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Abstract

We study the effect of one type of imbalance
often present in real-life multilingual classifica-
tion datasets: an uneven distribution of labels
across languages. We show evidence that fine-
tuning a transformer-based Large Language
Model (LLM) on a dataset with this imbal-
ance leads to worse performance, a more pro-
nounced separation of languages in the latent
space, and the promotion of uninformative fea-
tures. We modify the traditional class weigh-
ing approach to imbalance by calculating class
weights separately for each language and show
that this helps mitigate those detrimental effects.
These results create awareness of the negative
effects of language-specific class imbalance in
multilingual fine-tuning and the way in which
the model learns to rely on the separation of
languages to perform the task.

1 Introduction

Transformer-based Large Language Models
(LLMs) lend themselves well to automatic classi-
fication tasks due to their superior performance,
ability to be pre-trained on large amounts of
data, and easy fine-tuning on downstream tasks.
Recently, methods like LoRA (Hu et al., 2021) and
Adapters (Houlsby et al., 2019) have been devel-
oped to fine-tune LLMs using fewer resources,
making automation of classification tasks using
LLMs more accessible than ever. Multilingual
versions of large language models, such as mBERT
are readily available. They are pre-trained on large
multilingual corpora and build latent spaces that
have both language-agnostic and language-specific
components (Pires et al., 2019).

Previous works have studied the effect of fine-
tuning on monolingual data on the representation
of the multilingual space and cross-lingual trans-
fer performance (Conneau et al., 2020; Lample
and Conneau, 2019) and showed that fine-tuning
on a specific task with monolingual data reduces

language-specificity (Tanti et al., 2021). What is
relatively understudied is the effect of multilingual
fine-tuning on the multilingual space, which is espe-
cially interesting because it is not guaranteed that
labels are similarly distributed across languages
which could create an incentive for the model to
rely on language for predictions. Oftentimes, cu-
rated multilingual datasets will have the same distri-
bution of labels across languages, and it is pointed
out as a desirable property (Schwenk and Li, 2018).
However, in real-world datasets, data is often het-
erogeneous and class label distributions can vary
significantly between languages. An example of
this is the SemEval 2018 Task 1 dataset (Moham-
mad et al., 2018). Class imbalance in the mono-
lingual setting has been the focus of many pre-
vious works (Henning et al., 2023), some work
addresses class imbalance in the multilingual set-
ting (Yilmaz et al., 2021), but to the best of our
knowledge, language-specific class imbalance has
not been studied in detail.

In this paper, we analyse the effect of class im-
balance 1 on the model with a number of experi-
ments of multilingual classification on two different
datasets. We chose to work with balanced dataset
which we artificially imbalance to allow for con-
trolled experiments. More specifically, we create
two subsets of the data, one with a uniform joint
distribution of language and labels and one with a
skewed one. We want to create a better understand-
ing of the influence of imbalance in multilingual
fine-tuning. We first show that imbalance has a
negative influence on performance and leads to the
latent space becoming more separated by language.
Then, using SHAP values, we show evidence that
the model learns to encode the imbalance even in
non-informative tokens, thus effectively learning

1In this paper, we refer to the non-uniform joint distribu-
tion of language and label as "imbalance", even though in
the traditional sense imbalance mainly refers to the marginal
distribution of labels.
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to classify based on language identity to an extent.
We modify the traditional class weighing method to
weigh datapoints of different languages separately
and show that this mitigates the negative effects of
the imbalance.

In summary, our main contributions are:

• We show the detrimental effects of language-
specific class imbalance, namely worse perfor-
mance and a greater separation of languages
in the latent space.

• Using SHAP values, we show that the model
pays more attention to uninformative features
when fine-tuned on a dataset with this imbal-
ance, in effect acting more like a language
identifier.

• We provide a simple method for mitigation
by adapting the traditional class weighing
method to multilingual fine-tuning.

2 Methods

2.1 Text classification
We use a large language model followed by a clas-
sifier head to perform the text classification. For
each dataset, we create two subsets of the same
size to be used for fine-tuning. One of them, which
we will refer to as "imbalanced", is sampled in a
way such that the joint distribution of language and
labels is skewed, but the marginal distributions of
language and of labels are uniform. The other sub-
set is referred to as "balanced" because the joint
distribution of labels and languages is uniform. We
sample these subsets such as to maximize the over-
lap of datapoints between the two to control for
the quality of the training data. The test sets for
both tasks are balanced. The classifier head is one
feed-forward layer followed by a SoftMax layer.

