
Findings of the Association for Computational Linguistics: EACL 2024, pages 2377–2388
March 17-22, 2024 c©2024 Association for Computational Linguistics

NL2FORMULA: Generating Spreadsheet Formulas from Natural
Language Queries

Wei Zhao1∗ Zhitao Hou2 Siyuan Wu1 Yan Gao2 Haoyu Dong2 Yao Wan1†

Hongyu Zhang3 Yulei Sui4 Haidong Zhang2

1Huazhong University of Science and Technology, 2Microsoft
3Chongqing University, 4University of New South Wales

{mzhaowei,sy_wu022,wanyao}@hust.edu.cn, hyzhang@cqu.edu.cn
{zhith,yan.gao,hadong,haizhang}@microsoft.com, y.sui@unsw.edu.au

Abstract

Writing formulas on spreadsheets, such as
Microsoft Excel and Google Sheets, is a
widespread practice among users performing
data analysis. However, crafting formulas on
spreadsheets remains a tedious and error-prone
task for many end-users, particularly when deal-
ing with complex operations. To alleviate the
burden associated with writing spreadsheet for-
mulas, this paper introduces a novel benchmark
task called NL2FORMULA, with the aim to gen-
erate executable formulas that are grounded on
a spreadsheet table, given a Natural Language
(NL) query as input. To accomplish this, we
construct a comprehensive dataset consisting
of 70,799 paired NL queries and correspond-
ing spreadsheet formulas, covering 21,670 ta-
bles and 37 types of formula functions. We
realize the NL2FORMULA task by providing a
sequence-to-sequence baseline implementation
called fCODER. Experimental results validate
the effectiveness of fCODER, demonstrating
its superior performance compared to the base-
line models. Furthermore, we also compare
fCODER with an initial GPT-3.5 model (i.e.,
text-davinci-003). Lastly, through in-
depth error analysis, we identify potential chal-
lenges in the NL2FORMULA task and advocate
for further investigation.1

1 Introduction

It is a widespread practice among users to engage
in data analysis by composing formulas within
spreadsheet applications such as Microsoft Excel
and Google Sheets. While spreadsheet formula
languages (e.g., Microsoft Excel Formula) are rela-
tively simpler than general-purpose programming

∗ Work was done while Wei Zhao was pursuing a master
degree at Huazhong University of Science and Technology,
and during an internship at Microsoft.

†Yao Wan is the corresponding author.
1All the experimental data and source code used in this pa-

per are available at https://github.com/timetub/
NL2Formula.

languages for data analysis, formulating these for-
mulas on spreadsheets remains burdensome and
error-prone for end-users (Gulwani, 2011; Cheung
et al., 2016). To address this challenge, numer-
ous approaches and tools (e.g., FlashFill (Gulwani,
2011) and SPREADSHEETCODER (Chen et al.,
2021)) have been proposed to automatically gener-
ate spreadsheet formulas.

Building upon substantial progress in spread-
sheet formula generation, this paper goes beyond
the existing efforts by introducing a novel Natu-
ral Language (NL) interface capable of generating
spreadsheet formulas from a user’s NL query (short
for NL2FORMULA). We believe that, for the ma-
jority of end-users, expressing their intentions in
NL is more accessible than working with formulas
when performing data analytics on spreadsheets.

Figure 1 presents two representative running ex-
amples to illustrate the task of NL2FORMULA.
This task involves generating the corresponding
spreadsheet formula automatically, given a spread-
sheet table and an NL query input from an end-user.
The resulting formula is intended for execution in
spreadsheet applications, such as Microsoft Excel.
In this paper, we focus the spreadsheet application
only on Microsoft Excel, where spreadsheet for-
mulas can take on various forms, offering a wide
range of possibilities for exploration. Specifically,
we present two primary categories of spreadsheet
formulas. The first category is the Analysis
Query (Figure 1 (a)), typically comprising Excel
formula functions utilized for data analysis. The
second category is the Calculation (Figure 1
(b)), consisting of basic numerical operations used
for straightforward calculations.

