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Abstract

State-of-the-art natural language generation
evaluation metrics are based on black-box lan-
guage models. Hence, recent works consider
their explainability with the goals of better un-
derstandability for humans and better metric
analysis, including failure cases. In contrast,
our proposed method BMX: Boosting Natural
Language Generation Metrics with explainabil-
ity explicitly leverages explanations to boost
the metrics’ performance. In particular, we
perceive feature importance explanations as
word-level scores, which we convert, via power
means, into a segment-level score. We then
combine this segment-level score with the orig-
inal metric to obtain a better metric. Our tests
show improvements for multiple metrics across
MT and summarization datasets. While im-
provements in machine translation are small,
they are strong for summarization. Notably,
BMX with the LIME explainer and preselected
parameters achieves an average improvement
of 0.087 points in Spearman correlation on the
system-level evaluation of SummEval.1

1 Introduction

Modern language model (LM) based natural lan-
guage generation (NLG) metrics achieve astonish-
ing results in grading machine generated sentences
like humans would (e.g., Bhandari et al., 2020;
Freitag et al., 2021b; Specia et al., 2021; Fabbri
et al., 2021). As most language models are black-
box components, some recent works started to ex-
plore the explainability of LM-based metrics (e.g.
Fomicheva et al., 2021; Leiter et al., 2022; Sai
et al., 2021; Zerva et al., 2022; Chen and Eger,
2023). This exploration, for example, contributes
to the foundation of ethical machine learning (e.g.
Fort and Couillault, 2016; European_Commission,
2019).

1We make our code available at: https://github.
com/Gringham/BMX

Figure 1: The duality of segment-level natural language
generation evaluation metrics (right) and their word-
level explanations (left).

Our work is motivated by an intriguing dual-
ity that we note between segment-level metrics
and their explainability through feature importance
techniques, e.g., LIME (Ribeiro et al., 2016):
Segment-level metrics2 return a single score in-
dicating the quality of a generated segment. Fea-
ture importance explanations3 increase the granu-
larity of this score, by assigning additional word-
level scores. These granular scores capture ad-
ditional information about the generated text and
about the metric that processed it, as, e.g., explored
by the Eval4NLP21 shared task (Fomicheva et al.,
2021) and the WMT22 quality estimation shared
task (Zerva et al., 2022). On the other hand, in
recent multidimensional quality metrics (MQM)
datasets, word-level error annotations are converted
into segment-level scores using heuristic functions
(Freitag et al., 2021a). Likewise, metrics like
BERTScore (Zhang et al., 2020) and BARTScore

2We use the term segment-level, as it includes the option
that a metric grades multiple hypothesis sentences. Recent
work shows that many sentence-level metrics also perform
well on the segment-level (Deutsch et al., 2023).

3Also called relevance scores or attribution scores.

2274

https://nl2g.github.io/
https://github.com/Gringham/BMX
https://github.com/Gringham/BMX


(Yuan et al., 2021) build their segment-level scores
upon word-level scores. In other words, we note
the duality that feature importance techniques pro-
duce word-level scores from segment-level scores
and heuristics can aggregate word-level scores into
segment-level scores. Figure 1 gives an example
of this duality for machine translation (MT), where
a German source sentence “Ich habe einen Hund”
was wrongly translated into “I have a cat”. On the
right side, a segment-level score of 0.6 is assigned
by a metric. On the left side, a feature importance
explainer is used to explain this score by assigning
word-level scores to each input token. Instead of
displaying the scores, we use colors to describe the
concept. The red words would likely achieve a low
importance score, as they are translated incorrectly.
The duality arises as the feature importance scores
can be recombined into a new segment-level score
(here using power-means).

In this work, we explore whether this duality
leads to iterative improvements of segment- and
word-level scores, with a focus on segment-level
scores as these are the main goal of modern metrics.
We propose Boosting natural language generation
Metrics with eXplainability (BMX), a method that
directly leverages word-level explanations to im-
prove the original segment-level score of a met-
ric. Specifically, the approach aggregates word-
level feature importance explanations using power
means (Rücklé et al., 2018) and combines them
with the original score using a linear combination.
To obtain the explanations, we leverage model-
agnostic explainability techniques, allowing appli-
cation to any NLG metric. While we consider NLG
(especially MT and summarization) as ‘natural use
case’, other regression and classification tasks fol-
low similar settings, which makes our approach
more generally applicable. For example, in senti-
ment classification, feature importance techniques
might assign high importance scores to tokens with
positive sentiment. Hence, aggregating these scores
could further inform a classification decision.

We evaluate BMX with several metrics and ex-
plainability techniques on 5 MT datasets (3 for
exploration + 2 held out for testing), as well as
2 summarization datasets, and discuss conditions
for its failure and success. Our work makes the
following contributions:

(i) We highlight the duality of word-level expla-
nations and segment-level scores for NLG
metrics.

(ii) We propose an approach to improve NLG met-
rics by combining it with model-agnostic ex-
plainability techniques.

(iii) We provide an evaluation that shows that
our approach can achieve consistent improve-
ments. For example, after applying BMX,
we obtain 0.087 points improvement on Sum-
mEval.

2 Approach

NLG metrics grade a generated text, also referred
to as hypothesis, by comparing it to a ground truth.
For MT, the ground truth could be a human written
reference translation or the original text in source
language. For summarization, the ground truth
could be a human written reference summary or
the source text that is being summarized. Given a
pair of ground truth segment g = ⟨g1, ..., gn⟩ and
hypothesis segment h = ⟨h1, ..., hm⟩, a segment-
level metric S0 generates a single score S0(g,h) =
s0 ∈ R. This score can be interpreted as, for exam-
ple, the adequacy/accuracy of the generation of h
given g.

