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Abstract

Simultaneous interpretation is an especially
challenging form of translation because it re-
quires converting speech from one language
to another in real-time. Though prior work
has relied on out-of-the-box machine transla-
tion metrics to evaluate interpretation data, we
hypothesize that strategies common in high-
quality human interpretations, such as summa-
rization, may not be handled well by standard
machine translation metrics. In this work, we
examine both qualitatively and quantitatively
four potential barriers to evaluation of interpre-
tation: disfluency, summarization, paraphras-
ing, and segmentation. Our experiments reveal
that, while some machine translation metrics
correlate fairly well with human judgments
of interpretation quality, much work is still
needed to account for interpretation strategies
during evaluation. As a first step to addressing
this problem, we develop a fine-tuned model
for interpretation evaluation, which achieves
better correlation with human judgments than
state-of-the-art machine translation metrics.

1 Introduction

Simultaneous interpretation is an especially dif-
ficult type of translation because it requires the
system or human to convey the ideas from one
language to another in real time. Due to the cog-
nitive load and constraints on memory associated
with the act of human interpretation, the number
of errors increases exponentially after only min-
utes of interpreting (Moser-Mercer et al., 1998).
To compensate for these challenges, interpreters
often make use of a range of strategies, such as
summarization and segmentation (He et al., 2016),
to concisely provide the gist of what is being said
in the source language.

Despite the prevalence of both human simulta-
neous interpretation and automatic interpretation

∗Work completed while interning at Google.

models, investigations into how to effectively eval-
uate the quality of interpretation data are extremely
limited.1 Recent work suggests that standard au-
tomatic machine translation metrics are appropri-
ate for interpretation, due to a correlation of se-
lect MT metrics (namely BLEU (Papineni et al.,
2002), NIST (Doddington, 2002), and METEOR
(Banerjee and Lavie, 2005)) with human judgments
of interpretation quality (Lu and Han, 2023) and
the use of METEOR for interpreter quality assess-
ment (Stewart et al., 2018).

Recent work has also argued that simultaneous
interpretation evaluation systems should be trained
and tested on interpretation data as opposed to
translation data (Zhao et al., 2021). In support of
this argument, Zhao et al. (2021) demonstrate that
there is a sizable difference in BLEU score (13.83
points) when evaluating based on interpretation or
translation data.

Given the strategies unique to human interpreta-
tion and indications in prior work as to the poten-
tial utility of machine translation (MT) metrics, our
goal in this work is to investigate the applicability
of both (1) interpretation data as references, and
(2) existing machine translation metrics for evalua-
tion of interpretation. We argue that the strategies
that interpreters leverage to be able to perform live
interpretation are critical to the task and should not
be penalized by the evaluation metric.

Thus, we pose three primary questions:

1. Do human interpretations collected for other
purposes have sufficient quality to be consid-
ered for use as references in evaluation?

2. Can we use existing machine translation
metrics—as they are—to evaluate interpreta-
tion data?

1The study of the evaluation of simultaneous translation
latency is quite active. However, this paper concerns itself
only with evaluating the quality (i.e. adequacy and fluency) of
an interpretation, ignoring the temporal axis altogether.
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3. Can we develop a refined automatic metric
that achieves higher correlation with human
judgments of interpretation quality and ac-
counts for common features of interpreta-
tions?

To carry out these research questions, we analyze
and evaluate both human interpretations and ma-
chine translations, identifying potential interpreter
strategies that may degrade metric effectiveness
(Section 3.4). For meta-evaluation, we conduct a
human evaluation on the quality of both human
interpretation and machine translation to see how
those metrics correlate with human judgments (Sec-
tion 4.1). We then conduct a study to assess the
sensitivity of the metrics when these strategies are
present in an interpretation (Section 4.2). Finally,
in order to further improve the correlation with
human judgments, we adapt the method from Met-
ricX (Juraska et al., 2023) and create a fine-tuned
model using our interpretation data and human an-
notations (Section 4.3). We demonstrate that our
new metric is better at assessing interpretation qual-
ity, achieving higher correlation with human judg-
ments, suggesting that fine-tuned neural metrics
can be valuable tools for assessing interpretation.