2.2 Language identification
To analyze the language-specificity of the latent
space of the models, we train a logistic regression
classifier on the task of identifying the language of
text from an external dataset. We use the last CLS
token as feature vector. We use sklearn’s default
parameters, and we report 5-fold cross-validation
scores. This is meant to measure how identifiable
the languages are in the latent space. We use 1000
articles per language, and we only include the lan-
guages the model has seen during fine-tuning. We
also report the language identification accuracy on
the test sets of the dataset used for fine-tuning.

2.3 Cumulative difference in SHAP values
We use SHAP values (Lundberg and Lee, 2017) to
investigate how the model makes predictions and
how this changes between the balanced and imbal-
anced cases. SHAP values estimate the marginal
contributions of each input token by iteratively
masking them and observing the changes in the
predicted probability. For a given datapoint {T, y}
where T is a sequence of tokens {ti}|T |−1

i=0 and y
is a class label, a fine-tuned LLM attributes prob-
ability p(T, y) to the event "T belongs to class y".
SHAP values S(t) explain the contribution of each
token t to that probabilitiy according to:

p(T, y) =
∑

t∈T
S(t) + b (1)

b is the value that the model attributes to
p(Tmask, y) where Tmask = {mask}|T |−1

i=0 , i.e. the
probability of label y that the model gives to an in-
put of mask tokens of the same length as T. We
name Sbal(t) and Simbal(t) the SHAP values calcu-
lated from the models trained on the balanced and
imbalanced datasets respectively. We create three
subsets of the tokens:

Tpos = {ti ∈ T |Sbal(ti) > 0.01}
Tneg = {ti ∈ T |Sbal(ti) < −0.01}

Tneutral = {ti ∈ T | − 0.01 ≤ Sbal(ti) ≤ 0.01}
We calculate the cumulative difference in SHAP
value for each set Tpos, Tneg and Tneutral as∑

t∈T Simbal(t)−Sbal(t). We calculate this metric
for each datapoint in the test set, group them by
language and average them.

2.4 Per-language class weighing
The traditional class weighing method to address
label imbalance in machine learning consists in
weighing under- and over-represented labels in the
loss such that they count more or less in the gradi-
ent calculation2. We modify it by applying different
class weights for each language and label pair. Let
nl be the number of samples in language l, nc,l

the number of samples in language l with label c,
C the total number of classes and wc,l the weight
applied to a sample of class c and of language l.
The weights are calculated according to:

wc,l =
nl

C · nc,l
(2)

2We attempted other methods for mitigation, namely en-
tropy maximisation and gradient reversal of a language iden-
tification head. These methods prevented the model from
learning.
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Star review 1 2 3 4 5
FR,ES,JA 6.6% 13.3% 20.0% 26.7% 33.3%

DE,EN,ZH 33.3% 26.7% 20.0% 13.3% 6.6%

(a) Amazon reviews

Category Entailment Neutral Contradiction
FR 50% 33.33% 16.67%
EN 16.67% 33.33% 50%

(b) XNLI

Table 1: Distribution of training and validation set labels
for the imbalanced subset.

3 Experimental setup

The language model that we use is Multilingual
BERT (Devlin et al., 2019). Specifically, we use the
"bert-base-multilingual-cased" model from Hug-
gingface. We use a batch size of 16 with a gradient
accumulation step of 8. We select the best model
according to the validation loss. We use a linearly
decreasing learning rate starting at 5e− 5 for the
language model and 5e− 4 for the classifier head.
They both reach 0 at the end of training3. We also
perform the same experiments with XLM-R (Con-
neau et al., 2020) and report the results in the annex
A.2.

We use the Amazon reviews dataset (Keung
et al., 2020) in French, German, Spanish, English,
Japanese and Chinese, as those are all the available
languages in the dataset, and XNLI (Conneau et al.,
2018) in French and English, since we wanted to
test a bilingual setup. XNLI is a text entailment
task. For the Amazon dataset, we train our mod-
els to predict the number of stars given (from 1 to
5). For the language identification experiments, we
use the Wiki dataset (Foundation), specifically the
pre-processed Wikipedia dataset found on hugging-
face. The distribution of labels per language for the
imbalanced datasets can be seen in Tables 1a and
1b. The test sets for both XNLI and the Amazon
reviews dataset are balanced in both marginal and
joint distributions of language and labels.