Our algorithm consists of three steps: (1) com-
pute feature importance explanations, (2) aggregate
explanation scores, and (3) combine the aggregated
explanations with the original score.

2.1 Feature importance computation

The input of our algorithm is an arbitrary NLG
metric S0, which we aim to improve, and a pair of
ground truth and hypothesis segments (g,h). Fur-
ther, we leverage a feature importance explainer E,
e.g., LIME (Ribeiro et al., 2016) or SHAP (Lund-
berg and Lee, 2017). We use E to compute feature
importance scores ϕi for each input token of an
NLG metric. I.e., we explain S0 and its evalua-
tion of g and h using E and obtain ϕ ∈ Rm+n as
follows:

E(S0, g,h) = ⟨ϕ1, ..., ϕn, ϕn+1, ..., ϕn+m⟩

The importance scores ϕ specify the contribu-
tion of each token in g and h to s0. Note that
the metric S0 itself is a parameter to E as model-
agnostic explainers compare the metrics’ original
output with its output for permutations of the input
text. For a strong metric, a high feature importance
ϕi indicates that token ti ∈ g ∪ h has a positive
contribution to the score S0 and thus is likely to
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be correctly generated4. Low feature importance
can indicate incorrect translations or summaries.
This setup follows the Eval4NLP21 shared task
(Fomicheva et al., 2021) for MT. Continuing the
example from figure 1, the source sentence “Ich
habe einen Hund” is our g and the hypothesis sen-
tence “I have a cat” is our h; s0 is 0.6 and the
output of E are feature importance scores corre-
sponding to the words, e.g. E(S0, g,h) = ϕ =
⟨0.5, 0.4, 0.2, 0.0, 0.5, 0.4, 0.2, 0.0⟩, where the low
numbers indicate mistranslations.

In some datasets, multiple references are avail-
able for each hypothesis. In these cases, we con-
catenate the importance scores for each reference
segment into ϕ.

2.2 Explanation score aggregation

As mentioned above, the feature importance scores
of a reasonable metric indicate the generation qual-
ity of each token. We combine these values to esti-
mate the quality of the hypothesis at the segment-
level. Therefore, we employ an aggregation func-
tion f : Rm+n → R to transform feature impor-
tance scores generated from the previous step into
a single scalar value. We obtain the aggregated
explanation score ŝ0 as follows:

f(E(S0, g,h))) = ŝ0

2.3 Linear combination

Finally, we linearly combine ŝ0 and s0 using
weight w to construct a new metric S1:

S1(g,h) = w · s0 + (1− w) · ŝ0 = s1

We note that this three step process (feature im-
portance computation, explanation score aggrega-
tion, linear combination) can be applied iteratively
by increasing the index of S (resp. s). I.e., in the
next iteration, we can consider S1 as the original
metric and s1 as the original score.

3 Experiment Setup

In this section, we describe the datasets, metrics,
explainers and aggregation methods that we evalu-
ate in §4 and their parameter configurations.

4For weak metrics, the segment-level score is incorrect
more often, hence the feature importance scores are not as
likely to be correlated to correct and incorrect translations.

3.1 Datasets

Our configuration of BMX has two parameters w
(see §2.3) and p (see §3.4) which can either be se-
lected in-domain on a labeled subset of the same
dataset or cross-domain on a different dataset. We
mainly evaluate cross-domain selection, as it would
allow to apply BMX without additional annotation
effort and is, therefore, more desirable. However,
cross-domain tasks are generally also more difficult.
For summarization, we also test an in-domain strat-
ification approach. We refer to the datasets that we
use for parameter search as calibration datasets and
to those that we evaluate on as evaluation datasets.

MT datasets We use three calibration datasets:
the WMT17 metrics shared task (Bojar et al.,
2017) newstest2017 test set in the to-English direc-
tion, the 2020 partition of the MLQE-PE dataset
(Fomicheva et al., 2022) and the Eval4NLP21 test
set (Fomicheva et al., 2021). We evaluate BMX
on two further evaluation datasets: The WMT22
Quality Estimation shared task (Zerva et al., 2022)
and the MQM5 annotations of newstest216 without
human written references (Freitag et al., 2021a,b).
WMT17, MLQE-PE, Eval4NLP and WMT22 con-
tain source sentence - hypothesis pairs and human
direct assessment (DA) scores (Graham et al., 2017)
that grade the translation quality. For MLQE-PE,
Eval4NLP21 and WMT22, human annotators de-
termined these scores based on source and hypoth-
esis sentences; for WMT17 they used reference
sentences instead of source sentences. For MQM
(Lommel et al., 2014), scores are aggregated from
fine-grained human MQM error annotations, and
have been shown to be of better quality than crowd-
sourced annotations (Freitag et al., 2021a). Table
5 (appendix) shows an overview of the number of
samples per language pair and dataset.

Summarization datasets We perform in-domain
calibration on SummEval (Fabbri et al., 2021). To
do so, we apply cross-validation and split Sum-
mEval into eight non-overlapping configuration (7
with 208 samples and 1 with 144) and evaluation
(7 with 1392 samples and 1 with 1456 samples)
splits. Also, we make sure that no source text in
the configuration set has another hypothesis in the
corresponding test set. SummEval contains multi-
ple expert-annotated discrete scores for coherence,
consistency, fluency and relevance each and 11 ref-

5We further refer to the datasets by these bolded names.
6https://github.com/google/wmt-mqm-human-evaluation
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erence summaries per hypothesis. We average the
expert annotations for each score.