2 Related Work

Common strategies in interpretation include seg-
mentation, passivization, generalization, and sum-
marization (He et al., 2016; Al-Khanji et al., 2000).
Bernardini et al. (2016) also show that interpreta-
tions are consistently simpler than their translated
counterparts, having lower lexical density, lower
mean sentence length, and greater use of frequent
words.

Regarding the use of interpretation data as refer-
ences, Zhao et al. (2021) show that there is a 13.83
gap in BLEU score when evaluating simultaneous
machine translation output against interpretation
transcripts versus the revised text translation. The
decrease in system performance when evaluating
against interpretation data can also be observed in
Machácek et al. (2021) and Xiong et al. (2019).
The differences between how translators and inter-
preters translate speech is notable; still, there is
no consensus on how to use automatic metrics to
evaluate interpretation.

Within the realm of interpretation evaluation,
Fantinuoli and Prandi (2021) adapt a framework
developed for human interpreter assessment and
perform a human evaluation of both interpreters

and machine translation systems. They find that
interpreters perform better in intelligibility than
machine translation systems, but worse in terms
of informativeness. Macháček et al. (2023) recom-
mends COMET (Rei et al., 2020) as a metric for
assessing automatic simultaneous speech transla-
tion, though the systems considered do not mimic
interpreter strategies such as summarization.

Recent work has also perturbed machine trans-
lation data in order to investigate the sensitivity
of MT evaluation metrics to different types of er-
rors (Karpinska et al., 2022). We adapt this idea in
our work to investigate the sensitivity of MT met-
rics to different interpretation strategies. Per the
results of WMT22, MetricX and COMET are the
highest ranked automatic MT evaluation metrics
when ranked via agreement with human judgments
of machine and human translations (Freitag et al.,
2022).

A number of multilingual interpretation corpora
have been developed in prior work. Shimizu et al.
(2014) collect an English↔Japanese interpretation
corpus and show that the most experienced inter-
preter achieves the highest BLEU score. Doi et al.
(2021) present the NAIST dataset, which is a larger
English↔Japanese interpretation corpus, and using
a similar setup as Shimizu et al. (2014), show that
the most experienced interpreter also has a higher
BERTScore (Zhang et al., 2019). However, they
point out that BERTScore fails when interpreters
use a strategy like summarization. The VoxPopuli
corpus includes simultaneous interpretation data
of European Parliament event recordings in 24 lan-
guages (Wang et al., 2021). Zhang et al. (2021) also
collect a Chinese to English interpretation corpus
with three experienced interpreters. Depending on
whether the interpreters’ performance is based on
human judgments or BLEU scores, the interpreters
rank differently in terms of performance.

3 Methodology

In order to assess the presence of barriers to effec-
tively evaluating interpretation data, we leverage
comparisons between simultaneous interpretation
data and machine translation data (as described in
Section 3.1); we perform a human evaluation study
on the interpretations and machine translation data
(Section 3.2) to collect human judgments of both
fluency and adequacy. We use five machine trans-
lation metrics (Section 3.3) to assess the applicabil-
ity of existing metrics in evaluating interpretation
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data, and identify features in the interpretation data
which may impact metric correlation with human
judgments (Section 3.4).

3.1 Data

We use the European Parliament Translation and In-
terpreting corpus (EPTIC; Bernardini et al., 2016)
to create three data points: (1) the reference, (2) the
interpretation, and (3) an in-house machine transla-
tion. The original source data are Italian remarks,
read from a pre-written script. We take as our ref-
erence the provided human English translations of
the Italian script. The interpretations are real-time
English simultaneous interpretations produced by
expert interpreters. The machine translations were
obtained by translating the provided transcriptions
of the Italian source audio, using the publicly avail-
able Google Translate API.2 The dataset consists of
67 documents. We chose to use the EPTIC dataset
for our experiments because of its size and the com-
paratively (against similar corpora) high quality of
the included simultaneous interpretations.