4 Results and discussion

In this section, we discuss results with respect to
task performance first, after which we will shed
light on the effect on language specificity of the
multilingual space by showing results from exper-
iments on language identification. We will show
in detail what happens to different sets of features
when confronted with class imbalance using SHAP

3We make our code available here.

Star review 1 2 3 4 5
FR,ES,JA 13.9% 20.6% 20.1% 19.6% 25.8%

DE,EN,ZH 27.3% 20.7% 16.9% 20.4% 14.7%

(a) Amazon reviews

Category Entailment Neutral Contradiction
FR 32.8% 39.0% 28.1%
EN 23.1% 35.8% 41.1%

(b) XNLI

Table 2: Distribution of test set predictions for the model
trained on the imbalanced subset.

Training setup XNLI Amz. rev.
Balanced 0.810 0.580

Imbalanced 0.783 0.556
Imbal. + CW 0.795 0.569

Table 3: Test set accuracy for mBERT

values. Lastly, we show that per-language class
weighing mitigates the effects of the imbalance.

4.1 The imbalance worsens performance

In Table 3, we report the test set accuracy for
models trained on the balanced and imbalanced
datasets. Unsurprisingly, we see that the models
trained on the balanced datasets perform better than
the ones trained on the imbalanced datasets. To un-
derstand how the imbalance causes the model to
perform worse, we check the distribution of pre-
dicted classes by the imbalanced model on the test
set in Table 2a. We see that English, German, and
Chinese texts are more likely to have lower reviews,
whereas French, Spanish, and Japanese texts are
more likely to have higher reviews, thereby follow-
ing the class distribution in the imbalanced datasets.
This seems to indicate that the model learns to
make predictions based on language. In Table 2b,
we see the same effect with the XNLI labels: En-
glish is more likely to be labeled as contradiction,
whereas French is more likely to be labeled as en-

Dataset Training setup Original Wikipedia

Amazon
Balanced 0.613 0.480

Imbalanced 0.847 0.646
Imbal.+CW 0.709 0.569

XNLI
Balanced 0.615 0.614

Imbalanced 0.928 0.899
Imbal.+CW 0.585 0.679

Table 4: Language identification average accuracy for
mBERT
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(a) Amazon reviews, Imbalanced (b) Amazon reviews, Imbal. + CW

(c) XNLI, Imbalanced (d) XNLI, Imbal. + CW

Figure 1: Average cumulative difference in SHAP value by token category for mBERT.

tailment.

4.2 The languages are more identifiable in the
latent space

Ideally, the aim of multilingual fine-tuning is to al-
low the model to discover patterns across different
languages that help it do the task well in a given
language. However, if the model learns to rely
on language identification rather than patterns that
generalize across languages, we expect the latent
space to have clearer separation of the languages.
In Table 4, we can see that for both XNLI and
the Amazon reviews dataset, the language identifi-
cation accuracy is higher for the model trained on
the imbalanced dataset compared with the balanced
one. This is further evidence that the model focuses
more on the language of the input in the presence
of imbalance.

4.3 The model learns to rely on
non-informative tokens

Knowing that the languages become more distinct
in the latent space in the presence of imbalance, we
want to use SHAP values to analyze how the model
makes predictions at the token level.

4.3.1 Amazon reviews

In Figure 1a, on the left side, the average cumu-
lative difference in SHAP value for label 1 of the
Amazon reviews dataset is shown. French, Spanish

and Japanese positive tokens contribute more nega-
tively in the imbalanced case, and negative tokens
contribute more positively. Thus, tokens that had
a high absolute SHAP value in the balanced case
now have a lower absolute value in the imbalanced
case for these under-represented languages. The
model relies less on features that were informa-
tive in the balanced case for these languages. For
the over-represented languages, the main effect is
that neutral tokens now contribute positively to the
prediction. The model thus sees non-informative
tokens in the over-represented language as an indi-
cation of that label.

