@inproceedings{fang-etal-2024-joint,
title = "Joint Inference of Retrieval and Generation for Passage Re-ranking",
author = "Fang, Wei and
Chuang, Yung-Sung and
Glass, James",
editor = "Graham, Yvette and
Purver, Matthew",
booktitle = "Findings of the Association for Computational Linguistics: EACL 2024",
month = mar,
year = "2024",
address = "St. Julian{'}s, Malta",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.findings-eacl.151",
pages = "2289--2298",
abstract = "Passage retrieval is a crucial component of modern open-domain question answering (QA) systems, providing information for downstream QA components to generate accurate and transparent answers. In this study we focus on passage re-ranking, proposing a simple yet effective method, Joint Passage Re-ranking (JPR), that optimizes the mutual information between query and passage distributions, integrating both cross-encoders and generative models in the re-ranking process. Experimental results demonstrate that JPR outperforms conventional re-rankers and language model scorers in both open-domain QA retrieval settings and diverse retrieval benchmarks under zero-shot settings.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="fang-etal-2024-joint">
<titleInfo>
<title>Joint Inference of Retrieval and Generation for Passage Re-ranking</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wei</namePart>
<namePart type="family">Fang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yung-Sung</namePart>
<namePart type="family">Chuang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">James</namePart>
<namePart type="family">Glass</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-03</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EACL 2024</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yvette</namePart>
<namePart type="family">Graham</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Matthew</namePart>
<namePart type="family">Purver</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">St. Julian’s, Malta</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Passage retrieval is a crucial component of modern open-domain question answering (QA) systems, providing information for downstream QA components to generate accurate and transparent answers. In this study we focus on passage re-ranking, proposing a simple yet effective method, Joint Passage Re-ranking (JPR), that optimizes the mutual information between query and passage distributions, integrating both cross-encoders and generative models in the re-ranking process. Experimental results demonstrate that JPR outperforms conventional re-rankers and language model scorers in both open-domain QA retrieval settings and diverse retrieval benchmarks under zero-shot settings.</abstract>
<identifier type="citekey">fang-etal-2024-joint</identifier>
<location>
<url>https://aclanthology.org/2024.findings-eacl.151</url>
</location>
<part>
<date>2024-03</date>
<extent unit="page">
<start>2289</start>
<end>2298</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Joint Inference of Retrieval and Generation for Passage Re-ranking
%A Fang, Wei
%A Chuang, Yung-Sung
%A Glass, James
%Y Graham, Yvette
%Y Purver, Matthew
%S Findings of the Association for Computational Linguistics: EACL 2024
%D 2024
%8 March
%I Association for Computational Linguistics
%C St. Julian’s, Malta
%F fang-etal-2024-joint
%X Passage retrieval is a crucial component of modern open-domain question answering (QA) systems, providing information for downstream QA components to generate accurate and transparent answers. In this study we focus on passage re-ranking, proposing a simple yet effective method, Joint Passage Re-ranking (JPR), that optimizes the mutual information between query and passage distributions, integrating both cross-encoders and generative models in the re-ranking process. Experimental results demonstrate that JPR outperforms conventional re-rankers and language model scorers in both open-domain QA retrieval settings and diverse retrieval benchmarks under zero-shot settings.
%U https://aclanthology.org/2024.findings-eacl.151
%P 2289-2298
Markdown (Informal)
[Joint Inference of Retrieval and Generation for Passage Re-ranking](https://aclanthology.org/2024.findings-eacl.151) (Fang et al., Findings 2024)
ACL