It is important to note that NL2FORMULA

shares similarities with the well-studied task of
TEXT2SQL, which involves translating an NL de-
scription into a SQL query grounded on a database
table (Yaghmazadeh et al., 2017; Yu et al., 2018;
Zhong et al., 2017). However, it differs in two

2377

https://github.com/timetub/NL2Formula
https://github.com/timetub/NL2Formula

NL: What are the name and the
nationality of the host of the highest age?

Formula:
LET(a,SORTBY(CHOOSE({1,2},A2:A
11,B2:B11),C2:C11,-1),FILTER(a,
SEQUENCE(ROWS(a))<=1))

(a) Analysis Query

Formula:
C8/C10

NL: What is the proportion of
IMFT’s property, plant, and
equipment over total assets in 2018?

(b) Calculation

Figure 1: Two running examples from our created dataset for NL2FORMULA.

fundamental aspects. (1) The structure of a spread-
sheet table is more flexible than that of a database
table. Unlike fixed patterns in databases, the meta-
data (e.g., headers and orientation) of tables in a
spreadsheet is optional, and the placement of the
table in the layout is highly flexible. This flexibil-
ity presents significant challenges when it comes
to representing the data. (2) The formula is typi-
cally expressed by the index of data location. In the
process of generating formulas, it becomes crucial
not only to determine which columns in the table
should be selected but also to identify the exact
position of the cell containing these values. Ad-
ditionally, the expression of formulas can change
with the placement of the table in the layout.

In this paper, we pioneer the effort to formulate
and benchmark the task of NL2FORMULA. One
main challenge lies in the lack of well-labeled data
for training. To tackle this issue, we construct a
novel dataset comprising paired NL queries and
their corresponding formulas, grounded on specific
spreadsheet tables. As manual labeling would re-
quire extensive human effort and time, we opt for
an indirect transformation approach using an exist-
ing dataset of TEXT2SQL (i.e., Spider (Yu et al.,
2018)), which is composed of 10,181 NL descrip-
tions along with their corresponding SQL queries.
We devise a set of conversion rules by analyzing the
grammar of SQL and Excel formulas. By applying
the formulated conversion rules, we convert SQL
queries from the established TEXT2SQL datasets
into formulas suitable for NL2FORMULA. Addi-
tionally, to augment the dataset, we engage in the
manual collection of labeled data following a set
of predefined rules. As a result, we produce a com-
prehensive dataset comprising 70,799 paired NL
queries and formulas, associated with a total of
21,670 tables.

Furthermore, we establish a benchmark for
NL2FORMULA. In this benchmark, we also
present fCODER, a sequence-to-sequence frame-

work based on the pre-trained language model
T5 (Raffel et al., 2020). As a baseline model, we
adapt FORTAP (Cheng et al., 2021), originally de-
signed for synthesizing spreadsheet formulas, for
comparison. We conduct comprehensive experi-
ments and analysis to assess the effectiveness of
our proposed fCODER. The experimental results
demonstrate that fCODER achieves the highest per-
formance with 70.6% Exact Matching Accuracy
and 77.1% Accuracy based on the results of run-
ning formulas on a specific engine (i.e., Microsoft
Excel). After conducting a comprehensive analysis
of the experimental results, we have identified po-
tential areas for improvement and future directions
that warrant further exploration.

In summary, the key contributions of this paper
are three-fold. (1) We are the first to formulate a
new task of NL2FORMULA, that can serve as an in-
terface allowing users to effortlessly translate input
NL queries into spreadsheet formulas. (2) We intro-
duce a novel dataset that comprises 70,799 paired
NL queries and their corresponding formulas, as-
sociated with 21,670 tables. (3) We benchmark
several models for the task of NL2FORMULA, in-
cluding our designed fCODER that is based on pre-
trained T5, as well as FORTAP (Cheng et al., 2021)
that is adapted from TUTA (Wang et al., 2021).

2 Background and The Problem

Spreadsheet Formula. Spreadsheets, which are
formulated as a two-dimensional grid of cells, play
a vital role in our daily lives, especially for data
analysis. Typically in a spreadsheet, rows are num-
bered sequentially from top to bottom, beginning
at 1, while columns are designated alphabetically
from left to right using the base-26 system, with ‘A’
to ‘Z’ as the digits.

