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Abstract

Pre-trained language models (LMs) perform
well in In-Topic setups, where training and test-
ing data come from the same topics. However,
they face challenges in Cross-Topic scenarios
where testing data is derived from distinct top-
ics - such as Gun Control. This study analyzes
various LMs with three probing-based experi-
ments to shed light on the reasons behind the In-
vs. Cross-Topic generalization gap. Thereby,
we demonstrate, for the first time, that general-
ization gaps and the robustness of the embed-
ding space vary significantly across LMs. Addi-
tionally, we assess larger LMs and underscore
the relevance of our analysis for recent models.
Overall, diverse pre-training objectives, archi-
tectural regularization, or data deduplication
contribute to more robust LMs and diminish
generalization gaps. Our research contributes
to a deeper understanding and comparison of
language models across different generalization
scenarios. 1

1 Introduction

Probing (Belinkov et al., 2017; Conneau et al.,
2018a) is widely used to analyze pre-trained lan-
guage models (LMs) (Devlin et al., 2019; Liu et al.,
2019; He et al., 2021; Radford et al., 2019). It en-
ables a better understanding of how LMs encode
information and how it evolves in the architecture
by studying linguistic properties such as part-of-
speech or dependency-tree parsing (Tenney et al.,
2019a,b). However, probing methods (Hewitt and
Liang, 2019a; Hewitt and Manning, 2019; Voita
and Titov, 2020a; Elazar et al., 2021) mainly rely
on the general In-Distribution (ID) scenario, where
we distribute train and test instances independent
and identically. As a result, other more realistic
Out-of-Distribution (OOD) scenarios (Shen et al.,
2021), like generalizations regarding forthcoming
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Figure 1: Generalization gap of fine-tuning LMs on
argumentative stance detection (Stab et al., 2018) in the
In- or Cross-Topic evaluation setup. The dashed line
marks the ideal case of equal performance.

topics or temporal changes in the language, remain
underexplored by probing.

Addressing this research gap, we propose - for
the first time - a probing-based approach to compre-
hensively analyze LMs in a challenging OOD setup.
More precisely, we rely on Cross-Topic2 evaluation
where we deliberately withhold instances from spe-
cific topics for testing. Following (Habernal and
Gurevych, 2016; Stab et al., 2018), we define topic
as the query used to compose a specific dataset -
such as arguments covering gun control or mari-
juana legalization. This evaluation setup is highly
relevant for challenging Argument Mining (AM)
downstream tasks (Slonim et al., 2021). It allows
for simulating, in a controlled setup, how well LMs
handle topic-shifts when unseen semantic features
(such as topic-specific vocabulary) arise in future
and new topics. Previous studies found that Cross-
Topic argument mining is challenging compared to
the In-Topic setup (Stab et al., 2018; Waldis and
Gurevych, 2023). The major reason lies in the ap-
parent generalization gaps between randomly com-
posing training and testing data (In-Topic) and us-
ing distinct groups of topics for training and testing

2Also known as Cross-Target in Stance Detection research.
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(Cross-Topic). Figure 1 shows such performance
gap when fine-tuning on the UKP ArgMin dataset
(Stab et al., 2018) - labeling arguments as in favor,
against, or neutral to one of eight topics. Notably,
we observe gaps between In- and Cross-Topic vary-
ing considerably across LMs - with BART outper-
forming the others in the Cross-Topic setup.

Such inconsistencies underline the need to in-
vestigate such crucial generalization capabilities.
Thus, we propose extensive probing-based experi-
ments to examine the gap between In- and Cross-
Topic generalization and show that embedding
spaces of LMs vary considerably regarding their
generalizability and robustness. In detail, we pro-
pose three probing-based experiments to answer
the following research questions, considering three
linguistic probes (dependency-tree parsing, part-
of-speech tagging, and named-entity recognition)
based on UKP ArgMin dataset:

How do generalization gaps of LMs differ after
pre-training? (§ 4) We find generalization gaps
substantially differ across LMs while becoming
more prominent for tasks with more semantically
difficulties, such as NER. In addition, we crucially
observe that probing generally underperforms on
lexical unseen instances (like highly rare entities),
and deduplicating pre-training data provides more
robust embedding space when evaluating larger and
more recent LMs.

How do LMs depend on topic-specific vocabu-
lary? (§ 5) Next, we assess the influence of topic-
specific tokens by removing them using amnesic
probing and LMs significantly differing in their
reliance on and robustness concerning such seman-
tic features. Interestingly, pre-training objectives
or architectural regularization influence robustness,
suggesting their potential importance in building
robust and competitive LMs.

How do generalization gaps evolve during fine-
tuning? (§ 6) Finally, we re-probe tuned LMs
on the UKP ArgMin dataset and find that In-Topic
fine-tuning erases more linguistic properties than
Cross-Topic fine-tuning.

To sum up, we expand the probing scope to
Cross-Topic generalization and highlight probing
as a universal tool complementing the study of lan-
guage models beyond general evaluation setups.
While we focus on an in-depth analysis of In- vs.
Cross-Topic generalization gaps, our experimental

setup generalizes to other types of OOD scenarios
where one verifies generalization regarding other
text genres (like the social media domain), lan-
guages, or temporal changes in the languages (Con-
neau et al., 2018b; Hardalov et al., 2021; Röttger
and Pierrehumbert, 2021; Yang et al., 2023).

2 In- and Cross-Topic Probing

The following section formally outlines the probing
setup and tasks before elaborating on the general-
ization gap and comparing the evaluation of In- and
Cross-Topic probing.

2.1 Probing Setup and Tasks

We define a probe fp comprised of a frozen encoder
h and linear classifier c without any intermediate
layer. This classifier is trained to map instances
X = {x1, . . . , xn} to targets Y = {y1, . . . , yn}
for a given probing task. Using a frozen LM as h,
the probe converts xi into a vector hi. In detail, we
encode the entire sentence, which wraps xi, and
average relevant positions of xi to find hi. Relevant
positions for the considered probing task are either
single tokens for part-of-speech tagging (POS)), a
span for named entity recognition (NER), or the
concatenation of two tokens for dependency tree
parsing (DEP). Then, the classifier c utilizes hi to
generate a prediction ŷi, as shown in Equation 1.

ŷi = fp(xi) = c(h(xi)) (1)

2.2 Generalization Gap

Generalization gaps arise when comparing evalu-
ation setups focusing on different capabilities for
the same task. This work focuses on gaps in using
data from the same (In-Topic) or different topics
(Cross-Topic) for training and testing. We define
such topics T = {t1, . . . , tm} as the query to col-
lect instances and thereby given by specific datasets
(Habernal and Gurevych, 2016; Stab et al., 2018)
- such as arguments covering gun control or mar-
ijuana legalization. The In- vs. Cross-Topic gap
is visible in Figure 2, which shows how NER in-
stances (in blue) are distributed in the semantic
space. For Cross-Topic, entities cover only specific
topics and thereby are less broadly spread, while
In-Topic ones are spread more broadly since they
cover all datasets’ topics. Simultaneously, we note
more lexically unseen entities (in red) during train-
ing for Cross-Topic. Ideally, generalization gaps do
not exist since pre-trained language models (LMs)

2198



Figure 2: Density plot of In- and Cross-Topic NER test
instances (blue), encoded with bert-base-uncased and
reduced with the same t-SNE model (van der Maaten
and Hinton, 2008). While the number of instances is the
same, Cross-Topic embodies, with 40.2%, more unseen
instances than In-Topic (34.9%).

overcome such distribution shifts between different
evaluation setups. However, practically, these gaps
vary for different models (Figure 1).

