pages 8689–8696.

Siyu Ren, Qi Jia, and Kenny Zhu. 2023. Context com-
pression for auto-regressive transformers with sen-
tinel tokens. In Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Process-
ing, pages 12860–12867, Singapore. Association for
Computational Linguistics.

2172

https://doi.org/10.18653/v1/2020.emnlp-main.656
https://doi.org/10.18653/v1/2020.emnlp-main.656
https://doi.org/10.18653/v1/D19-1461
https://doi.org/10.18653/v1/D19-1461
https://doi.org/10.18653/v1/D19-1461
https://doi.org/10.18653/v1/2022.naacl-main.387
https://doi.org/10.18653/v1/2022.naacl-main.387
https://doi.org/10.18653/v1/2022.naacl-main.387
https://doi.org/10.18653/v1/2022.acl-long.579
https://doi.org/10.18653/v1/2023.emnlp-main.391
https://doi.org/10.18653/v1/2023.emnlp-main.391
http://arxiv.org/abs/2304.08467
https://openreview.net/forum?id=SylKikSYDH
https://openreview.net/forum?id=SylKikSYDH
https://doi.org/10.18653/v1/2023.emnlp-main.794
https://doi.org/10.18653/v1/2023.emnlp-main.794
https://doi.org/10.18653/v1/2023.emnlp-main.794

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta
Raileanu, Maria Lomeli, Luke Zettlemoyer, Nicola
Cancedda, and Thomas Scialom. 2023. Toolformer:
Language models can teach themselves to use tools.

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li,
Weiming Lu, and Yueting Zhuang. 2023. Hugging-
gpt: Solving ai tasks with chatgpt and its friends in
huggingface. arXiv preprint arXiv:2303.17580.

Romal Thoppilan, Daniel De Freitas, Jamie Hall, Noam
Shazeer, Apoorv Kulshreshtha, Heng-Tze Cheng,
Alicia Jin, Taylor Bos, Leslie Baker, Yu Du, et al.
2022. Lamda: Language models for dialog applica-
tions. arXiv preprint arXiv:2201.08239.

Naftali Tishby and Noga Zaslavsky. 2015. Deep learn-
ing and the information bottleneck principle. In 2015
ieee information theory workshop (itw), pages 1–5.
IEEE.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa
Liu, Noah A. Smith, Daniel Khashabi, and Hannaneh
Hajishirzi. 2023. Self-instruct: Aligning language
models with self-generated instructions. In Proceed-
ings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 13484–13508, Toronto, Canada. Association
for Computational Linguistics.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song
Han, and Mike Lewis. 2023. Efficient streaming
language models with attention sinks. arXiv preprint
arXiv:2309.17453.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio,
William Cohen, Ruslan Salakhutdinov, and Christo-
pher D. Manning. 2018. HotpotQA: A dataset for
diverse, explainable multi-hop question answering.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2369–2380, Brussels, Belgium. Association for Com-
putational Linguistics.

Peitian Zhang, Zheng Liu, Shitao Xiao, Ninglu Shao,
Qiwei Ye, and Zhicheng Dou. 2024. Soaring from
4k to 400k: Extending llm’s context with activation
beacon. arXiv preprint arXiv:2401.03462.

Jeffrey Zhao, Raghav Gupta, Yuan Cao, Dian Yu,
Mingqiu Wang, Harrison Lee, Abhinav Rastogi,
Izhak Shafran, and Yonghui Wu. 2022. Description-
driven task-oriented dialog modeling. arXiv preprint
arXiv:2201.08904.

Appendix

A Method

In Fig. 3, we show an example with the modified
attention mask from the model with HD-Gist to-
kens that is also supervised to reconstruct the API
documentation. During reconstruction, the model
can only attend to the Gistarg tokens. When it
starts reconstructing a categorical argument, we
unmask the Gistvalue tokens associated with that
argument, so that the model can learn to encode
the fine-grained information (the list of all accept-
able values) of the categorical argument into these
Gistvalue tokens.

B Experimental Setup

B.1 Datasets
SGD (Schema-Guided Dialogue) (Rastogi et al.,
2020) dataset challenges models to perform dia-
logue state tracking (DST) by following a schema.
It has 143,346 training examples, 21,026 valida-
tion examples, and 36,129 test examples. The
schema consists of multiple services (e.g., Hotel),
where each service includes multiple intents (e.g.,
FindHotel) that can be invoked to fulfill a user’s
request. Each intent is like an API and takes a num-
ber of arguments (e.g., location of hotel), including
categorical arguments (e.g., “Number of guests per
room”) that have a list of acceptable values (“[1,
2, 3]”). We convert the original DST task into an
API prediction task by (1) discarding arguments
that are not used by the currently active intent from
the output6 and (2) giving the model documenta-
tion of intent instead of the whole service. In both
training and test, we also include intermediate turns
where the user has not yet provided all arguments’
values. In these turns, we ask the model to gen-
erate a partial API call with only those arguments
mentioned by the user so far. This increases the
size of the training set at zero cost by utilizing the
supervision from a dialogue state tracking dataset
with labels of active arguments after every user’s
turn. The dataset does not include any information
that would leak the unique identity of individuals.