We can perform various computing, data pro-
cessing, and operational tasks using pre-defined
formulas within the spreadsheet. In a formula, we
can refer to a cell by combining its column and row

2378

numbers, as shown by the notation (e.g., B2). Addi-
tionally, we have the option to use a range operator
“:” to create a rectangular range between two cells,
with the top-left and bottom-right corners specified.
For instance, the formula =SUM(A1:B5) encom-
passes all cells in columns A and B, ranging from
row 1 to row 5. In general, a formula is composed
of constant values, arithmetic operations, function
calls, and references to cells. Formally, the Mi-
crosoft Excel formula studied in this paper can be
defined by the extended BNF grammar, referred to
Appendix A. Figure 2 shows a detailed example of
the Excel formula.

MIN (FILTER (A2:A11 , (F2 :F11 < 23) * (D2:D11 = 115)))

Range
Cell Reference

Function
Name

RelOp

Range
Cell Reference

Range
Cell Reference

Cell Reference

Function Call

Function
Name

LogicalOp RelOp

Number Number

Function Call

Figure 2: An example of the Excel formula.

Problem Statement. Let N denote the NL query
composed of a sequence of tokens {q1, q2, . . . , qL},
and T denote the corresponding tabular context
composed of a collection of cells {c1, c2, . . . , cM}.
Let F denote the corresponding formula to
predict that is denoted a sequence of tokens
{y1, y2, . . . , yK}. Inspired by previous seman-
tic parsing tasks, we formulate the task of
NL2FORMULA as a sequence-to-sequence prob-
lem, where the source sequence is the NL query
and its tabular contexts, while the target sequence is
the formula. More specifically, the NL2FORMULA

problem is expressed as follows: given a source NL
sequence N , as well as the tabular context T , the
goal is to learn a mapping function f to map the in-
put {N,T} into a formula F , i.e., F = fθ(N ;T),
where θ is the parameters of model f .

3 NL2FORMULA: The Dataset

3.1 Dataset Construction

Constructing a paired dataset of NL queries and
spreadsheet formulas poses considerable chal-
lenges. One approach to tackle this is by invit-
ing experts to generate corresponding NL queries
and spreadsheet formulas based on the tabular con-
tent. However, this method is time-consuming and
labor-intensive, demanding significant human ef-
fort. Hence, it drives us to explore alternative ways
of indirectly creating the NL2FORMULA dataset.

Rule 1
SQL: SELECT UNIQUE(AGG(column1)) FROM table WHERE column2 = condition

AGG::= min | max | average | sum | count

Formula: UNIQUE(AGG(column1, column2, condition))
AGG:= MINIFS | MAXIFS | AVERAGEIFS | SUMIFS | COUNTIFS

Rule 2
SQL: SELECT UNIQUE(AGG(column1)) FROM table WHERE Conditions

Conditions::= coloum1 OP condition1 (or/and) colomn2 OP condition2 …
OP::= < | > | = | != | <= | >= | =
AGG::= min | max | average | sum | count

Formula: UNIQUE(AGG(FILTER(column1,(conditions))))
Conditions::=coloum1 OP condition1 (or/and) colomn2 OP condition2 …
or/and::= +/*
OP::= < | > | = | <> | <= | >= | =
AGG:= MIN | MAXI | AVERAGE | SUM | ROWS

Figure 3: Two simple examples of conversion rules to
translate SQL queries into formulas.

Fortunately, we discovered a related task called
TEXT2SQL, which has already undergone exten-
sive study. Leveraging this, we develop a converter
from the TEXT2SQL dataset to the NL2FORMULA

dataset. The underlying intuition is that both SQL
queries and spreadsheet formulas specify the re-
quired data in a similar fashion.

Rule-Based SQL to Formula. By analyzing
SQL grammar and Excel formula grammar, we
manually define several conversion rules to convert
the SQL queries into Excel formulas. For exam-
ple, in certain conditions that necessitate single
operations (e.g., MAX) in SQL, we can utilize the
corresponding MAXIFS function in a spreadsheet
formula. In more intricate scenarios involving mul-
tiple conditions and operators in SQL (e.g., MIN
and AND), we can replace them with equivalent
Excel formulas (e.g., MIN and FILTER). In situa-
tions requiring sorting and combination operations,
we need to employ a combination of various Excel
formula functions (e.g., HSTACK, UNIQUE, and
SORT). We present two straightforward examples
of conversion rules in Figure 3.