2.3 Difference between In- and Cross-Topic
Evaluation

By evaluating probing tasks for In- and Cross-
Topic, we examine the varying generalization gaps
between these setups across different LMs.

Cross-Topic With Cross-Topic evaluation, we
investigate how well a probe generalizes when the
train, dev, and test instances cover distinct sets
of topics {T (train), T (dev), T (test)}. A probe fp
must generalize across the distribution shift in this
setup. This shift originates because distinct topics
cover different specific vocabulary Z - i.e., Z(test)

for topics in T (test). We formally describe this
shift, denoted as ∆Z, as the relative complement
between topic-specific vocabulary from train and
test instances - ∆Z = Z(train) \Z(test). For Cross-
Topic, we expect ∆Z to be large (Figure 2).

In-Topic In contrast, ∆Z is smaller for the In-
Topic setup because instances from every split
(train/dev/test) cover the same topics. We expect
similar topic distribution and minor semantic differ-
ences within these splits compared to Cross-Topic
(Figure 2). Thus, we see fewer difficulties for In-
Topic because a classifier does not need to general-
ize across a large distribution shift ∆Z.

Topic-Specific Vocabulary As discussed previ-
ously, we see topic-specific vocabulary as one
main reason for generalization gaps between In-
and Cross-Topic because ∆Z differs for these se-
tups considering a dataset d covering topics T =

Model # Params Objectives Data

ALBERT (Lan et al., 2020) 12M MLM + SOP 16GB
BART (Lewis et al., 2020) 121M DAE 160GB
BERT (Devlin et al., 2019) 110M MLM + NSP 16GB

DeBERTa (He et al., 2021) 100M MLM 80GB
RoBERTa (Liu et al., 2019) 110M MLM 160GB
ELECTRA (Clark et al., 2020) 110M MLM+DISC 16GB
GPT-2 (Radford et al., 2019) 117M LM 40GB

Table 1: Overview of the used LMs trained on MLM,
LM, DISC, NSP, SOP, or DAE objectives.

t1, . . . , tm. The topic-specificity of a token zi is
a latently encoded property within the encodings
hi for a token wi. To capture this property on
the token level, we adopt the approach of Kawin-
tiranon and Singh (2021) and use the maximum
log-odds-ratio ri of a token regarding a set of top-
ics T . Firstly, we calculate the odds of finding the
token wi in a topic tj as o(wi,tj) =

n(wi,tj)
n(¬wi,tj)

, where
n(wi, tj) is the number of occurrences of wi in tj ,
and n(¬wi, tj) is the number of occurrences of ev-
ery other token ¬wi in tj . We then compute r as
the maximum log-odds ratio of wi for all topics in
T as r(wi,T ) = maxtj∈T (log(

o(wi,tj)
o(wi,¬tj)

)).

3 Experimental Setup

We propose three experiments to analyze the vary-
ing generalization gap between LMs after pre-
training (§ 4), their dependence on topic-specific
vocabulary (§ 5), and the evolution of these gaps
during fine-tuning (§ 6). We outline general details
about these experiments, while details and results
are provided in the subsequent sections.

Models We examine how various LMs (Table 1)
with varying pre-training objectives or architec-
tural designs differ regarding our probing tasks.
We cover LMs pre-trained using masked language
modeling (MLM), next sentence prediction (NSP),
sentence order prediction (SOP), language mod-
eling (LM), discriminator (DISC), and denoising
autoencoder (DAE) objectives. As in previous
work (Koto et al., 2021), we group them into the
ones pre-trained using token- (MLM) and sentence-
objectives (NSP, SOP, or DAE) and four purely
token-based pre-trained (MLM, LM, DISC). We
consider the base-sized variations to compare their
specialties in a controlled setup. Apart from these
seven contextualized LMs, we use a static LM with
GloVe (Pennington et al., 2014).
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Data We require a dataset with distinguishable
topic annotations to evaluate probing tasks in the
In- and Cross-Topic evaluation setup. Therefore,
we mainly3 rely on the UKP ArgMin dataset (Stab
et al., 2018), which provides 25,492 arguments an-
notated for their argumentative stance (pro, con, or
neutral) towards one of eight distinct topics like
Nuclear Energy or Gun Control. Using these in-
stances, we heuristically generate at most 40,000
instances for the three linguistic properties depen-
dency tree parsing (DEP), part-of-speech tagging
(POS), or named entity recognition (NER) using
spaCy.4 Additionally, we consider the main task
of the UKP ArgMin dataset (Stab et al., 2018) -
argumentative stance detection (Stance). There-
fore, we have a topic-dependent reference probe to
relate the results of other probes and evaluate the
generalization ability of LMs on real-world tasks
after pre-training. We use a three-folded setup for
all these four probing tasks to consider the full data
variability for both In- and Cross-Topic evaluation.
Details about the compositions of these folds and
how we ensure a fair comparison between In- and
Cross-Topic are provided in the Appendix (§ A.2)
as well as examples for probing tasks (Appendix
§ A.1).

Evaluation We primarily report the macro F1

score averaged over the results of evaluating each
of the three folds three times using different ran-
dom seeds. Following recent work (Voita and
Titov, 2020b; Pimentel et al., 2020), we addition-
ally report information compression I (Voita and
Titov, 2020b) for a holistic evaluation. It mea-
sures the effectiveness of a probe as the ratio ( u

mdl )
between uniform code length u = n ∗ log2(K)
and minimum description length mdl, where u
denotes how many bits are needed to encode n
instances with label space of K. We follow on-
line variation of mdl and use the same ten-time
steps t1:11 = { 1

1024 ,
1

512 , ...,
1
2}, where we train a

probe for every tj with a fraction of instances and
evaluate with the same fraction of non-overlapping
instances. Exemplary, for, t9 we use the first frac-
tion of 1

4 instances to train and another fraction of
1
4 to evaluate. We find the final mdl as the sum of
the evaluation losses of every time step t1:11. For
Cross-Topic, we group training instances into two

3We verified our findings with another dataset in the Ap-
pendix § B.1.

4We show in the Appendix (§ B.8) that the heuristically
generated labels are reliable, and our results are well aligned
with previous work.