Further, we use the parameter values obtained
on SummEval and perform cross-domain calibra-
tion on RealSumm (Bhandari et al., 2020). Sum-
mEval and RealSumm have the same data source,
but different annotations and a different selection
segments.

3.2 Base metrics
We test BMX with the following metrics.

Reference-based For summarization, we test
BMX with BERTScore (Zhang et al., 2020) and
BARTScore (Yuan et al., 2021).

Reference-free For MT, we test BMX with
XBERTScore (Zhang et al., 2020; Song et al.,
2021; Leiter, 2021)7, XLMR-SBERT (Reimers and
Gurevych, 2020), TransQuest (Ranasinghe et al.,
2021) and COMET (Rei et al., 2021).

We report the exact metric configurations in Ap-
pendix A.

3.3 Explanation techniques
We explore the effectiveness of three model-
agnostic explainers: Erasure (Li et al., 2016),
LIME (Ribeiro et al., 2016) and SHAP (Lundberg
and Lee, 2017) For implementation details refer to
appendix D.

Multiple references: We handle the computa-
tion of the hypothesis and multiple references sep-
arately by fixing all but one during each applica-
tion of the explainers and applying the explainer
separately to each of them. E.g., if we have one hy-
pothesis and 11 references and use LIME with 100
permutations, we will apply it 12 times, resulting
in 1200 permutations in total.

3.4 Aggregation technique
Following Rücklé et al. (2018), we use the power
mean (or generalized mean) as a generalization
over different means to aggregate token-level
feature-importance scores. The power mean of
n positive numbers e1, . . . , en is computed as:

Mp(e1, ..., en) =

(
1

n

n∑

k=1

epk

) 1
p

Depending on p, the power mean takes on the value
of specific means, e.g. p = −1 is the harmonic

7We refer to BERTScore variants that use multilingual
language models as XBERTScore.

mean, p = 1 is the arithmetic mean, and p = −∞
resp. p = +∞ is the minimum resp. maximum.
We experiment with p-values between [−30, 30] in
0.1 steps. The token-level scores resulting from
the explanation technique can be negative, which is
problematic for power means, as these are defined
on positive numbers only8. To guarantee positive
importance scores, whenever there is a negative im-
portance score for a token, we add a regularization
term to all importance scores of the current ground
truth/hypothesis pair. This term is the absolute
value of the smallest importance score assigned to
any token of this pair. Additionally, we generally
add a constant 1e−9 to each importance score to
avoid issues with fluctuations around 0. Future
work could explore further methods of aggregation
such as different settings of the Kolmogorov mean
(de Carvalho, 2016).

3.5 Evaluation
To evaluate the BMX metrics, we calculate the cor-
relation on datasets with human annotated scores.
E.g., we can compute Pearson correlations per sam-
ple as follows:

Pearson(H(LP, D) , S1(LP, D,S0, E, w, p) ) (1)

Here, H returns the set of human scores for lan-
guage pair LP and dataset D. S1 returns the new
metric scores, when our method is applied to LP
and D. Its further parameters are the original met-
ric S0, the explainer E, the weight of the linear
combination w and the p value of the power mean.
On WMT22, we evaluate the segment-level Spear-
man correlation. On the MQM dataset, we evaluate
segment- and system-level Kendall correlations.
Further, for SummEval we evaluate the system-
level Spearman and Kendall correlations. Finally,
for RealSumm we report the segment-level Pear-
son and system-level Kendall correlations. With
this setup, we follow the evaluation of the datasets’
origin papers. An exception is the system-level
evaluation of the MQM dataset, where we report
the Kendall correlation per language pair as done
by Freitag et al. (2021a).

4 Results

In this section, we evaluate the effectiveness of
BMX by correlating the results with human judg-
ments of MT and summarization quality annotated

8Inserting negative numbers may lead to discontinuities or
complex numbers.
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in the datasets described in §3.1. To start, we cali-
brate the parameters p and w.

Calibrating p and w We perform a grid search
on the calibration sets (see §3.1) to determine the
parameters w and p for our evaluation of BMX on
the evaluation sets.

For p, we test 600 equally spaced values in
[−30,+30] and for w, we test 6 equally spaced val-
ues in [0, 1] (where w = 1 reproduces the original
score). This results in 3000 BMX configurations
(without w = 1) for every metric-explainer combi-
nation. Next, we evaluate all p-w-metric-explainer
combinations on the respective calibration set(s).
Specifically, for the MT calibration sets we evaluate
with segment-level Pearson correlation (see Eq. 1)
for each language pair, and for summarization we
evaluate with system-level Kendall correlation.

For our evaluation, we select the median of the p
and w values that led to any increase over the orig-
inal correlation on the calibration set(s) for each
metric-explainer combination.9

Our approach of selecting p and w is rather sim-
ple. Future work might consider more sophisticated
ways of optimization, such as considering the areas
of highest increase in the grid search or even learn-
ing a model to set the parameters based on input
segments.

Figure 2 shows exemplary box-plots of p and w
for XBERTScore, to illustrate the distributions we
select from.