In order to facilitate manual analysis, we break
the documents in the EPTIC remarks down to the
sentence level. Splitting these documents into
aligned sentence pairs is difficult due to various
interpretation strategies, such as summarization,
omission, and segmentation. Therefore, we first
align the unsegmented interpretation with the ref-
erence sentences by minimizing word error rate
(WER; Matusov et al., 2005). This automatic align-
ment worked well for shorter documents, but it
required extensive manual corrections for about
half of the documents. From the 67 documents, we
obtained 590 aligned sentence triplets (with each
triplet again consisting of the reference, interpreta-
tion, and machine translation).

3.2 Human Evaluation Study

We collect sentence-level judgments of the inter-
pretations and machine translations described in
Section 3.1. The machine translation and interpre-
tation are presented to the raters side-by-side, as
well as the reference. In order to mask the identity
of the interpretation and limit bias in annotation,
we remove minor disfluencies (e.g. ‘uhm’) and
randomize the presentation of the data such that
the side that the translation appears on is consistent.
We collect judgments from 1-4 for fluency and ad-
equacy, with adequacy evaluated in comparison to

2https://translate.google.com/

the reference. In addition, examples are given in
the rater template for each choice. The judgments
are collected from two fluent speakers of English
and are z-normalized. For adequacy, raters were
instructed that omission of non-essential or non-
core content is acceptable for the “Most” grade,
and disfluency and segmentation errors (e.g. words
from other sentences incorrectly appended to the
example) should also be ignored. Four adequacy
options are presented to raters:

1. None: Absolutely none of the meaning of the
input is represented by the output. The two
texts are totally unrelated.

2. Little: Some of the meaning of the input is
conveyed by the output, but much is missing,
or a lot of extra meaning has been added.

3. Most: Most of the meaning of the input is
conveyed by the output. Some detail or nu-
ance may be lost, or the output might include
a little extra meaning absent from the input.

4. All: All of the meaning and nuance of the
input is conveyed by the output, with no extra
meaning added.

For fluency, four choices are given:

1. Nonsense: Not understandable as English
text.

2. Poor: Many or serious spelling, grammar, or
other mistakes, which make the text difficult
to understand or hard to read. It seems to
be written by somebody who doesn’t know
English well.

3. Good: Few or minor spelling or grammar mis-
takes; the text is still mostly understandable
and readable.

4. Flawless: Perfect use of English with no mis-
takes at all.

3.3 MT Metrics
In order to investigate the utility of existing ma-
chine translation metrics for evaluating interpre-
tation data, we employ five machine translation
metrics:

1. BLEU3 (Papineni et al., 2002)
3For BLEU scores, we use sacreBLEU (Post, 2018) ver-

sion v2.3.0.
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2. METEOR4 (Banerjee and Lavie, 2005)

3. BERTscore5 (Zhang et al., 2019)

4. MetricX6 (Juraska et al., 2023)

5. COMET7 (Rei et al., 2020)

BLEU and METEOR are both n-gram-based
metrics that calculate the similarity between the
hypothesis translation and the reference n-grams.

BERTScore computes the similarity of the candi-
date and reference as the sum of cosine similarities
between their token embeddings.

MetricX and COMET are both neural metrics
which rely on contextual language model embed-
dings and are fine-tuned with human assessments.
While MetricX and COMET differ in their neural
network architectures, both optimize regression ob-
jectives on direct assessment (DA) data and Multi-
dimensional Quality Metrics scores (Lommel et al.,
2014; Freitag et al., 2021) that have been collected
by WMT over the years. However, no interpre-
tation data has thus far been used to train these
metrics.

In Section 4.3, we adopt MetricX with an mT5
XL backbone (Xue et al., 2021) for further fine-
tuning with interpretation data. Our first approach
uses the z-normalized human annotation scores of
our interpretation data (from Section 3.2) to fine-
tune the base model. Our second approach fine-
tunes the base model first with WMT DA data and
then with our annotations. In this way, the model
first learns the translation assessment task, which
is then adapted to handle interpretations.

3.4 Measuring Metric Sensitivity to
Interpretation Features

To investigate how well these MT metrics accom-
modate the strategies interpreters use to be able to
translate in real time, we compare metric scores for
human interpretation of audio against the output
of machine translation applied to a human tran-
script of the same audio. We do this by manually
iterating item-by-item through every interpretation/

4We use the implementation of METEOR from
NLTK (Bird and Klein, 2009) version 3.8.1.