DEP POS NER Stance Average

In Cross In Cross In Cross In Cross In Cross ∆

ALBERT 43.8 39.5 80.2 78.0 48.6 45.8 54.8 45.9 56.9 52.3 -4.6
BART 36.5 36.9 75.4 74.1 48.7 45.3 60.8 44.4 55.3 50.2 -5.1
BERT 25.4 25.6 68.5 67.5 45.4 41.6 56.9 43.0 49.0 44.4 -4.6
DeBERTa 32.8 29.9 73.7 74.6 48.8 42.4 59.8 45.8 53.4 48.2 -5.2
RoBERTa 25.1 23.6 64.0 65.5 48.4 42.1 51.8 40.1 47.3 42.8 -4.5
ELECTRA 33.6 33.6 75.3 75.3 41.5 41.2 46.6 43.1 49.3 48.3 -1.0
GPT-2 25.2 23.9 63.5 61.9 45.5 38.6 51.1 38.4 46.3 40.7 -5.6
GloVe 12.1 11.9 26.5 26.2 43.4 37.5 41.6 34.1 30.9 27.4 -3.5
Avg. ∆ -1.2 -0.5 -4.5 -11.0 - - -

Table 2: In- and Cross-Topic probing results for eight
LMs. We report the macro F1 over three random seeds,
the average difference between the two setups (last row),
and their average per LM (last three columns). The best
results within a gap of 1.0 are marked by columns.

groups of distinct topics and sample the same frac-
tion of instances to train and evaluate. Thus, we
ensure a similar distribution shift between training
and evaluation fractions as in all instances.

4 The Generalization Gap of LMs

The first experiment shows that the generalization
gap already exists after pre-training and varies re-
garding specific LMs and probing tasks. We ana-
lyze general (Table 2 and Figure 3) and fine-grained
(Table 3) results and discuss them for the different
evaluating setups, probing tasks, and LMs. While
firstly focusing on mid-size LMs usable for fine-
tuning, we close how probing performance scales
to large LMs in § 4.

Design We probe eight LMs on the probing tasks
DEP, POS, NER, and Stance and verify them by
observing significant performance drains using ran-
dom initialized LMs (Appendix § B.2). For a holis-
tic evaluation, we provide general results and group
instances into two categories: seen and unseen. We
define seen instances as already processed during
training but in another context. For example, the
pronoun he might appear in both training and test
data, but in distinct sentences. By evaluating the
LMs on seen instances, we gain insights into the
influence of token-level lexical information ver-
sus context information from surrounding tokens.
In contrast, unseen instances were not encountered
during the training of a probe. They allow assessing
whether LMs generalize to tokens that are similar
to some extent (such as Berlin and Washington) but
not seen during training.

Results for Evaluation Setups Upon analyzing
Table 2, we observe clear generalization gaps be-
tween In- and Cross-Topic evaluation for all tasks
and LMs. As in Figure 3, the magnitude of this gap
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DEP POS NER

all ∆ seen ∆ unseen all ∆ seen ∆ unseen all ∆ seen ∆ unseen

Instance Ratio - 85% 15% - 86% 14% - 65% 35%

In
-T

op
ic

ALBERT 43.8 +0.21 -3.2 80.2 +0.41 -17.7 48.6 +1.1 -5.8
BART 36.5 +0.13 -3.0 75.4 +0.20 -16.5 48.7 +1.3 -7.0
BERT 25.4 -0.02 -0.8 68.5 +0.20 -16.5 45.4 +1.0 -5.8
DeBERTa 32.8 +0.07 -1.5 73.7 +0.09 -12.7 48.8 +1.0 -5.6
RoBERTa 25.1 -0.01 -0.9 64.0 -0.04 -15.5 48.4 +1.0 -5.7
Average - -0.08 -1.9 - +0.17 -15.8 - +1.1 -6.0

Instance Ratio - 78% 22% - 81% 19% - 51% 49%

C
ro

ss
-T

op
ic ALBERT 39.5 +0.03 -2.3 78.0 +0.51 -12.9 45.8 +2.2 -5.3

BART 36.9 +0.01 -4.0 74.1 +0.24 -16.5 45.3 +2.4 -5.8
BERT 25.6 -0.09 -0.7 67.5 +0.20 -14.0 41.6 +1.9 -5.1
DeBERTa 29.9 -0.07 -1.3 74.6 +0.14 -11.7 42.4 +2.0 -5.2
RoBERTa 23.6 -0.22 -0.3 65.5 +0.00 -14.7 42.1 +1.9 -5.2
Average - -0.08 -1.7 - +0.22 -14.0 - +2.1 -5.3

Table 3: Performance difference of seen and unseen
instances compared to the full set (all). We report for
ALBERT, BART, BERT, DeBERTa, & RoBERTa, and
include the ratio of seen and unseen instances.

Figure 3: Comparision of the difference in ∆F1 and ∆I
between Cross-Topic and In-Topic for all eight LMs on
the four probing tasks.

(∆F1) correlates with the difference in compres-
sion (∆I). Interestingly, we find a stronger correla-
tion between F1 and I for Cross-Topic (ρ = 0.72)
as compared to In-Topic (ρ = 0.69). Thus, a higher
performance level, like for In-Topic, leaves less
room for compression improvements.

Further, we examine the performance of seen
and unseen instances in Table 3. It shows that seen
performs slightly better than all, while unseen ones
underperform the complete set (all) and seen in-
stances. Considering the average over LMs, there
are fewer relative gains for seen for In-Topic and
more loss for unseen instances (+1.2, -6.0 for NER)
compared to Cross-Topic (+2.0, -5.3 for NER).
This observation relates to the lower percentage
of unseen instances (i.e., made of topic-specific
terms) for In- compared to Cross-Topic. We see un-
seen instances on In-Topic are harder and cover rare
vocabulary, and seen instances on Cross-Topic are
easier and made of general terms - which confirm
our theoretical and semantic assumptions (§ 2).

Results for Probing Tasks Considering Table 2
and Figure 3, we note higher generalization gaps
(Avg. ∆ of -4.5 and -11.0) for semantic tasks (NER
and Stance) than for syntactic ones (DEP and POS)

- Avg. ∆ of -1.2 and -0.5. We verify this trend with
results by observing a more pronounced gap for
semantic NER classes (like ORG) than for syntactic
ones (like ORDINAL) in the Appendix (§ B.5).

Next, we separately compare tasks for seen and
unseen instances. DEP shows the slightest perfor-
mance difference compared to all. We assume that
the pairwise nature of the task leads to a larger
shared vocabulary between unseen and training in-
stances - since a pair can be unseen, but it may
contain a frequent word like of. In contrast, appar-
ent differences between NER and POS are visible
- with less performance drain on unseen instances
for NER than POS. Therefore, we assume for NER
a higher semantic overlap with training instances
since they could include - as being an n-gram -
words from the training vocabulary. In contrast,
tokens of unseen POS instances are always single
words; thus, we assume a smaller semantic overlap
with the training.

Results for Encoding Models We now com-
pare LMs amongst themselves. The four best-
performing LMs of In-Topic differ up to 7.6 (AL-
BERT - BERT), while for Cross-Topic, this differ-
ence narrows to 4.1 (ALBERT - ELECTRA). These
results confirm the varying generalization gap be-
tween them and, again, that we can not transfer
conclusions from one evaluation setup to another.
For example, the probing performance of BART for
In-Topic Stance is the best and the third best for
Cross-Topic.