In practice, we primarily utilize two TEXT2SQL
datasets: WikiSQL (Zhong et al., 2017) and Spi-
der (Yu et al., 2018). WikiSQL is an extensive
dataset consisting of 80,654 instances of paired
NL queries and SQL queries, derived from 24,241
tables sourced from Wikipedia. This dataset ex-
clusively comprises single tables and simple SQL
queries. However, our objective is to create a more
challenging dataset that encompasses a wider range
of formula functions and categories. To achieve
this, we integrate the Spider dataset, with the poten-
tial to enhance the diversity of formulas. Spider is
a complex and cross-domain TEXT2SQL dataset
annotated by 11 graduate students. It comprises

2379

10,181 NL queries and 5,693 unique complex SQL
queries derived from 200 databases containing mul-
tiple tables across 138 different domains. Due to
the constraints posed by existing models regard-
ing input data length, we select tables with 3 to 20
rows and 3 to 10 columns. As a result, we obtain
approximately 19,789 candidate tables.

Data Augmentation. Based on our investiga-
tion, all the formulas converted from TEXT2SQL
are analysis-oriented, commonly referred to as
Analysis Query. In other words, these for-
mulas predominantly consist of formula functions
such as AVERAGE and MAXIFS. Notably, simple
numerical operations such as addition (+), sub-
traction (−), multiplication (×), and division (/)
(also referred to as Calculation) are excluded
from the converted formulas. To complement
this, we manually augment the data by incorporat-
ing a question-answering benchmark named TAT-
QA (Zhu et al., 2021), which includes numerous
numerical operation formulas.

3.2 Data Statistics and Analysis

We finally obtain 70,799 pairs of NL queries and
spreadsheet formulas, covering 21,670 tables. The
tables are randomly split into a training set (75%),
validation set (10%), and test set (15%). The basic
statistics of each split are shown in Table 1. The
length of a formula is defined by the number of
its keywords. We can observe that the average
formula length is about 10, indicating the difficulty
in predicting these formulas.

To better comprehend the performance of mod-
els on various formulas, we categorize the for-
mulas into two groups: Analysis Query
and Calculation. In particular, Analysis
Query formulas encompass 37 types of formula
functions, while Calculation formulas consist
of addition, subtraction, division, and composi-
tion. Moreover, for Analysis Query, we have
tailored the division standards of hardness levels,
which are classified into 3 categories: Simple,
Medium, and Complex. Specifically, the division
standard is based on the number of formula compo-
nents, selections, and conditions. For instance, we
define a formula as Simple if it typically represents
a short-length query with 1-2 functions, Medium
for 3-4 functions, and any formula with more than
4 functions is considered Complex and falls into
the long-length category.

Figure 4 depicts the hardness distribution of the

Table 1: Statistics of the NL2FORMULA dataset.

Statistics Train Val. Test
of tabular contexts 16,791 1,743 3,136
of NL queries 55,165 5,523 10,111
Avg. # of table rows 10.8 10.8 10.8
Avg. # of table columns 6.0 6.0 5.9
Avg. length of NL 11.2 11.6 11.4
Avg. length of formula 10.2 10.1 10.0

34.1%

49.1%
10.8%

6.0%

Simple
Medium
Complex
Calculation

Figure 4: Distribution of formulas in NL2FORMULA
dataset, including Analysis Query of three hard-
ness levels (Simple, Medium, Complex), and
Calculation.

dataset. It is evident that the majority of formulas
consist of medium-level analysis queries, account-
ing for 49.1%.

3.3 Data Quality Assessment

To ensure the quality of our NL2FORMULA dataset,
we follow a rigorous process. Initially, we ran-
domly sample 5% of the original data and convert
it from SQL queries to formula queries. Subse-
quently, we input these queries into a spreadsheet
to assess their smooth execution. Based on the exe-
cution results, we make necessary adjustments to
the conversion rules for formula queries that fail to
execute successfully. To guarantee accuracy and
reliability, we engage five verifiers with extensive
experience in NLP and familiarity with spreadsheet
formulas. Each verifier is tasked with checking and
approving 500 pairs of NL queries and formula
queries, randomly selected from the dataset. Their
expertise ensures meticulous scrutiny of the data.
Finally, in cases where we identify faulty formu-
las, we verify their formula patterns and search the
dataset for all instances of such patterns, making
the necessary modifications to rectify the situation.