5We re-implement the BERTScore algorithm, using the
pre-trained model “BERT-Base, Multilingual Cased” from
Turc et al. (2019).

6We use an internal implementation of sentence-level and
document-level MetricX models from Juraska et al. (2023).

7For COMET, we use wmt22-comet-da.

translation pair, noting instances where the ma-
chine translation score is much higher than the inter-
pretation score. This allows us to identify features
of interpretation which may degrade their scores
according to current metrics. Then, we classify the
type of difference between the interpretation and
MT sentences to identify common individual fea-
tures that seem to be having an effect on evaluation.

Through this rigorous manual process, we iden-
tify four features of interpretation that may degrade
their scores according to current metrics: (1) dis-
fluency, (2) summarization, (3) paraphrasing, and
(4) segmentation.

Though we have identified these features as po-
tentially having an impact qualitatively on metric
score, we set out to quantitatively measure the im-
pact of each feature. To see how each feature of
interpretations impacts metrics, we use automatic
methods to either remove the feature from our in-
terpretation data, or add the feature to our machine
translation data, and then re-compute the metric
scores. This enables us to quantify the specific
impact of the feature on the metric score.

For disfluency, we use the 12-layer
small-vocab BERT disfluency detection
model from Rocholl et al. (2021) to remove
disfluencies from the interpretation.

For summarization and paraphrasing, we use the
instruction-tuned PaLM-2 Bison LLM (Anil et al.,
2023) to perturb machine translation data, prompt-
ing the model to apply summarization or paraphras-
ing. We iterate over multiple prompts and manually
verify the quality of the LLM output in order to en-
sure that we have engineered the most effective
prompt for this task. Specifically, we verify that
the selected prompt sufficiently maintains meaning
and fluency in the summarized/paraphrased out-
put through manual analysis. Once we selected
the specific prompt (“Apply summarization to the
following sentence: [sentence to be summarized].
Do not include the word summarization in the re-
sponse, just output the summarized sentence.”), we
ran the LLM over all of the machine translation
data to collect a summarized and paraphrased ver-
sion of each item. The paraphrase prompt was
analogous, swapping in the word ’paraphrasing’
for ’summarization.’

Lastly, for segmentation, we employ document-
level automatic MT metrics to evaluate the docu-
ment pairs.
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Metric SI MT
BLEU 0.1811 0.3276

METEOR 0.3966 0.6226
BERTScore 0.8122 0.8812

MetricX 0.5928 0.7351
COMET 0.6809 0.7818

Table 1: Average scores for simultaneous interpretation
(SI) and machine translation (MT) data on automatic
machine translation metrics.

4 Results

In the subsections that follow, we address each of
our research questions. Namely, in Section 4.1
we address whether human interpretations (col-
lected for other purposes) have sufficient quality
to be considered for use as references in evalua-
tion. Then, in Section 4.2, we ascertain whether we
can use existing machine translation metrics—as
they are—to evaluate interpretation data. Finally,
in Section 4.3, we develop a refined automatic met-
ric which achieves higher correlation with human
judgments of interpretation quality and accounts
for common features of interpretations.

4.1 Evaluating Human Interpretation

To address our first research question (whether
interpretations have sufficient quality to be used
as references), we evaluate the interpretation data
and machine translation data using the MT metrics.
Then, we contrast both sets of scores to reveal any
deficiencies in individual interpretations.

As shown in Table 1, all metrics score the ma-
chine translation data higher than the interpretation
data. This finding is in line with previous work
(Xiong et al., 2019; Zheng et al., 2020).

This observation may reflect a flaw in the metrics
rather than the interpretations; therefore, we move
to our human evaluation, shown in Table 2. Via
our human evaluation, we find that 350 out of 590
of the interpretations are missing full adequacy/
meaning preservation, whereas this is the case for
only 133 of the 590 machine translations. All hu-
man ratings are lower for the interpretation than
for the MT, with adequacy being the primary issue.
We also observe numerous low quality interpreta-
tions in the dataset such as the example in Table 3,
calling into question whether we can use interpre-
tations as references. In this drastic example, the
interpretation has a MetricX score of 0.4691 and
the MT has a MetricX score of 0.7913.