Generally, we do not see a clear correlation be-
tween better average performance and a smaller
generalization gap. LMs like DeBERTa perform
better for In- and Cross-Topic but show a bigger
gap (-5.1) compared to lower performing LMs like
ELECTRA (-1.0), but there are also worse LMs
with a bigger gap (GPT-2, -5.6) or better ones with
a smaller gap (ALBERT, -4.6). Overall, we see
the generalization gap being more pronounced for
better-performing LMs.

Considering absolute performance, AL-
BERT and BART performs the best for both
evaluation setups, while ELECTRA excels POS
and DEP, and DeBERTa performs for NER and
Stance. In contrast, BERT, RoBERTa, GPT-2, and
GloVeunderperform the others. Thus, LMs with
architectural regularization, such as layer-wise
parameter sharing (ALBERT), encoder-decoder
layers (BART), disentangled attention (DeBERTa),
or discriminator (ELECTRA), tend to provide
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DEP POS NER Stance Average

In Cross In Cross In Cross In Cross In Cross ∆

ALBERT 43.8 39.5 80.2 78.0 48.6 45.8 54.8 45.9 56.9 52.3 -4.6
BART 36.5 36.9 75.4 74.1 48.7 45.3 60.8 44.4 55.3 50.2 -5.1

PYTHIA (12B) 38.3 35.4 79.5 77.7 57.3 50.5 65.2 41.6 60.1 51.3 -8.8
PYTHIA-DD (12B) 45.3 45.4 79.8 79.2 64.5 55.8 66.1 50.4 63.4 57.9 -6.2

LLAMA-2 (13B) 44.4 41.8 81.0 80.6 48.7 45.3 66.8 44.2 60.2 53.0 -7.2
LLAMA-2 Chat (13B) 45.4 41.7 80.7 80.1 49.2 42.9 67.2 43.2 60.6 52.0 -8.7

Table 4: Results (macro F1) of the four probing tasks us-
ing the two overall best-performing LMs (ALBERT and
BART) in the In- and Cross-Topic setup based on the
ArgMin dataset (Table 2) and three large LMs.

higher Cross-Topic performance. Similarly,
ALBERTor DeBERTagenerally achieve more
performance gains for seen instances and fewer
performance drops for unseen ones than models
without regularization such as BERT or RoBERTa.
We hypothesize that architectural and regulariza-
tion aspects give LMs a more generalizable and
robust encoding space.

Results for Larger Models We compare in Ta-
ble 4 four open accessible large LMs with the two
best performing models (ALBERT and BART).
In general, we see the performance scales with
the higher number of parameters, but more notice-
able for In- than Cross-Topic tasks. Therefore, the
generalization gap of large LMs tend to be bigger
than for LMs. Regarding the different large LMs,
PYTHIA (Biderman et al., 2023) and LLAMA-2
(Touvron et al., 2023) outperform the others on In-
Topic tasks while performing on par with ALBERT.
Further, we notice data deduplication during pre-
training (PYTHIA-DD) results in the best perform-
ing model and actively reduces the generalization
gap from 8.8 to 6.2. In addition, instruction fine-
tuning does not heavily affect the performance but
tends to increase the generalization gap from 7.2
(LLAMA-2) to 8.7 (LLAMA-2 Chat).

5 The Dependence on Topic-Specific
Vocabulary

To this point, we saw that the generalization gap
varies between different LMs and probing tasks.
Since topic-specific vocabulary crucially affects
generalization gaps, we analyze the varying de-
pendence on the topic-specific vocabulary of LMs
using Amnesic Probing (Elazar et al., 2021). We
observe apparent differences among LMs and as-
sume their embedding space clearly differs beyond
single evaluation metrics. Therefore, we empha-
size considering various LMs when using Amnesic
Probing. Additional insights of comparing seen

and unseen instance and distinct NER classes are
provided in the Appendix (§ B.4, § B.6).

Design To measure how LMs depend on topic-
specific vocabulary, we employ Amnesic Probing
(Elazar et al., 2021) to remove the latently encoded
topic-specificity zi from the embeddings hi of a
token wi. More precisely, we compare how the
performance of a probing task (like NER) changes
when we remove zi. A more negative effect indi-
cates a higher dependence on topic-specific vocab-
ulary, while this property is a hurdle when perfor-
mance improves. We first train a linear model on
token-level topic-specificity r (§ 2.3). To shape it
as a classification task, we categorize r into three
classes (low, medium, high). 5 Next, we find a
projection matrix P that projects all embeddings
hi - gathered as H - using the learned weights Wl

of l to the null space as WlPH = 0. Using P
we update hi by neutralizing topic-specificity from
the input as h

′
i = Phi before training the probe.

Following (Elazar et al., 2021), we verified our re-
sults by measuring less effect of removing random
information from hi (see Appendix § B.3).

Results Considering Figure 4, we see ALBERT,
BART, and BERT depend less on topic-specific
vocabulary. Their diverse pre-training (token- and
sentence-objectives or sentence denoising) results
in a more robust embedding space. Surprisingly,
they show positive effects (3.2 for DEP for BART)
when removing topic-specificity. This could re-
move potentially disturbing parts of the embedding
space. Similarly, GPT-2 is less affected by the re-
moval - we assume this is due to its generally lower
performance level. Therefore, it has less room for
performance drain, and capturing topic-specificity
is less powerful.

Comparing In- and Cross-Topic setups shows
a narrowing generalization gap for more affected
models (like RoBERTa and GloVe on NER or
NER). Simultaneously, less affected LMs either
maintain the gap or enlarge it slightly - like
BART on DEP, NER, or NER. Further, DeBERTa,
RoBERTa, ELECTRA, and GloVe rely more on
topic-specific vocabulary since they show signifi-
cant performance loss (up to 34.6 for GloVe on
POS) when removing this information. Specif-
ically, GloVe as a static language model, and
RoBERTa is affected the highest for all tasks.
ELECTRA shows similar behavior but is less pro-

5Please find examples in the Appendix § A.6.
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Figure 4: Comparison of the probing results with (blue bars) or without (red bars) topic information. The white text
indicates the difference between these two scenarios (∆F

\T
1 ).

nounced for POS. Thus, its reconstruction pre-
training objective provides a more robust em-
bedding space than purely MLM (DeBERTa or
RoBERTa). Comparing DeBERTa and RoBERTa,
DeBERTa is less affected by the removal of se-
mantic tasks (NER and NER). We hypothesize
that distinguishing between token content and to-
ken position via disentangled attention makes De-
BERTa more robust for the semantic than for syn-
tactic tasks (DEP and POS).

6 The Evolution of the Generalization
Gap during Fine-Tuning

Finally, we re-evaluate fine-tuned LMs using our
proposed probing setups and show that fine-tuning
leads to a drain in probing performance. We use
these results to retrace apparent differences be-
tween evaluation setups and the varying general-
ization gap between LMs. This is relevant for a
broader understanding of how fine-tuning affects
LMs (Mosbach et al., 2020; Kumar et al., 2022a),
and what they learn during fine-tuning (Merendi
et al., 2022; Ravichander et al., 2021).