On the right side, we see the same plot for la-
bel 5. There is a significant difference in base
value which we attribute to model artifacts. This
means that the SHAP values in the imbalanced case
will have a negative bias since the base value is
much higher for that model. Thus, the difference in
SHAP value between that model and the balanced
one will also have a negative bias4. However, we
can still see that the under- and over-represented
language groups are treated differently: positive
and neutral tokens for the over-represented lan-
guages become less negative than for the under-
represented ones, and neutral token become more
positive for the over-represented and more negative
for the under-represented.

4We discuss this issue further in Annex A.3 and introduce
a way to mitigate it.
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4.3.2 XNLI

Figure 1c shows the same plots for the XNLI
dataset. French is over-represented for the
"entailment" label, and English is over-represented
for the "contradiction" label. For both labels,
the neutral tokens contribute more positively
for the over-represented language and more
negatively for the under-represented. The model
again learns to rely on non-informative tokens
from the over-represented language. For the
under-represented language, the positive tokens
contribute more negatively, and the negative ones
more positively. Their absolute SHAP values
are thus lower and the model again learns to rely
less on informative tokens for this language. It
is actually also the case for the over-represented
language but to a lesser extent. This simply points
to the fact that the model is paying less attention to
informative features overall and more attention to
the language of the input.

The overall trend in both XNLI and the Amazon
reviews dataset is that positive tokens contribute
more negatively and negative token contribute more
positively. Neutral tokens contribute either posi-
tively if they are of the over-represented languages
or negatively if they are of the under-represented
languages. Thus, the model puts less importance
on features that were relevant in the balanced case
and treats the simple presence of non-informative
tokens of a certain language as indication of a cer-
tain label, in effect acting more like a language
identifier.

4.4 Per-language class weighing mitigates the
effect of the imbalance

First, Table 3 shows that overall performance on
the tasks improves with class weighing on imbal-
anced data. Also, in Table 4, we see that language
identification scores are lower with the class weigh-
ing method than without, being almost on-par with
the balanced case.

Figure 1b and 1d show that while the cumulative
difference in SHAP value is not null, it is on av-
erage smaller than without the weighing. We still
see that positive tokens are less positive, and neg-
ative tokens are more positive, i.e. SHAP values
of relevant features are smaller in this case than in
the balanced case, but we do not see a clear sep-
aration between over- and under-represented lan-
guages like we do in the imbalanced case. More-

over, the difference in SHAP values for neutral
tokens is minimal, which means that uninformative
tokens stay irrelevant for the model.

Overall, we see that the per-language class
weighing method mitigates the effects of the
language-specific class imbalance: the latent space
is less separated by language and the model does
not learn to treat tokens from under- and over-
represented languages differently.

5 Conclusion

In this paper, we showed that a language model
trained on a seemingly balanced multilingual
dataset, with uniform marginal distributions of lan-
guages and of labels, but skewed joint distribution
of language and label, will learn this skew. We
first showed that the model performs worse in the
presence of this imbalance. Based on the distri-
bution of the test set predictions, we show that
it learns to make predictions based on language,
which can negatively impact its out-of-distribution
performance. We also showed that the imbalance
leads to the latent space being more separated by
language. We then analyzed SHAP values to bet-
ter understand how the way the model makes pre-
dictions changes. SHAP values showed that fea-
tures that the model used when trained on balanced
data became less important when trained on imbal-
anced data, and that features that were "neutral",
i.e. didn’t contribute to the prediction of a given
label, became more important. We modify the tra-
ditional method of class weighing by calculating
class weights separately for each language and train
a model on the imbalanced dataset with a weighted
loss. We show that this simple method is effective
at mitigating the negative effects of the imbalance.

This is of high stakes, as training on multiple
languages is often done in real-life cases, and pre-
venting the perpetuation of biases is often desir-
able. It is a reminder that large language models
and deep learning architectures in general do not
necessarily follow human intuition and will make
predictions based on what is available in the data.
Training a model to build robust features requires
careful consideration of not just the marginal distri-
bution of the dataset features but also of their joint
distribution.

6 Limitations

A main limitation of our study is the artificial nature
of our datasets. These datasets have equal repre-
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sentation of languages and labels, which allowed
us to isolate the issue of language-label imbalance.
However, in real-life datasets, one will often face
imbalances both in the marignal and joint distribu-
tions.