Ultimately, our findings both from the automatic

Avg Fluency Avg Adequacy
Interpretation 3.733 3.173

MT 3.848 3.748

Table 2: Average human evaluation scores for fluency
and adequacy of the interpretation and machine transla-
tion data.

Ref: “Your collective efforts were crucial in reaching a
turning point in negotiations between the European insti-
tutions on this extremely technical dossier.”
MT: “Collective efforts, your collective efforts have been
instrumental in reaching a breakthrough during the nego-
tiations between the institutions on this highly technical
dossier.”
SI: “The collective efforts of honourable members were
crucial in achieving ehm crossroads and making process
in what i- progress in what is an extremely technical...
issue”

Table 3: Example of a low quality interpretation found
in the EPTIC dataset.

metrics and our human evaluation suggest that there
are issues in the interpretation data that make it un-
suitable for use as a reference. Specifically, the
issue of low adequacy, due to content dropping and
high cognitive load, causes interpretations to be in-
sufficiently reliable to serve as references in system
evaluation. While omission and summarization
are to be expected in real-time interpretation, low-
quality interpretations (such as the interpretation
featured in Table 3) are also present.

4.2 Suitability of MT Metrics for
Interpretation

To address our second research question (should
we use MT metrics to evaluate interpretations), we
first ask: do metrics actually correlate well with
human judgments of interpretation quality?

Table 4 shows segment-level correlation between
our human judgments and the automatic metrics.
We find that the correlation is low compared to
previous work (e.g. Sellam et al. (2020)). By exam-
ining cases where human and automatic judgments
disagree, we can easily find cases where the inter-
preter is doing a good job, but the metric scores
are low. This suggests that metric scores are overly
sensitive to features of interpretation that appear in
high-quality interpretations. Through qualitative
analysis, we find four features of interpretation that
metrics may not be handling well (potential “metric
failures”): (1) segmentation, (2) minor disfluencies,
(3) summarization, and (4) paraphrasing.

Next, we quantify the sensitivity of metrics to
each of these four features by using the experi-
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Metric SI Fluency SI Adequacy MT Fluency MT Adequacy
BLEU 0.1321 0.3999 0.0755 0.2872

METEOR 0.0819 0.5913 0.0368 0.3746
BERTScore 0.1181 0.5985 0.0843 0.3781

MetricX 0.2290 0.6023 0.1935 0.4436
COMET 0.2397 0.6306 0.1773 0.4451

Table 4: Pearson’s correlation between human judgments of fluency and adequacy for the simultaneous interpreta-
tion (SI) and machine translation (MT) data.

Avg Sent-Level Document Correlation Doc-Level Correlation
BLEU 0.5834 0.6312

COMET 0.8343 0.6626
MetricX 0.7635 0.5765

Table 5: For the simultaneous interpretation (SI) data, we derive document-level metric scores for BLEU, COMET,
and MetricX in two ways: (1) by computing the average of sentence-level metric scores across the document,
and (2) by applying the metrics to the entire document. The human rating for each document is calculated as the
average of all its sentence ratings. We then calculate Pearson’s correlation between each document-level metric
and the human adequacy ratings.

mental designs detailed in Section 3.4. As we saw
in Table 4, COMET and MetricX correlate simi-
larly well with human judgments of fluency and
adequacy, outperforming all other metrics; when
measuring metric sensitivity to the four potential
metric failures in Section 4.2.2 and Section 4.2.3,
we focus on the MetricX metric for brevity and
clarity.

4.2.1 Segmentation
One issue that we observe in the interpretation
data is the presence of segmentation errors. Inter-
preters may break the speech into smaller segments
and/or translate them into separate sentences. Al-
though the machine translation system translates
each verbatim transcript sentence into a translation
sentence, it may still have a different number of
sentences than the reference. We find that in the
interpretation data, there are 11 documents where
the ratio of interpreter sentences to reference sen-
tences is greater than or equal to 1.25, while in the
machine translation, there are only 6 documents
with a sentence ratio greater than or equal to 1.25.
Segmentation differences pose a challenge to the
performance of MT metrics, because the metrics
often expect a one-to-one alignment between hy-
pothesis and reference sentences. Other datasets
face the same issues of segmentation; for example,
we observe similar issues in the NAIST (Doi et al.,
2021) and VoxPopuli (Wang et al., 2021) datasets.