Design We fine-tune the LMs on an argumenta-
tive stance detection task and re-evaluate them on
DEP, POS, and NER probing tasks. To be consis-
tent with our probing setup, we used the same folds
for fine-tuning. Further details are in the Appendix
(§ A.5). We compare these results with the probing
performance of their pre-trained counterparts (§ 4
and § 5) and correlate this change with the general-
ization gap observed on the downstream task. We
limit our analysis to ALBERT, BERT, BART, De-
BERTa, and RoBERTa.

Results Table 5 shows that fine-tuning clearly
boost the performance on NER compared to the

Stance DEP POS NER Avg. DEP POS NER

F1 fine-tuned ∆F1 probing ∆F
\T
1

In
-T

op
ic

ALBERT 55.4 +0.6 -27.3 -40.2 -25.0 -30.8 -0.6 -3.0 -0.1
BART 69.8 +9.0 -17.3 -32.2 -4.0 -17.8 -0.8 -4.0 +0.3
BERT 67.2 +10.3 -7.5 -24.8 +1.0 -10.4 +0.4 +0.7 +1.1
DeBERTa 70.1 +10.3 -13.2 -25.3 -8.8 -15.8 -0.8 -3.8 -0.4
RoBERTa 68.9 +17.1 -19.7 -48.6 -29.7 -27.2 -0.8 -3.0 -0.7
Avg. 66.3 +9.5 -16.6 -32.6 -12.1 -20.4 -0.5 -2.6 +0.1

C
ro

ss
-T

op
ic ALBERT 51.4 +5.5 -14.4 -20.3 -12.6 -15.8 +1.6 -1.3 +2.1

BART 61.9 +17.5 -16.5 -33.9 -5.4 -18.6 -1.0 -3.5 -1.6
BERT 56.6 +13.6 -5.7 -19.5 +0.6 -8.2 +0.7 +0.6 +1.2
DeBERTa 55.9 +10.1 -13.4 -33.4 -11.8 -19.5 -1.2 -8.6 +1.6
RoBERTa 55.5 +15.4 -16.6 -48.3 -23.1 -23.5 -1.9 -4.8 -0.3
Avg. 56.3 +12.6 -13.0 -29.3 -9.1 -17.1 -0.4 -3.5 +0.6

Table 5: Results of evaluating our probing setup on fine-
tuned LMs on NER. The first column shows these fine-
tuned results and the gained improvement compared to
probing for NER on pre-trained LMs (Table 2). Next,
we show performance differences between pre-trained
and fine-tuned LMs (∆F1 probing) and how removing
topic-specificity affects the fine-tuned LMs (∆F

\T
1 ).

probing performance (§ 4) but leads to a clear
performance drop (∆F1) for both evaluation se-
tups and the probing tasks. Cross-Topic achieved
more gains on average (+12.6) and fewer drains
(-17.1) on the three linguistic properties than In-
Topic (+9.5, -20.4). On average, we assume that
In-Topic fine-tuning affects the encoding space of
LMs more heavily than Cross-Topic. Regarding
the different probing tasks, the performance drain
is more pronounced for syntactic tasks (DEP and
POS) than semantic tasks (NER). This hints that
LMs acquire competencies of a semantic nature
- which holds for stance detection. Similarly, re-
moving topic-specificity influences fine-tuned LMs
the least for NER. At the same time, this removal
is more pronounced for Cross-Topic. This con-
firms the assumption that the Cross-Topic setup
has smaller effects on LMs internals since we saw
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big impacts of this removal (§ 5).
Considering the single LMs, we see apparent dif-

ferences. For example, ALBERT, with its shared
architecture and priorly best-performing LM, ex-
periences big probing performance drains and the
smallest fine-tuning gains (+0.6, +5.5). In con-
trast, we note effective fine-tuning of BERTwith
+10.3 for In- and +13.6 for Cross-Topic, and that
it lost the least probing performance. Compar-
ing RoBERTa and DeBERTa reveals again the ef-
fectiveness of architectural regularization of De-
BERTa. RoBERTa shows the most gains when
fine-tuning on NER and almost catching up with
DeBERTa. However, it experiences a more clear
performance drain (-27.2, -23.5) regarding the
probing tasks for In- and Cross-Topic compared
to DeBERTa (-15.8, -19.5). Next, we focus on
BART and its superior Cross-Topic performance
on NER. It seems already well-equipped for this
downstream task due to its high In-Topic probing
performance on NER. Therefore, it can learn the
task more robustly during fine-tuning.

7 Related Work

The rise of LMs (Devlin et al., 2019; Liu et al.,
2019; Radford et al., 2019; He et al., 2021) en-
abled big success on a wide range of tasks (Wang
et al., 2018, 2019). Nevertheless, they still fall
behind on more realistic Cross-Topic, like gener-
alizing towards unseen topics (Stab et al., 2018;
Gulrajani and Lopez-Paz, 2021; Allaway and McK-
eown, 2020). One primary reason is that LMs often
rely on unwanted spurious correlations. Despite
LMs seeing such vocabulary during pre-training,
they failed to consider test vocabulary in the re-
quired fine-grained way (Thorn Jakobsen et al.,
2021; Reuver et al., 2021). Further, Kumar et al.
(2022b) found linear models can outperform fine-
tuning LMs when considering out-of-distribution
data. Thus, a broader understanding of LMs in
challenging evaluation setups is crucial.

Probing (Belinkov et al., 2017; Conneau et al.,
2018a; Peters et al., 2018) helps to analyze inners
of LMs. This includes to examine how linguistic
(Tenney et al., 2019a,c), numeric (Wallace et al.,
2019), reasoning (Talmor et al., 2020), or discourse
(Koto et al., 2021) properties are encoded. Other
works focus on specific properties used for other
tasks (Elazar et al., 2021; Lasri et al., 2022), or fine-
tuning dynamics (Merchant et al., 2020; Zhou and
Srikumar, 2022; Kumar et al., 2022b). However,

these works target the commonly used In-Topic
setup and less work considering Cross-Topic setups.
Aghazadeh et al. (2022) analyzed metaphors across
domains and language, or Zhu et al. (2022) cross-
distribution probing for visual tasks. They found
that models generalize to some extent across distri-
bution shifts in probing-based evaluation. Never-
theless, these works focus on specialized tasks and
consider the generalizations across distributions in
isolation. In contrast, we propose with our exper-
iments a more holistic probing-based evaluation
of LMs, covering different generalization aspects
after pre-training and fine-tuning.

8 Conclusion

Discussion We analyzed and compared In- and
Cross-Topic evaluation setups and found general-
ization gaps significantly differing regarding spe-
cific LMs and probing tasks.6 Further, we make
various crucial observations contributing to a bet-
ter understanding of the generalizability of LMs:
(1) diverse pre-training objectives and architectural
regularization tend to positively affect the robust-
ness of LMs and their embedding space, such as
depending less on topic-specific vocabulary; (2)
probing performance falls short for rare vocabu-
lary, underscoring the need to explore token-level
properties; (3) probing performance, but also gen-
eralization gaps, tend to scale for larger LMs, while
deduplication of pre-training data improves their ro-
bustness and narrows these gaps; and (4) In-Topic
fine-tuning tend to vanish linguistic properties more
prominently than for the Cross-Topic setup.