Another limitation is the sole use of SHAP val-
ues for our explainability method. We used Layer
Integrated Gradients but we would not be able
to show cumulative values which show an over-
all picture of the effects. However, according to
(Atanasova et al., 2020), occlusion methods like
SHAP are only worse than gradient-based methods
in terms of their computational efficiency.

Our method for per-language class weighing sim-
ply modifies the traditional class weighing method.
However, as seen in (Henning et al., 2023), newer
weighing method exist which could also have been
adapted and led to improved performance.
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A Appendix

A.1 Dataset statistics

Split XNLI Amz. rev.
Train 524k 719k

Validation 3.3k 18k
Test 6.6k 30k

Table 5: Number of datapoints for train, validation and
test split

A.2 Results on XLM-Roberta

We report the results from the same experiments
performed with mBERT, with XLM-R. Test set
accuracy is shown in Table 6, language identifica-
tion accuracy is shown in Table 7 and cumulative
difference in SHAP values is shown in Figure 2.
Across the board, we can see that the findings from

Training setup XNLI Amz. rev.
Balanced 0.829 0.596

Imbalanced 0.812 0.586
Imbalanced + CW 0.828 0.594

Table 6: Test set accuracy for XLM-R

Dataset Training setup Original Wikipedia

Amazon
Balanced 0.309 0.389

Imbalanced 0.381 0.744
Imbal.+CW 0.412 0.503

XNLI
Balanced 0.556 0.582

Imbalanced 0.838 0.865
Imbal.+CW 0.605 0.607

Table 7: Language identification average accuracy for
XLM-R

the mBERT results also apply to XLM-R: imbal-
ance makes the latent space more distinct, it pro-
motes uninformative features and demotes relevant
ones, and per-language class weighing can help
mitigate those effects. The XLM-R models have
been trained with an added loss to minimize their
difference in base value to make the results more
interpretable, which is explained in A.3.

A.3 SHAP value bias due to difference in base
values

One of the main issues we faced using SHAP val-
ues is that they are not easily comparable across
models due to the difference in base values. In
the current implementation of SHAP values, the
base values are calculated by replacing every to-
ken in the input by the mask token and taking the
output probabilities. Ideally, we want those proba-
bilities to be the same across models. To achieve
this, we added the entropy of the output distribu-
tion of a fully masked input multiplied by -1 to
the loss at every gradient step, so as to incentivise
the model to output a uniform distribution. Let
M(T ) : RL×d → RC be the model we use for pre-
diction, where T is the input of token embeddings
of length L, d is the dimension of the embedding
and C is the number of classes and C the set of
classes. Let m be an input of mask tokens of length
between 1 and L. We add the following loss to the
total loss:

l =
∑

c∈C
M(m)[c] · log(M(m)[c]) (3)

We refer to it as the masked input entropy loss.
We find that this does not hinder downstream task
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performance, but makes differences in base values
much smaller, making the cumulative difference in
SHAP values much easier to interpret. We show
the same plots as in Figure 1 with models trained
with this added loss in Figure 3. We also only show
the XLM-R results with this added loss in Figure
2.

A.4 Justification for threshold
We set our threshold at a SHAP value of 0.01 for
what we consider neutral and positive/negative to-
kens as this resulted in an approximate 20/60/20
(neg./neut./pos.) split. We experimented with a
threshold of 0.001 and 0.05. The first one did not
include enough tokens in the neutral token groups
for the cumulative difference in SHAP value to
make sense. The second one showed similar re-
sults in the cumulative difference in SHAP values,
just with slightly different magnitudes. Our analy-
sis most likely still holds with higher thresholds, up
to a point. We had considered regression-type anal-
ysis between the SHAP values of models trained on
balanced and imbalanced data because they would
not have required the addition of a threshold. How-
ever, they would not have allowed us to capture the
cumulative effect of the change in SHAP values.
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(a) Amazon reviews, Imbalanced (b) Amazon reviews, Imbal. + CW

(c) XNLI, Imbalanced (d) XNLI, Imbal. + CW

Figure 2: Average cumulative difference in SHAP value by token category for XLM-R with the added masked input
entropy maximisation loss.

(a) Amazon reviews, Imbalanced (b) Amazon reviews, Imbal. + CW

(c) XNLI, Imbalanced (d) XNLI, Imbal. + CW

Figure 3: Average cumulative difference in SHAP value by token category for mBERT with the added masked input
entropy maximisation loss.
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