Table structure In the next paragraphs, we
present our results in Tables 1, 2, 3 and 4, us-
ing similar structures. The top row shows the
metric names. For MT datasets, the left column
shows the language-pairs. For SummEval, it de-
scribes the aspects graded by human annotators
and whether Kendall (KD) or Spearman (SP) cor-
relation is shown. For RealSumm, the left col-
umn describes whether segment-level Pearson or
system-level Kendall evaluation is shown. Gener-
ally, the left-most number indicates the ORIGinal
metric’s correlation for each metric. The other num-
bers show the correlation of BMX using ERASure,
LIME and/or SHAP respectively. Improvements
over the original metric are colored in blue. For MT
and RealSum, we print results in bold where im-
provements with BMX are statistically significant
(p<=0.05) with the permute-both test described by

9We note that, as a benefit of BMX, not much data is used
for the in-domain calibration on SummEval, as the calibration
sets have small sizes of ∼200 samples.
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Figure 2: Box-plots of the w and p values for
XBERTScore leading to improvements with different
explainers across all settings of the MT calibration sets.
Md denotes the Median value.

Deutsch et al. (2021); underscored results remain
significant after applying the Bonferroni-correction
(per base metric; separately for MT and summariza-
tion) (Bonferroni, 1936; Dror et al., 2017).10 Dror
et al. (2018) describe that the statistical significance
of cross-validation is underexplored. A simple so-
lution they propose is to check that a predefined
number of splits remains significant after applying
the Bonferroni-correction. For SummEval, instead
of selecting this predefined number, we report the
number of significant splits. Each average correla-
tion we report has two superscript numbers. The
first indicates the number of significant values be-
fore and the second after the Bonferroni correction
(per base metric and correlation type). Results
are rounded to 3 digits. Therefore, small improve-
ments are indiscernable from the rounded numbers
in some cases and can be identified by the coloring.

Performance on WMT22 Table 1 shows the per-
formance with the preselected p and w values from
the last section. BMX achieves an improvement in
most cases, when running with XBERTScore and
XLMR-SBERT, while it only improves TransQuest
on two language-pairs. The average improvement
with SHAP on XBERTScore and XLMR-SBERT
is consistent but rather small with 0.005 points
in Spearman correlation. Notably, there are no

10We use the permute-both significance test implemen-
tation from https://github.com/danieldeutsch/
nlpstats and the Bonferroni-correction implementa-
tion from https://github.com/danieldeutsch/
sacrerouge.
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improvements for the en-yo language pair of the
WMT22 QE shared task (Zerva et al., 2022). This
language pair was introduced as a low-resource sur-
prise set. The bad performance might be caused
by the models not having seen much of Yoruba
during training. Potentially BMX does not work
here because there is nothing reasonable to explain,
as the models do not know the language.

Performance on MQM Table 2 shows the per-
formance of BMX enhanced metrics for the MQM
test set. On the segment-level, BMX improves
all metrics in all language pairs, although only
marginally for COMET. The average gain is 0.0075
points in Kendall correlation. In all but two cases,
the improvement with BMX is significant. On the
system-level BMX decreases the metric correlation
for XBERTScore and Transquest. We investigate
this in the paragraph MT failure analysis in Section
5 and find that better parameter selection can lead
to strongly improved scores.

Performance on SummEval Table 3 shows the
average Kendall and Spearman correlations of
BMX (with in-domain calibration on the respec-
tive calibration splits) across the 8 test splits that
we created from SummEval. In total, there is a
strong average gain of 0.074 points in Kendall
and 0.087 points in system-level Spearman correla-
tion. Individually, gains are between 6-40%, e.g.,
BERTScore improves from 0.309 to 0.431 Kendall.
These results show that, depending on the setting,
BMX can substantially improve existing metrics.

Performance on RealSumm Table 4 shows
the performance of BMX with BERTScore and
BARTScore on the RealSumm dataset. We select
the average of p and w values of the SummEval
calibration splits for this setting as cross-domain
calibration. BMX increases the system level cor-
relation of BERTScore by 0.007. However, for
BARTScore the performance decreases.

5 Analysis

In this section, we compare BMX to a fine-tuned
metric on a SummEval split, analyze the failure in
RealSumm and explore the stability of the metric
when using the LIME explainer.

Comparison to fine-tuning a metric We use
the out-of-the-box training script of BARTScore to
fine-tune BARTScore on the reference-hypothesis
pairs of the first calibration split of SummEval.

Then, we evaluate the fine-tuned metric, the origi-
nal metric and BMX on the first test split and com-
pare the results (see Figure 3). The tuned metric
has a better coherence than the original metric and
BMX, however, all other aspects are worse than
original. BMX has the highest correlation in all
other dimensions, which shows that it can use the
small-scale training set more efficiently.
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SP

Relevance-SP
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Figure 3: System-level correlation with BARTScore on
the first test split of SummEval. Left columns show the
original correlation, middle columns show the correla-
tion with BARTScore fine-tuned on the calibration set
and right columns show the correlation with BMX.

MT failure analysis For some settings, for ex-
ample with COMET, changes are extremely small.
To understand BMX’ internal workings, we plot
the human scores and the two factors of the linear
combination (the original score and the aggregated
feature importance scores) for COMET on WMT22
cs-en (see the figure in Appendix G). The scores are
ordered by the human scores from high to low and
normalized by z-scoring. We find that many scores
that were aggregated from the explanations are uni-
form, with few outliers. Hence, adding them to
the original COMET will hardly change the results.
Future work could further explore the causes.