To conclude, we highlight the practical utility of
probing to analyze and compare the capacities of
various LMs from a different perspective - consid-
ering different generalization scenarios. Thereby,
our work points out the importance of probing as a
universally applicable method, regardless of size or
being static or contextualized, to complement ex-
isting work on analyzing language models (Wang
et al., 2018; Liang et al., 2022).

Outlook With our findings in mind, we regularly
see probing LMs and large LMs and consider forth-
coming learning paradigms as indispensable for a
holistic evaluation of their verity and multiplicity.
Therefore, we will continue to analyze language
models, including a broader set of tasks and focus-

6We verified our results using a second dataset from the
social media domain (Conforti et al., 2020) - details in the
Appendix § B.1.
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ing on general and rare vocabulary to increase our
understanding of how, why, and where they differ.
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Ethical Considerations and Limitations

Automatic Annotations for Linguistic Proper-
ties Our experiments require all instances origin
in the same datasets with topic annotations. Thanks
to this condition, we align all our experiments, like
probing LMs, with the same data as they got pre-
trained. Therefore, we minimize other influences
like semantic shifts of other datasets. However,
there are no corresponding annotations for linguis-
tic properties, which forces us to rely on automat-
ically gathered annotations. This work addresses
this issue by transparently stating the libraries and
models we used to derive these annotations and
providing the source code and the extracted labels
in our repository. We compared our results (§ B.8)
with previous work (Tenney et al., 2019a,c; He-
witt and Liang, 2019b) and found our results well
aligned. Further, we verify the probing task re-
sults on the different LMs with randomly initial-
ized counter-parts (§ B.2) and confirm our findings
with a second dataset (§ B.1).

Definition of Topic-Specific Vocabulary This
work considers a topic as a semantic grouping pro-
vided by a given dataset. As previously mentioned,
this focus on the context of one dataset allows in-
depth and controlled analysis, like examining the
change of LMs during fine-tuning. On the other
hand, we need to re-evaluate other datasets since
the semantic space and granularity of the topic are
different in almost every other dataset. Neverthe-
less, results in the Appendix (§ B.1) let us assume
that our findings correlate with other datasets and
domains. Further, we consider only token-level
specific vocabulary, as done previously in literature
(Kawintiranon and Singh, 2021). We think that
considering n-grams could give a better approx-
imation of topic-specific terms. Still, we do not
consider them because Amnesic Probing (Elazar
et al., 2021) require token-level properties to ap-
ply resulting intervention on token-level tasks like
POS.

Impact of LMs Design choices This work ana-
lyzes LMs regarding different properties like pre-
training objectives or architectural regularization.
However, we do not claim the completeness of
these aspects nor a clear causal relationship. Mak-
ing such a final causal statement would require sig-
nificant computational resources to pre-train mod-
els to verify single properties with full certainty. In-
stead, we use same-sized model variations, evaluate
all probes on three folds and three random seeds to
account for data variability and random processes,
and verify our results on a second dataset. Never-
theless, we use them to correlate results on aggre-
gated properties (like having diverse pre-training
objectives or not) and not on single aspects, like
the usefulness of the Sentence-Order objective.
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A Additional Details of the Experiments

A.1 Probing Tasks

Table 6 shows examples and additional details of
the different probing tasks.

A.2 Fold Composition

We rely on a three-folded evaluation for In- and
Cross-Topic for a generalized performance mea-
sure. These folds cover every instance exactly once
in a test split. In addition, we require that In- and
Cross-Topic train/dev/test splits have the same num-
ber of instances for a fair comparison, as visualized
in Figure 5. For Cross-Topic, we make sure that
every topic {t1, ..., tm} is covered precisely once
by one of the three test splits X(test)

cross . To compose
X

(train)
cross and X

(dev)
cross , we randomly distribute the re-

maining topics for every fold. For In-Topic, we ran-
domly7 form subsequent test splits X(test)

in for ev-
ery fold from all instances {x1, ..., xm}. X(train)

in

and X
(dev)
in are then randomly composed for every

fold using the remaining instance set following the
dimension of X(train)

cross and X
(dev)
cross .

A.3 Training Setup

For all our experiments, we use NVIDIA RTX
A6000 GPUs, python (3.8.10), transformers
(4.9.12), and PyTorch (1.11.0).

A.4 Probing Hyperparameters

Further, we use for the training of the probes the
following fixed hyperparameters: 20 epochs, where
we find the best one using dev instances; AdamW
(Loshchilov and Hutter, 2019) as optimizer; a batch
size of 64; a learning rate of 0.0005; a dropout rate
of 0.2; a warmup rate of 10% of the steps; random
seeds: [0, 1, 2]

In addition, we use the following tags from the
huggingface model hub:

• albert-base-v2

• bert-base-uncased

• facebook/bart-base

• microsoft/deberta-base

• roberta-base
7We expect that all folds cover all topics given the small

number of topics (8) and the big number of instances.

Figure 5: Overview of the In- and Cross-Topic setup
using three folds. The colour indicates a topic; solid
lines train-, dotted lines dev-, and dashed lines test-
splits.

• google/electra-base-
discriminator

• gpt2

• EleutherAI/pythia-12b

• EleutherAI/pythia-12b-deduped

• meta-llama/Llama-2-13b-hf

• meta-llama/Llama-2-13b-chat-hf

• google/t5-xxl-lm-adapt

• allenai/tk-instruct-11b-def

A.5 Fine-Tuning Hyperparameters

To fine-tune on stance detection, we use the fol-
lowing setup: 5 epochs, where we find the best
one using dev instances; AdamW (Loshchilov and
Hutter, 2019) as optimizer; a batch size of 16; a
learning rate of 0.00002; a warmup rate of 10% of
the steps; random seeds: [0, 1, 2].

A.6 Token-Level Examples for Topic
Relevance

In § 5, we use the binned topic-specificity (§ 5) for
each token. We show in Table 7 examples for three
bins low, medium, and high. The first bin (low) is
made of tokens, which barely occur in the dataset.
The second one (medium) consists of tokens which
are part of most topics. Finally, the last bin (high)
includes tokens with a high topic relevance for ones
like Cloning or Minimum Wage.

B Further Results

B.1 Generalization Across Datasets

With Table 8, and Figure 6 we verify the results
of § 4, § 5, and § 4 using another stance detecion
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Task Example Label # Instances # Labels

DEP I think there is a lot we can learn from Colorado and Washington State. nsubj 40,000 41
POS I think there is a lot we can learn from Colorado and Washington State. PRON 40,000 17
NER I think there is a lot we can learn from Colorado and Washington State. PERS 25,892 17
Stance I think there is a lot we can learn from Colorado and Washington State. PRO 25,492 3

Table 6: Overview and examples of the different probing tasks.

low medium high

fianc, joking, validate, as, on, take, cloning, uniform, wage,
latitude, poignantly, informative some, like, how, marijuana, minimum, gun,

ameliorate, bonding, mentors so, one, these, cloned, wear, clone,
brigade, emancipation, deriving, instead, while, ago nuclear, energy, penalty,

ignatius, 505, nominations, where, came, still, many, uranium, legalization, cannabis,
electorate, SWPS, 731 come, engage, seems execution, wast, employment

Table 7: Examples of tokens with a low, medium, or
high token relevance following § 4.