SGD-X (Lee et al., 2022) is created from SGD
by asking human annotators to paraphrase the orig-
inal arguments’ names and descriptions into se-

6For example, the DST task tracks the argument “lo-
cation of hotel” specified by the user for the previous in-
tent “FindHotel” but is not relevant to the current intent
“BookHotel”.

2173

http://arxiv.org/abs/2302.04761
http://arxiv.org/abs/2302.04761
https://doi.org/10.18653/v1/2023.acl-long.754
https://doi.org/10.18653/v1/2023.acl-long.754
https://doi.org/10.18653/v1/D18-1259
https://doi.org/10.18653/v1/D18-1259

mantically similar yet stylistically diverse variants.
For example, the argument “RequestPayment: Re-
quest payment from someone” is rewritten as
“TransferRequest: Ask for a money transfer from
a contact”. SGD-X further evaluates models’ ro-
bustness to linguistic variations in API documenta-
tion. We use the SGD-X/v5, which is the version
with the most variation, as the extra test set to eval-
uate models trained on the original SGD training
set.

APIBench (Patil et al., 2023) is a dataset con-
sisting of APIs from HuggingFace, TorchHub, and
TensorHub as well as 10 user question prompts
generated from Self-Instruct (Wang et al., 2023).
The documentation in APIBench only include the
3 API that construct a pretrained model (e.g.,
AutoModel.frompretrained in pytorch) and the
acceptable values (model card’s url and description)
of the first argument. There is no documentation
on how to further use the constructed model to pro-
cess inputs provided by users. Because the sole
purpose of this work is to train and evaluate models
to follow a compressed documentation, we discard
the undocumented parts of API calls and only ask
the model to predict (1) one out of three available
APIs (HuggingFace, TorchHub, TensorHub), and
(2) the value (model card’s url) of the first and only
argument of an API. Therefore, we insert an API-
level gist token after every API, insert a value-level
gist token after the description of every model card,
and omit the argument-level gist token since there
is only one argument to predict.

We further observe that some user request
does not specify which API they want to use,
and all three APIs have at least one AI model
that suffices the request. To eliminate the am-
biguity, we add a prompt “I want to use Ten-
sorHub/TorchHub/Huggingface” to the user’s re-
quest. For each example, we sample 2 distracting
model cards from the different categories of same
API and 3 distracting model cards from the other
two APIs. For example, if the ground-truth model
card is a sentiment analysis model from TorchHub,
we will not sample distracting model cards from
the sentiment analysis category of TorchHub. How-
ever, we might sample a sentiment analysis model
from Huggingface or TensorHub as a distractor. We
repeat this sampling process 5 times per example
to create 5 training instances with different distract-
ing model cards. The resulting dataset has 48,750
training examples and 1,143 evaluation examples.

Models API Doc Tokens in Accuracy
attention memory SGD SGD-X

LLaMA 109.43 109.43 90.09 73.03
Without Reconstruction Objective

2 Gist 2 2 41.98 32.02
5 Gist 5 5 42.29 33.70
10 Gist 10 10 45.48 38.00
20 Gist 20 20 41.42 33.41
40 Gist 40 40 42.85 34.24
Gistarg 4.09 4.09 48.46 43.00
HD-Gist 4.96 10.62 64.46 54.75

With Reconstruction Objective
2 Gist 2 2 54.92 41.01
5 Gist 5 5 60.68 48.26
10 Gist 10 10 73.48 60.57
20 Gist 20 20 65.02 46.70
40 Gist 40 40 72.57 53.98
Gistarg 4.09 4.09 71.38 58.90
HD-Gist 4.96 10.62 88.37 84.30

Table 6: Joint-goal accuracy of single models on
SGD (Rastogi et al., 2020) and SGD-X/v5 (Lee et al.,
2022) validation sets. The best results from a model
using the compressed API documentation are in bold.

B.2 Training Details
We finetune every model on 8 NVIDIA A100 40GB
GPUs for a single epoch, which takes around 16-18
hours to finish.

B.3 Evaluation Metrics
Following Rastogi et al. (2020), we evaluate mod-
els on SGD and SGD-X using joint-goal accuracy.
For arguments that are both in the ground truth
and the predicted API call, we calculate the exact-
match scores for values of categorical arguments,
and calculate fuzzy soft-matching scores7 for other
arguments. For example, predicting “New York”
while the ground-truth is “New York City” results
in a fuzzy-matching score of 0.76. A matching
score of 0 is assigned for both of the following
errors: (i) arguments that in the ground truth but
missed in the prediction, (ii) arguments in the pre-
diction but not the ground truth. The joint-goal
accuracy is the product of matching scores of all ar-
guments in the API documentation. For APIBench
that has no non-categorical argument, we use the
exact-match accuracy only.

C Extra Results

In Table 6, we report the models’ joint-goal accu-
racy on the SGD and SGD-X validation sets. The
results are evaluated on the single model trained
with seed 42.

7https://pypi.org/project/fuzzywuzzy/

2174

https://pypi.org/project/fuzzywuzzy/