As the system-level correlation decreased for
some test setups on the MQM dataset, we further
suspect that the transfer of p and w from the calibra-
tion sets to the evaluation set did not work out well,
resulting in decreased correlations. To test this, we
perform another grid-search on p and w and ana-
lyze whether other parameter settings would have
performed better. The analysis shows that, even
for COMET, the best parameter choice could lead
to improvements of over 0.07 Kendall points, with
a choice of w = 0.2 and a good selection of p
(see the figure in Appendix 7). For Transquest, the
improvements can be over 0.06 Kendall points in
en-de with w = 0.8. Determining p and w in an
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LP XBERTScore XLMR-SBERT TransQuest COMET
ORIG/ERAS/LIME/SHAP ORIG/ERAS/LIME/SHAP ORIG/LIME ORIG/LIME

en-cs 0.294/0.295/0.314/0.313 0.321/0.321/0.327/0.330 0.556/0.545 0.502/0.502
en-ja 0.061/0.062/0.064/0.073 0.188/0.188/0.189/0.191 0.275/0.276 0.228/0.228
en-mr 0.307/0.307/0.313/0.315 0.114/0.114/0.115/0.115 0.365/0.367 0.291/0.291
en-yo −0.039/−0.039/−0.039/−0.040 0.039/0.039/0.039/0.039 0.066/0.066 0.158/0.158
km-en 0.569/0.569/0.573/0.575 0.477/0.477/0.477/0.478 0.619/0.618 0.443/0.443
ps-en 0.558/0.558/0.562/0.561 0.446/0.446/0.446/0.446 0.614/0.614 0.427/0.427

AVG 0.292/0.292/0.298/0.299 0.264/0.264/0.266/0.267 0.416/0.414 0.342/0.342

Table 1: Segment-level Spearman correlation of metrics with and without BMX on the WMT22 dataset. We describe
the table setup in the paragraph table structure in section 4.

LP XBERTScore XLMR-SBERT TransQuest COMET
ORIG/LIME ORIG/LIME ORIG/LIME ORIG/LIME

en-de_seg 0.068/0.092 0.042/0.050 0.186/0.188 0.248/0.248
zh-en_seg 0.243/0.257 0.155/0.162 0.298/0.306 0.376/0.376
en-de_sys 0.051/0.051 −0.051/−0.077 0.245/0.231 0.462/0.462
zh-en_sys 0.051/0.000 0.103/0.103 0.077/0.103 0.564/0.564

AVG_seg 0.155/0.174 0.099/0.106 0.242/0.247 0.312/0.312
AVG_sys 0.051/0.025 0.026/0.013 0.161/0.167 0.513/0.513

Table 2: Segment- and system-level Kendall correlation of metrics with and without BMX on the MQM dataset. We
describe the table setup in the paragraph table structure in section 4.

Dataset BERTScore BARTScore
ORIG/LIME ORIG/LIME

Coherence-KD 0.533/0.6755,4 0.202/0.2292,2

Consistency-KD 0.029/0.1424,4 0.513/0.5190,0

Fluency-KD 0.294/0.3564,1 0.420/0.4482,0

Relevance-KD 0.379/0.5508,8 0.415/0.4585,2

Coherence-SP 0.690/0.8318,8 0.289/0.3243,1

Consistency-SP 0.022/0.2116,6 0.708/0.7231,0

Fluency-SP 0.389/0.4675,4 0.389/0.4672,1

Relevance-SP 0.465/0.6088,8 0.555/0.6015,2

AVG-KD 0.309/0.431 0.388/0.414
AVG-SP 0.391/0.529 0.528/0.563

Table 3: Average system-level Kendall and Spearman
correlation of metrics with and without BMX across the
test splits we extracted from SummEval. We describe
the table setup in the paragraph table structure in section
4.

in-domain setup might lead to better results. How-
ever, in real applications, there might not exist a
human labeled portion of the dataset the method
is applied to. Hence, future work could explore
more elaborate mechanisms of selecting p and w
than using the median of improvements on another
dataset.

RealSumm failure analysis We suspect that the
transfer of p and w from SummEval to the domain
of RealSumm did not work out well, resulting in
decreased correlations. To test this, as for our MT

Dataset BERTScore BARTScore
ORIG/LIME ORIG/LIME

Segment 0.304/0.305 0.488/0.474
System 0.257/0.264 0.758/0.684

Table 4: Segment-level Pearson and system-level
Kendall correlation of metrics with and without BMX
for RealSumm. We describe the table setup in the para-
graph table structure in section 4.

failure analysis, we perform another grid-search
on p and w and analyze whether other parameter
settings would have performed better. The results
of this analysis for BERTScore are visualized in
figure 4. A choice of w = 0 could have led to
drastic improvements of over 0.3 (over 100% im-
provement). For BARTScore, the correlation could
be improved by over 0.05 with the correct selec-
tion (see appendix F). Determining the values in
a similar stratification setting as with SummEval
might thus have led to better results.