To see whether metrics are sensitive to these seg-
mentation issues, we employ metrics which are
appropriate for both sentence and document-level
evaluations: BLEU, COMET, and MetricX. BLEU

has no input length restriction, while COMET and
MetricX have a 512-token limit. We exclude the
documents exceeding this limit, resulting in a set
of 59 documents. For COMET, we compute both
average sentence-level scores and document-level
scores. Following the findings of Deutsch et al.
(2023), we use sentence-level and document-level
MetricX models to score each document. For hu-
man annotations, we average the scores across all
sentences within a document.

Table 5 shows the results on metric sensitivity
to segmentation. For the correlation of adequacy,
we see BLEU improve, while COMET and Met-
ricX both greatly degrade. This indicates that mov-
ing from the sentence-level to the document-level
does not necessarily resolve the issue of segmen-
tation in metric score, and the effect of shifting
from sentence to document-level evaluation differs
substantially by metric. However, segmentation
differences pose issues beyond the question of sen-
tence boundary, as segmentation is also associated
with omission and summarization (discussed in
Section 4.2.3).

4.2.2 Disfluency
Now, we assess the impact of the remaining fea-
tures (disfluency, summarization, and paraphras-
ing) on metric scores, with a focus on MetricX.
These results are summarized in Table 6.

Minor disfluency arises in the interpretation pro-
cess as the interpreter either misspeaks or is not
yet sure what the speaker will say. An example of
minor disfluency is shown in Table 7; the MetricX
score for the interpretation is 0.5756 and for the
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Data MetricX
MT 0.7351
MT summarized by PaLM 0.6816
MT paraphrased by PaLM 0.7589
SI 0.5928
SI disfluency removed 0.6217

Table 6: Impact on the MetricX scores from perturba-
tions with different interpretation features to the trans-
lation data.

MT is 0.7035.
To measure the impact of disfluencies, we

automatically remove them from interpretations
(through the process described in Section 3.4). We
find that disfluency removal improves MetricX
scores by 3%. While this is a very small change,
this does indicate that even imperfect disfluency
removal leads to an increase in MetricX score, thus
demonstrating that MetricX is in fact sensitive to
disfluencies.

Again, though only a small change in MetricX
score results from the presence of disfluencies, dis-
fluencies can easily be mitigated with disfluency
removal, and as they are an organic part of the live
interpretation process which do not affect mean-
ing, we argue that these disfluencies should be re-
solved prior to evaluation. The presence of these
disfluencies does not impact the meaning of the
interpretation, and we do not expect the machine
interpretations to need to produce disfluencies. We
also recommend that when creating interpretation
datasets, the data curators clean up disfluencies
during transcription, or alternatively annotate the
disfluencies as in the NAIST dataset (Doi et al.,
2021).

4.2.3 Summarization and Paraphrasing
In addition to issues of segmentation and disflu-
ency, we also noted instances of summarization
and paraphrasing affecting metric scores.

One such example of summarization can be
found in Table 8, for which the interpretation Met-
ricX score is 0.6485 and the MT MetricX score is
0.7710.

Paraphrasing also appears to affect MetricX
score, such as in Table 9, where the MetricX score
for the interpretation is 0.7171 and for the MT is
0.8215.

To quantify the impact of summarization and
paraphrasing on MetricX, we use LLMs to add sum-
marization and paraphrasing to non-simultaneous
machine translations as described in Section 3.4,

Ref: “The alderman for the region has already travelled
to Brussels 3 times and has already completed a good
proportion of the schedule of works that was outlined in a
hearing held before the committee on Petitions in July.”
MT: “the regional councilor has already come 3 times here
in Brussels and has already implemented a large part of
the ‘timeline’ which was illustrated during a hearing in
July before the petitions committee.”
SI: “The regional assessor has been 3 times to Brussels
and has already done a fair amount of programme put out
during a hearing in July in the peti- Petitions commit-
tee.”

Table 7: Example of minor disfluency–indicated in
bold–occurring in the simultaneous interpretation (SI),
as well as the corresponding machine translation (MT)
and reference (Ref) text.

and then observe the impact on MetricX score. The
results for this experiment are as shown in Table 6.