DEP POS NER NER Average

In Cross In Cross In Cross In Cross In Cross ∆

ALBERT 33.5 32.9 75.1 74.2 30.9 28.6 57.3 32.8 49.1 42.1 -7.0
BART 32.9 33.1 63.2 62.1 32.4 30.5 51.9 47.2 45.1 43.2 -1.9
BERT 21.6 21.2 54.8 55.9 27.2 27.8 47.4 32.1 37.8 34.2 -3.6
DeBERTa 26.9 27.6 69.6 67.9 29.4 28.5 49.5 35.7 43.9 40.0 -3.9
RoBERTa 20.4 19.9 54.7 53.5 26.1 25.5 37.0 37.8 35.6 34.2 -1.4
ELECTRA 26.6 26.6 69.6 68.6 21.7 24.1 35.1 36.7 38.2 39.0 +0.8
GPT-22 16.9 16.5 42.2 42.2 25.1 24.0 40.8 32.6 31.2 28.8 -2.4
GloVe 12.9 12.2 23.5 22.6 28.1 24.6 45.2 34.2 27.4 23.4 -4.0
Avg. ∆ -0.3 -0.7 -0.9 -9.5 - - -

Table 8: Results of the four probing tasks using eight
LMs in the In- and Cross-Topic setup. We report the
mean F1 (macro averaged) over three random seeds, the
average difference between the two evaluation setups
per task (last row), and their average per LM (last two
columns). Best-performing results within a margin of
1pp are marked for every task and setup.

dataset. Namely, we use the wtwt (will-they-wont-
they) (Conforti et al., 2020) dataset which covers
51.284 tweets annotated either support, refute, com-
ment, or unrelated towards five financial topics.
The overall performance comparison between In-
and Cross-Topic shows the same trend as we al-
ready saw in § 4, but on a lower level. We assume
this is mainly due to this dataset’s more specific
domain (twitter) compared to UKP ArgMin. Focus-
ing on the influence of topic-specific vocabulary
verifies the previously presented results (§ 5) again.
LMs pre-trained with purely token-based objectives
highly depend on topic-specific vocabulary.

B.2 Comparison of Probing Tasks against
Random Initialized LMs

We show in Table 9 and Table 10 the results of run-
ning the three linguistic probes on the seven con-
textualized LMs in their random initialized version.
For In- and Cross-Topic, there is a clear perfor-

mance drop of having random initialized models.

DEP POS NER

Random ∆ Random ∆ Random ∆

ALBERT 1.4 -42.4 6.8 -41.8 3.4 -76.8
BART 1.4 -35.1 5.0 -43.7 2.7 -72.7
BERT 2.7 -22.7 9.4 -36.0 4.6 -63.9
DeBERTa 7.0 -25.8 16.3 -32.5 16.1 -57.6
RoBERTa 2.2 -22.9 11.0 -37.4 4.7 -59.3
ELECTRA 1.7 -31.9 8.4 -33.1 3.8 -71.5
GPT-2 5.8 -19.4 12.3 -33.2 12.5 -51.0

Table 9: Results of evaluating DEP, POS, and NER us-
ing the seven contextual LMs (random initialized) for
In-Topic and the difference to their pre-trained counter-
parts in Table 2.

B.3 The Effect of Removing Random
Information

We saw in § 5 that removing topic-specificity has
a big impact for some models (like RoBERTa or
ELECTRA) but at the same time can even boost
the performance of others like BERT. As suggested
in Elazar et al. (2021), we apply a sanity check by
removing random information from the encodings
of LMs. Following the results in Figure 7, remov-
ing random information (green bars) performs in
between the scenarios with (blue bars) or without
(red bars) topic information for cases where we see
a clear negative effect when removing topic infor-
mation. In contrast, removing random information

DEP POS NER

Random ∆ Random ∆ Random ∆

ALBERT 1.4 -38.1 6.2 -39.6 3.4 -74.6
BART 1.5 -35.4 5.0 -40.3 2.9 -71.2
BERT 2.1 -23.5 9.6 -32.0 4.5 -63.0
DeBERTa 6.8 -23.1 14.0 -28.4 17.2 -57.4
RoBERTa 2.6 -21.0 10.0 -32.1 5.2 -60.3
ELECTRA 3.0 -30.6 9.8 -31.4 4.1 -71.2
GPT-2 5.8 -18.1 13.6 -25.0 11.0 -50.9

Table 10: Results of evaluating DEP, POS, and NER
using the seven contextual LMs (random initialized)
for Cross-Topic and the difference to their pre-trained
counterparts in Table 2.

2211



Figure 6: Comparison of the probing results with (blue bars) or without (red bars) topic-specificity for the will-they-
wont-they dataset (Conforti et al., 2020). The white text indicates the difference between these two scenarios.

can produce a more pronounced effect when we
see performance improvements. This observation
backs our assumption that removing information
can have a regularization effect.

B.4 The Effect of Removing Topic
Information on Seen and Unseen
Instances

We show in Figure 8 that a performance drop
affects seen and unseen instances for In- and
Cross-Topic equally. Exceptionally, we see unseen
ones are more affected on POS for DeBERTa and
RoBERTa. This result indicates that these LMs fall
short of generalizing towards rare vocabularies -
like unseen instances of POS.

B.5 Analysis of Per-Class Results for NER

When considering the per-class results of NER in
Table 11, we see the classes CARDINAL, MONEY,
ORG, and PERSON show the biggest differences
between In- and Cross-Topic. For ORG and PER-
SON, we see their topic-specific terms as the main
reason for the performance gap. In contrast, we
were surprised about the high difference for CAR-
DINAL. We think this is mainly because this class
embodies all numbers belonging to no other class.
For MONEY, we see its uneven distribution over
topics as the main reason for the performance dif-
ference - one topic covers more than 50% of the
instances. These entities are highly topic-specific
from a statistical point of view.

Despite having almost the same performance
for In-Topic, BART and DeBERTa tend to out-
perform ALBERT on classes with more semantic
complexities - like GPE, ORG or PERSON. For
Cross-Topic, we see ALBERT performing better in
classes unevenly distributed instances over topics

CARDINAL DATE GPE MONEY NORP ORDINAL ORG PERCENT PERSON

In

ALBERT 95.0 95.3 89.4 95.0 91.3 97.8 80.2 99.2 82.7
BART 94.8 94.6 89.7 95.6 91.6 97.3 81.0 99.4 83.5
DeBERTa 95.3 95.6 90.0 96.5 91.5 97.4 81.1 99.2 83.7

C
ro

ss
ALBERT 91.2 95.0 88.6 55.6 90.8 98.1 78.8 98.9 81.7
BART 90.1 94.2 88.9 35.0 90.7 97.6 79.1 98.8 81.8
DeBERTa 88.3 95.3 88.6 0.0 90.5 97.5 79.8 98.6 81.8

Table 11: Per-class results of ALBERT, BART, and
DeBERTa on NER for In- and Cross-Topic.