Stability of LIME As LIME uses random per-
mutations, we test the stability of the approach for
our task. To do so, we select the metric COMET
and 3 language pairs of the WMT22 dataset. Then,
we compute BMX with LIME using the grid-search
configuration of the previous section. We exclude
w = 1, such that we get 3000 scores per language
pair. We repeat this process 3 times using 100 per-
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Figure 4: System-level correlation with BERTScore on
RealSumm, across p values from −30 to 30 and across
w values from 0 to 1, where w = 1 is the original metric
(indicated by a black line). BMX is using LIME in this
sample.

mutations and 3 times using 1000 permutations.
Then we compute the average Pearson correlation
among the first 3 runs and the last 3 runs. With 100
permutations, the correlation is 0.9960, indicating
very high stability of scores. With 1000 permuta-
tions, it is 0.9997. Thus, further runtime can be
traded for more stability. Lower w values are less
stable than higher ones (see figure 5). The case
of w = 0 does not appear in our experiment cal-
ibrations and is therefore not applied on the test
sets.

Influence of WMT2017 In contrast to newer
datasets, the WMT17 dataset that we use for cali-
bration is crowdsourced (Bojar et al., 2017). Hence,
we investigate its impact on the parameter calibra-
tion by removing it and rerunning the experiments.
This marginally improves correlation on the test
sets (up to 0.002). These results can be seen as a
sign of the robustness of our parameter selection
method, although it is not optimal performance-
wise.

Segment- and System-level Generally, we note
that the performance increases with BMX tend to
be higher on system-level tasks, while they are
more stable, but small, on the segment-level. As
our analysis shows, the correct parameter selection
is very important and can lead to high improve-
ments, but also decreased correlation. Again, we
note that future work could explore parameter se-
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0.96

0.98

1.00
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Figure 5: Average Pearson correlation between 3 re-
peated runs of BMX with LIME and different settings of
w on the x-axis. The tests were computed on 3 language-
pairs from WMT22 and the p-values range from -30 to
30 for every w setting.

lection, such as specifically choosing the parame-
ters for each input, for example, by using a trained
model.

6 Related Work

Our work is related to the domains of explainability
and NLG metrics.

NLG metrics While embedding based metrics
perform very well, their internal workings have be-
come increasingly complex and cannot be easily
understood by humans. The recent shared tasks
Eval4NLP (Fomicheva et al., 2021) and WMT22
QE (Zerva et al., 2022) explore the usage of ex-
plainability techniques for MT to tackle this issue
and provide word-level explanations for segment-
level metrics. Motivated by their work, we also use
word-level explanations, but additionally aggregate
them to improve the original score.

Considering existing metrics, our work is espe-
cially related to word-level metrics and metrics
that can be considered self-explaining. Word-level
metrics like word-level TransQuest (Ranasinghe
et al., 2021) (in MT) are designed to assign trans-
lation quality scores to each word instead of the
whole segment. They can be considered as self-
explaining, as they provide the same kind of expla-
nations external explainers would provide (Leiter
et al., 2022). Some existing segment-level met-
rics are self-explaining in this sense as well, as
they use segment-level scores that are constructed
from other word-level outputs. E.g., BERTScore
is based on word-level cosine similarities of con-
textualized word-embeddings and BARTScore is
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based on word-level prediction probabilities of a
BART model. We also use word-level scores to
construct a new segment-level score. However, to
the best of our knowledge, our method is the first to
leverage model-agnostic explainabilitiy techniques
to extract additional word-level information that
is incorporated into the final metric. This has the
benefit of being applicable to any segment-level
NLG metric. BERTScore also has a configura-
tion option to use tf-idf weighting on a token level.
This is similar to feature importance explanations
in the sense that both techniques assign “impor-
tance” scores to words. However, they describe
different kinds of importance. Tf-idf weighting
considers the general importance of words in a
text. So these scores do not relate to “importance
of the input to the output score” and potential er-
rors considered by a metric. The Eval4NLP shared
task showed that explanations from self-explaining
methods tend to be stronger than model agnostic
approaches (Fomicheva et al., 2021). Our method
can provide another way to incorporate these word-
level scores into the final prediction that might be
explored by future work. Future work might also
explore to use other model-specific explainers, e.g.
gradient based or attention based methods (e.g. Tre-
viso et al., 2021).

Another topic related to explainable NLG met-
rics are fine-grained annotation schemes them-
selves. For example, the word-level scores an-
notated in the Eval4NLP shared task (Fomicheva
et al., 2021) or fine-grained error annotations like
MQM (Lommel et al., 2014) allow for human an-
notation of explanations that could for example
be used to compare the word-level scores in our
experiments to.

Further, our approach is conceptually related
to recent large language model (LLM) based ap-
proaches (released subsequently to our first Arxiv
submission), where the LLMs iteratively explain
and refine their own textual outputs (e.g. Madaan
et al., 2023). Also, further works on metrics
have started to employ LLM generated textual er-
ror reports in metric heuristics (e.g. Kocmi and
Federmann, 2023; Fernandes et al., 2023). We
differ from these approaches by not relying on
LLMs, and by using external explainers and feature-
importance explanations.

Explainability We leverage model-agnostic ex-
plainability techniques to collect word-level impor-
tance scores. There are many works that give an

overview on the topic of explainability, e.g., Lipton
(2018); Barredo Arrieta et al. (2020).

Specifically, we want to highlight the similarity
of our approach to the concept of simulatability
(e.g. Hase and Bansal, 2020). Here, a machine or a
human tester tries to reproduce an original model’s
output or solve an additional task, using the expla-
nations they receive. We also utilize explanation
outputs to accomplish a specific task. However, our
focus is not to evaluate the performance of the ex-
plainers, but rather to use them to improve metrics
for NLG.