Our results indicate that summarization does
have a notable impact on MetricX score. With-
out summarization, the average MetricX score was
0.7351 and after applying summarization this drops
to 0.6816. Table 10 breaks the scores down by
amount of summarization. We measure summariza-
tion via sentence compression ratio, defined as to-
ken count in the translation divided by token count
in the reference (using the NLTK tokenizer). Inter-
estingly, we find that more summarization leads to
a more diminished MetricX score, further confirm-
ing that summarization is a weakness of MetricX
when evaluating interpretation.

We argue that if no meaning is lost, interpreta-
tion metrics should not penalize summarization, as
this is again a necessary feature of interpretation,
and this therefore needs to be addressed. Still, it
is worth noting that we are not able to guarantee
that there is no loss of information due to summa-
rization. While our results of sentence compres-
sion ratio do indicate the impact of token count on
MetricX score, it is possible that in some cases,
meaningful information is lost.

When performing the same experiment for para-
phrasing, we find that MetricX does handle para-
phrasing well, as one would hope. The original
MT MetricX score was 0.7351, and after applying
paraphrasing via the PaLM model, the MetricX
score was 0.7589. Given that paraphrasing actually
results in a higher MetricX score, paraphrasing is
not an issue facing MetricX for interpretation eval-
uation. Therefore, these sets of experiment indicate
that while summarization does pose an issue for
MT metrics (in particular with regard to evaluation
of interpretation data), paraphrasing does not.
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Ref: “The fact that the crisis has hit Naples while the
situation is very different in the rest of Italy, for exam-
ple, in my region, Veneto, where separate collection has
been taking place for years without any problems and with
a very high recycling rate, means that the responsibility
for the crisis lies with Campanian policy making, with
local government officials and, above all, with the se-
rious collusion with the underworld, which as always
sought and made huge profits from the waste business
thanks to Camorra’s infiltrating local policy making
and local government.”
MT: “If the emergency hit Naples while things are go-
ing very differently in the rest of Italy, for example in
my region, Veneto, where separate waste collection has
been done for years without problems and with a very
high recycling rate, it means that the responsibilities of
‘emergency falls on politics and local administrators
and, above all, on the heavy connivance with the un-
derworld which has always sought and obtained huge
profits from the waste business thanks to the infiltra-
tion of the Camorra in politics and local administra-
tions.”
SI: “It means that the responsibility is due to local ad-
ministration in Campania and operation with crimi-
nal elements that are obtaining big profits through the
in- infiltration of the Camorra into local authorities
and government.”

Table 8: Example of summarization–indicated in bold–
occurring in the simultaneous interpretation (SI), as
well as the corresponding machine translation (MT)
and reference (Ref).

4.3 Fine-tuned Metrics for Interpretation
Assessment

In order to address our third research question
(can we develop a refined automatic metric which
achieves even higher correlation with human judg-
ments), we present a pilot experiment that makes
use of fine-tuning for interpretation quality assess-
ment. We utilize our z-normalized human annota-
tion scores (from Section 3.2) along with the inter-
pretation and reference pairs to fine-tune a MetricX
model. We employ 3-fold cross-validation for our
fine-tuning experiments. In each fold, 33% of the
annotated data is held out as the test set, while the
remaining 67% is used to fine-tune the model. The
average correlation across all three folds is reported
in Table 11, marked with asterisks. We avoid fine-
tuning on MT annotations to ensure the models
are directed towards the task of interpretation eval-
uation. We do additionally apply our fine-tuned
models to MT data and report the resulting correla-
tions.

We take two approaches to fine-tuning the base
MetricX model: (1) directly fine-tune the base
model with our human annotations, and (2) first
fine-tune with the DA data from WMT, and then

Ref: “We set out to achieve the goal of recognising the
right of all patients to cross-border healthcare, thus pre-
venting medical tourism.”
MT: “The goal which we have tried to achieve is to rec-
ognize all patients the right to cross-border healthcare,
avoiding healthcare tourism.”
SI: “The objective which we were striving towards was to
recognise for all patients the right to cross-border health-
care, but avoiding medical tourism.”