CARDINAL DATE GPE MONEY NORP ORDINAL ORG PERCENT PERSON

In

BART -0.23 0.04 0.15 0.15 0.02 -0.04 0.08 -0.13 0.20
BERT 1.65 -0.15 -0.04 28.00 -0.14 -0.58 0.06 0.00 0.22
DEBERTA -1.14 -0.13 -1.48 -7.74 -14.40 -0.30 -0.82 -0.12 -0.10
ROBERTA -6.00 -3.00 -7.82 -24.09 -90.61 -98.06 -2.66 -0.51 -0.58

C
ro

ss

BART -0.48 0.01 -0.13 2.45 -0.06 -0.52 -0.38 -0.09 -0.03
BERT -0.05 -0.05 1.00 0.00 8.95 -0.60 0.29 0.00 0.00
DEBERTA -0.07 -0.16 -2.52 0.00 -21.88 -0.35 -0.91 -0.01 0.07
ROBERTA -9.04 -2.63 -7.45 0.00 -85.23 -98.07 -2.99 -35.97 -0.46

Table 12: Class-wise effect on the performance when
removing topic information of BART, BERT, DeBERTa,
and RoBERTa on NER for In- and Cross-Topic.

- like MONEY. Further, it outperforms BART and
DeBERTa on less semantical classes (CARDINAL,
ORDINAL, PERCENT).

B.6 Effect of Removing Token-Level Topic
Information of Per-Class Results for NER

Similar to the previous analysis, there are apparent
effects of removing topic information when consid-
ering NER classes separately. Table 12 shows these
results for BART, BERT, DeBERTa, and RoBERTa.
Like the overall result, BART, DeBERTa, and
RoBERTa perform less when removing topic infor-
mation. Whereby the effect is the most pronounced
for RoBERTa with the highest performance drop
for In- and Cross-Topic on classes like NORP or
ORDINAL. In addition, these results show that the
performance gain from removing topic information
within BERT happens on MONEY for In-Topic
and NORP for Cross-Topic.
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Figure 7: Comparison of the probing results with (blue bars) and without (red bars) topic information, or without
random information (green bars). The white text indicates the difference between the blue and red bars.

Figure 8: Performance difference for seen (x-axis) and
unseen (y-axis) instances when removing topic informa-
tion or not. One dot represents one LM.

CARDINAL DATE GPE MONEY NORP ORDINAL ORG PERCENT PERSON

In

ALBERT -34.2 -25.4 -26.9 -95.0 -51.9 -60.3 -22.4 -99.2 -21.8
BART -8.5 -7.2 -7.5 -7.2 -10.4 -36.6 -4.1 -3.8 -2.7
BERT -1.9 -2.0 -2.0 34.8 -4.4 -17.9 -0.8 -3.9 -1.1
DEBERTA -15.1 -6.8 -8.7 -19.5 -43.7 -60.8 -8.8 -24.8 -8.3

C
ro

ss

ALBERT -21.5 -10.4 -19.1 -55.6 -34.4 -13.1 -10.7 -81.0 -9.2
BART -9.2 -7.4 -7.0 -16.3 -11.2 -24.4 -3.9 -4.5 -2.1
BERT -2.5 -1.2 -1.2 3.6 -2.2 -9.7 -0.8 -2.6 -0.5
DEBERTA -18.2 -6.2 -12.7 0.0 -50.6 -76.0 -11.7 -73.5 -6.8

Table 13: Per-class difference before and after fine-
tuning on stance detection of ALBERT, BART, BERT,
and DeBERTa on NER for In- and Cross-Topic.

B.7 The Effect of Fine-Tuning on NER
Classes

Analysing the results (Table B.7) for every NER
class gives additional insights into where the fine-
tuning had the most significant effect. We generally
see the biggest effect on classes with less semantic
meaning, like ORDINAL, PERCENT, or MONEY.
At the same time, GPE, PERSON, and ORG are
less affected as classes with more attached seman-
tics. Regarding the different LMs, ALBERT and
DeBERTa show the most performance training,
while BERT gains performance for the MONEY
class.

DEP POS NER

In Cross In Cross In Cross

ALBERT 85.2 83.9 93.8 93.6 86.9 85.0
BART 80.9 81.0 92.6 92.0 87.1 84.5
BERT 76.1 76.1 89.2 88.6 85.2 82.9
DeBERTa 81.2 79.9 92.8 93.1 87.5 84.0
RoBERTa 75.9 75.5 89.6 90.1 86.3 83.2
ELECTRA 81.1 80.7 92.3 92.2 82.8 82.2
GPT-2 69.8 69.1 85.8 85.7 84.6 81.1
GloVe 39.5 38.5 46.6 45.9 78.8 77.2
Average 73.7 73.1 85.3 85.2 84.9 82.5

BERT 80k 80.5 79.1 92.0 91.5 - -
BERT 160k 84.3 84.2 93.1 92.8 - -
BERT 320k 86.3 85.6 93.7 93.3 - -

BERT (Tenney et al., 2019c) 93.0 97.0 96.1
BERT (Tenney et al., 2019a) 95.2 96.5 96.0
BERT (Hewitt and Liang, 2019b) 89.0 97.2 -

Table 14: Accuracy results for In- and Cross-Topic prob-
ing results for eight LMs, across three random seeds.
Further, we report results of gradually increasing the
number of consider instance (BERT 80k, BERT 160k,
and BERT 320k), as well as reference performance of
previous work (Tenney et al., 2019c,a; Hewitt and Liang,
2019b).

B.8 Annotation Verification
To evaluate probing tasks in the In- and Cross-
Topic setup, we rely on data with topic annota-
tions on the instance level - like the UKP ArgMin
(Stab et al., 2018) or the wtwt (Conforti et al.,
2020) dataset. Since these datasets do not include
linguistic annotations, we make use of spaCy8

to automatically derive the labels for dependency
tree parsing (DEP), part-of-speech tagging (POS),
or named entity recognition (NER). We used the
en_core_web_sm model, which provides reli-
able labels with a detection performance in terms
of accuracy of 97.0 for POS, 90.0-92.0 for DEP,
and an F1 score of 85.0 for NER (details available
online). Note, this performance referees to iden-

8https://spacy.io/
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tify valid candidates (like entities for NER) given a
piece of text, and assign the corresponding labels,
such as person or organization. In contrast, in prob-
ing, we consider only the second step: assigning
the right label of a valid candidate. Therefore, we
can not directly compare recognition and probing
performance.

Considering our results (§ 4), we see these de-
rived labels as reliable and well aligned with previ-
ous work (Tenney et al., 2019c,a; Hewitt and Liang,
2019b), even though we mainly report F1 score.
One reason for that is the similar performance rank-
ing (DEP < NER < POS) as in previous work,
considering F1 score as well as the accuracy score
reported in Table 14. Another reason is the nar-
rowing accuracy performance gap between our ex-
periments and previous work when we gradually
increase the number of consider instance from 40k
to 80k, 160k, until 320k.
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