7 Conclusion

We have presented BMX: Boosting natural lan-
guage generation Metrics with eXplainability, a
novel approach that leverages the duality of NLG
metrics and feature importance explanations to
boost the metrics’ performance. BMX leverages
model-agnostic explainability techniques, so that it
can be applied to any NLG metric. Additionally, it
requires no supervision once the initial parameters
for p and w are set, which might benefit fully unsu-
pervised or weakly supervised approaches to induc-
ing evaluation metrics (Belouadi and Eger, 2023).
Our tests show consistent improvements for multi-
ple configurations on all tested datasets. Notably,
we demonstrate strong improvements for summa-
rization with 0.074 points in Kendall correlation
on the system-level evaluation of SummEval, be-
ing significant on many test splits. On RealSumm,
BMX is not as strong, but our analysis shows that
a better choice of p and w could lead to strong
improvements on this dataset as well.

To the best of our knowledge, our approach is
the first to leverage the duality of segment-level
MTE metrics and their feature-importance expla-
nations directly and we believe that it can lead a
step forward towards integrating metrics with ex-
plainability. Future work should also consider to
which degree BMX can improve the explainabil-
ity of metrics and apply our framework to other
regression and classification tasks, beyond MT and
summarization metrics. Future work should also
examine how to effectively leverage higher-level
iterations.
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Ethical Considerations

Our work might lead to the development of better
natural language generation metrics. These metrics
could be used to develop better generation systems.
For these generation systems there is the risk of
malicious usage, e.g., in the generation of hate
speech or fake news. We think the benefit of these
applications outweighs their misuse and note that
our work is only considering their evaluation and
hence does not carry a risk itself.

Limitations

The post-hoc explainers that we use reevaluate per-
mutations of the hypothesis and ground truth seg-
ments by calling the original metric. This leads
up to a few thousand executions depending on the
configurations of LIME and SHAP (for Erasure,
the number of executions depends on the input size,
thus is much lower). We advise to test the run-
time on a few samples and if necessary, adapt the
configuration to use less permutations.

Another limitation is that p and w need to be
calibrated. The most promising approach to do
this would be to evaluate a labeled subset of the
dataset the metric should be applied on. If this is
not feasible, existing datasets with human scores
can be used for the calibration. Tuning these two
parameters is little effort compared to the billions of
parameters of modern LLMs, thus is comparatively
efficient and applicable in small data scenarios. Fur-
ther, due to time constraints, we did not evaluate
all metric-explainer combinations. Further analy-
sis might thus show that other settings work even
better. In §6, we discuss metrics that produce word-
level scores or are self-explaining by default. While
not applicable to all metrics, every metric that falls
into one of these two groups has another option to
compute explanations. As the Eval4NLP shared
task showed, these tend to be stronger than model
agnostic approaches (Fomicheva et al., 2021). Also,
while not explicitly denoted as explanations, they
are often already incorporated into the final score,
e.g. for BERTScore or BARTScore. Here, we note
that our method can provide another way of incor-
porating these word-level scores into the final pre-
diction that might be explored by future work. Fu-
ture work might also explore other model-specific
explainers, e.g. gradient based or attention based

methods (e.g. Treviso et al., 2021). Lastly, while
BMX can potentially be applied to other NLG tasks
and other domains in general, we did not test it.
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A Library Configurations

We use the following library and metric versions:
• LIME: 0.2.0.1
• SHAP: 0.41.0
• transformers: 4.20.1, 4.24.0
• BARTScore, Reference-Based: bartscore:

May 2022, facebook/bart-large-cnn + bart.pth
(406,290,432 Parameters). BARTScore (Yuan
et al., 2021) returns the average generation proba-
bility of a sentence by a fine-tuned BART model
as score. We use the ref→hyp generation di-
rection of BARTScore, while the authors of
BARTScore propose to use the src→hyp genera-
tion direction for SummEval (Yuan et al., 2021).
We use ref→hyp as we want to leverage the large
number of references in SummEval when apply-
ing BMX.

• BERTScore, Reference-Based: bertscore:
0.3.11; roberta-large (267,186,176 Parameters),
No idf-weighting. BERTScore (Zhang et al.,
2020) computes a sentence score from the cosine
similarity of contextualized word-embeddings
between two input sentences.

• COMET, Reference-Free: comet: 1.1.3;
wmt21-comet-qe-mqm (569330715 Parameters).
We use COMET-QE (Rei et al., 2021), which
uses a dual-encoder approach based on XMLR-
models fine-tuned on human scores. 11

• TransQuest, Reference-Free: transquest: 1.1.1
TransQuest/monotransquest-da-multilingual;
wmt21-comet-qe-mqm (560941057 Parameters).
TransQuest (Ranasinghe et al., 2020) is a
reference-free trained metric for MT, which
employs an XLMR model fine-tuned on human
quality estimation scores that grade the hypoth-
esis based on the source sentence. This model
directly predicts a segment-level score as the
output.

• XBERTScore, Reference-Free: bertscore:
0.3.11; joeddav/xlm-roberta-large-xnli
(459,120,640 Parameters), No idf-weighting.
Leiter (2021) empirically showed that among
multiple XLM-RoBERTa (Conneau et al., 2020)
model variants, one fine-tuned on a cross-lingual
NLI dataset XNLI12 (Conneau et al., 2018)
achieves strong results on the Eval4NLP21
(Fomicheva et al., 2021) dataset.

• XLMR-SBERT: stsb-xlm-r-multilingual
(278,043,648 Parameters). We use XLMR to
compute multilingual sentence embeddings
(Reimers and Gurevych, 2020). Specifically, we
use the cosine similarity of source and target
embeddings as another segment-level metric.