Table 9: Example of paraphrasing occurring be-
tween the simultaneous interpretation (SI) and refer-
ence (Ref), plus the corresponding machine translation
(MT).

Sentence Compression MetricX
Overall 0.6816

Ratio ≤ 0.25 0.5456
0.25 < Ratio ≤ 0.5 0.5950
0.5 < Ratio ≤ 0.75 0.6824

0.75 < Ratio 0.7419

Table 10: Summarization ULM experiment and MT
MetricX after summarization.

fine-tune with our annotations. We use either ade-
quacy or fluency score to fine-tune the model. The
results can be found in Table 11.

For adequacy assessment, we find that the fine-
tuned models correlate better with human judg-
ments than off-the-shelf MT metrics. The WMT
DA data is helpful in this case. The highest cor-
relation for the interpretation data is achieved by
fine-tuning the “DA 15-20 z clipped” model from
Juraska et al. (2023) on our z-normalized human
annotations. As for fluency, the fine-tuned models
also achieve higher correlation with human ratings.
However, for fluency, we find that fine-tuning with
the DA data does not lead to improved correlation
with human judgments. This demonstrates that
with just a very small amount of human annotation,
we can create a reasonable metric to evaluate in-
terpretation quality. This suggests that future work
can make use of quality-annotated interpretation
data to overcome the barriers to interpretation data
that we have outlined, thus accounting for features
commonly found in high-quality interpretations
which affect metric scores.

5 Conclusion

In this work, we have performed extensive quali-
tative and quantitative experimentation to measure
the impact of common features of interpretation on
metric scores.

We have studied the sensitivity of MT metrics
to interpretation features, including disfluency, seg-
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Metric SI Fluency SI Adequacy MT Fluency MT Adequacy

MetricX 0.2988 0.6178 0.1595 0.3133
COMET 0.3011 0.6211 0.1466 0.3422

mT5 + Adequacy ratings 0.6718* 0.4989
mT5 + DA + Adequacy ratings 0.7031* 0.4528

mT5 + Fluency ratings 0.4067* 0.2325
mT5 + DA + Fluency ratings 0.4017* 0.1023

Table 11: Pearson’s correlation between metric scores and human judgments of fluency and adequacy for the
simultaneous interpretation (SI) and machine translation (MT) data. The last four rows show the performance of
our fine-tuned models. The base model (mT5) is fine-tuned with either adequacy or fluency human ratings, and
optionally we fine-tune the base model with DA scores as the first stage fine-tuning. Asterisks indicate the average
correlation across all three folds of cross-validation (described in Section 4.3).

mentation, summarization, and paraphrasing. We
argue that common interpreter features should not
be penalized if the original gist is successfully con-
veyed, and we find that off-the-shelf MT metrics
are indeed sensitive to disfluency and summariza-
tion.

Our evaluation shows that the quality of human
interpretations is worse than machine translations
according to both automatic MT metrics and hu-
man evaluation. The low scores are caused not only
by the sensitivity of MT metrics to interpretation
features (as demonstrated in Section 4.2), but also
by persistent errors made by interpreters (as illus-
trated in Section 4.1). Given this finding, though
recent work has argued that human interpretations
should be used as references in simultaneous inter-
pretation evaluation (Zhao et al., 2021), we advise
against using existing interpretations as references
for evaluation. Better data collection procedures
and annotations are required to ensure that the in-
terpretation data is of high quality.

Ultimately, though prior work has assumed the
functionality of MT metrics for evaluating inter-
pretation data, our findings reveal that minor dis-
fluencies and summarization are unduly punished
by existing metrics. In order to perform an accu-
rate evaluation of interpretation data, these features
must be addressed.

We propose using fine-tuned learned metrics to
assess interpretation quality. With human annota-
tions, even flawed interpretation data can be used to
fine-tune a model. As our results show, we are able
achieve higher correlation with human judgments
using our fine-tuned models than the state-of-the-
art MT metrics.

Limitations

While our work provides critical insights into bar-
riers to evaluation of interpretation data and in-

troduces a new metric which accounts for these
barriers, it is important to note that our results are
on English data. Future work extending our exper-
iments to other languages and domains will give
indication into how our insights can be extrapolated
to other languages.
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