For Erasure we use our own implementations.

B Machine Translation Dataset Overview

See Table 5.

C Early results: selection of LIME

We performed early experiments on WMT17,
Eval4NLP and MLQE-PE, in which we selected
the median of the p and w values that lead to the
highest improvements per language-pair in a grid
search. We only separated the values by explainer
and not by metric. These experiments also included
a variation of XMoverScore (Zhao et al., 2020) in
the reference-free settings, as well as BERTScore
and SentenceBLEU (Papineni et al., 2002) in the
reference-based settings. XMoverScore is not in-
cluded in the final experiments due to weak met-

11The stronger CometKiwi (Rei et al., 2022) is not yet
available at time of writing this paper.

12XNLI XLMR-Model: https://huggingface.co/
joeddav/xlm-roberta-large-xnli
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WMT17 Eval4NLP MLQE-PE WMT22 MQM
LPs cs-en ro-en ro-en en-cs en-de

de-en et-en et-en en-ja zh-en
fi-en ru-de si-en en-mr
lv-en de-zh ne-en en-yo
ru-en ru-en km-en
tr-en en-zh es-en
zh-en en-de

Per LP 560/(501) 1000 1000 ca.1000 9002/10131
Total 3871 4000 7000 6000 19133

Table 5: Summary of the MT datasets we are using for exploration. We list the language pairs (LPs) in each set, the
number of samples per pair and the total number of samples. The bold LPs occur in multiple datasets. For zh-en
some sentences in the dataset could not be loaded, hence this pair has only 501 samples.

ric performance (we use it without target-side lan-
guage model and cross-lingual mapping). BLEU
and BERTScore are not included for machine trans-
lation, as only a few of the selected datasets pro-
vide reference sentences. It also included Input
Marginalization (Kim et al., 2020) as another ex-
plainer, which we didn’t include in later experi-
ments due to high runtime. Figure 6 shows a plot
with the number of correlation improvements and
decreases in each combination of language-pair,
dataset and metric per explainer. We can see that
LIME performs best, making it the default choice
in the rest of our experiments.

Erasure LIME SHAP IM
0

50

Figure 6: Cases of improvement and decreased perfor-
mance with p and w fixed to the respective explainer’s
best median. The blue bars show the number of settings
with improved correlation, the orange bars show the
number of settings with equal or worse correlation.

D Implementation details for explainers

• Erasure: Li et al. (2016) suggest that model
decisions can be investigated by analyzing
the effect of feature removal. This is, e.g.,
used for adversarial attacks by Li et al. (2020).
We use Erasure to determine token-level im-
portance scores by analyzing a metric’s pre-
diction with respect to the presence of each

token in the translation. I.e., for each token
ti ∈ g ∪ h we compute the importance ϕi as
follows:

ϕi = S(g,h)− S(g,h)/ti

where S(g,h) is an NLG metric grading the
ground truth g and hypothesis h. S(g,h)/ti
denotes the same input without token ti.

• LIME: LIME (Ribeiro et al., 2016) is a per-
mutation based method, which trains a lin-
ear model that returns similar results as the
explained model in a neighborhood of in-
puts. Its weights are assigned to each cor-
responding word as feature importance ex-
planations. When we explain a metric with
LIME, for each ground truth or hypothesis
sentence that is explained, LIME trains a lin-
ear model that returns similar results as the
metric in a neighborhood of this sentence.
The dataset used to fit this model is gener-
ated by randomly permuting the input. The
labels of this dataset are determined by com-
puting the metric score of this permuted input.
Finally, the weights of the linear model are
assigned to each token as feature importance
explanations. We run LIME with 100 permuta-
tions per ground truth and per hypothesis sen-
tence. We use the default replacement token
of the LIME library UNKWORDZ: https:
//github.com/marcotcr/lime. We
use LIME with 100 permutations per hypoth-
esis and ground truth each.

• SHAP: SHAP (Lundberg and Lee, 2017) is
an explainability technique that either exactly
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or approximately computes Shapley values
from game theory, which measure the con-
tribution of variables to a result, as feature
importance scores. The exact SHAP explana-
tion of a token is calculated using all possible
permutations of the target sentence (with a sin-
gle replacement token). The number of possi-
ble permutations grows exponentially with the
number of input tokens. Therefore, SHAP is
often approximated, e.g. using KernelShap
(Lundberg and Lee, 2017). In our experi-
ments, we use the same replacement string as
for LIME: UNKWORDZ. Also, up to a num-
ber of 7 tokens per sentence, we compute the
exact SHAP. For more tokens, we use Permu-
tationSHAP, which is the default of the SHAP
library13.

E MQM with COMET

See Figure 7.
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Figure 7: System-level correlation with COMET on
the MQM dataset, across p values from −30 to 30 and
across w values from 0 to 1, where w = 1 is the original
metric (indicated by a black line). BMX is using LIME
in this sample.

F RealSumm with BARTScore

See Figure 8.

G MT failure plot

See Figure 9.

13https://github.com/slundberg/shap/
blob/master/shap/explainers/_permutation.
py
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Figure 8: System-level correlation with BERTScore on
RealSumm, across p values from −30 to 30 and across
w values from 0 to 1, where w = 1 is the original metric
(indicated by a black line). BMX is using LIME in this
sample.
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Figure 9: Z-normalized original COMET scores, human
scores and scores aggregated from explanations.
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