4 fCODER : A Reference Framework

For the task of NL2FORMULA, we adopt the
encoder-decoder paradigm as the baseline ap-
proach. In this paradigm, an encoder network em-
beds the NL queries and tabular contexts into an

2380

Encoder Decoder

f CODER

Table:
Ro

w
in

de
x

Column index

NL:
What is the proportion of IMFT’s property,
plant, and equipment over total assets in 20

…

[CLS] …What is

Natural-Language Query

in 20 | 0 …A B $391 $339C 1 … [SEP]

Flattened Table
Inputs

Formula:
=C8/C10

Em
bedding Layer

0.873
Result:

Figure 5: An overview of the fCODER, which is a reference framework for NL2FORMULA.

embedding vector, while a decoder network gen-
erates the formula based on the encoded vector.
Figure 5 illustrates the overview of the encoder-
decoder framework for NL2FORMULA.

Input Preparation. We represent each table us-
ing its column index, row index, and the corre-
sponding content. Specifically, we work with two
types of inputs: an NL query and tabular content.
Each input is transformed into a sequence, and sub-
sequently, the two sequences are concatenated. We
employ a unique symbol | to differentiate between
the sequence of NL queries and tabular content.
Furthermore, we utilize a specific token [CLS] to
mark the inception of the concatenated sequence,
resulting in a hybrid representation of the two ele-
ments, as follows:

X = [CLS], q1, q2, . . . , qL,|, c1, c2, . . . , cM .

For each token xi in X , we begin by encoding
it using a word embedding layer, resulting in the
token embedding xtoken

i . Next, we incorporate a
positional embedding to account for the position of
each token, represented as xposition

i . The ultimate
embedding of each token for an input sample X is
determined as follows:

xi = Emb(xi) = xtoken
i + xposition

i . (1)

After processing each token as discussed above, the
output sequence is represented by X = Emb(X),
which serves as the input to the encoder network.

Encoder. We input the embedding matrix X into
the encoder network, yielding the corresponding
output Oe as follows:

Oe = Encoder(X) . (2)

Finally, these output embeddings are passed as in-
put to the decoders.

Decoder. At the t-th time step in the decoding
process, the operations of the decoder network can
be formulated as follows:

Od
t = Decoder(Oe,Emb(ctx)) , (3)

where Od is the output of the decoder network,
ctx denotes the current partial sequence of the gen-
erated formula, i.e., y0, . . . , yt−1, which is also
mapped into vector forms via an embedding layer.

We feed the output of the decoder into a Softmax
layer, to map the output vector into a probability
vector over the whole vocabulary, as follows:

p(yt|ctx,X) = Softmax(WdOd + bd) , (4)

where Wd and bd are the linear layer parameters.

Model Learning. To train the fCODER model,
we employ the cross-entropy loss function, as fol-
lows:

L = −
T∑

t=1

log pθ(yt|ctx,X) , (5)

where θ denotes all the model parameters, and T is
the maximum step of formula generation.

5 Experimental Evaluation

5.1 Benchmarked Models
▷ FORTAP (Cheng et al., 2021). FORTAP, build-
ing on TUTA (Wang et al., 2021), extends table
pre-training to include spreadsheet formulas for
enhanced formula prediction, question answering,
and cell type classification. We introduce an adapta-
tion of FORTAP to NL2FORMULA, where the task
is to predict formulas for a specified cell within
a table. We embed the NL query into the table
and designate the following row as the target cell.
A two-stage LSTM (Hochreiter and Schmidhuber,

2381

Table 2: Overall performance of the fCODER and baselines on the validation and test datasets, in terms of the EM
and ERA metrics.

Models
Exact Match Execution Result Assessment

Validation Test Validation Test
Sketch Formula Sketch Formula Formula Formula

FORTAP - - 58.4 24.2 - -
GPT3.5 (10-Shot) - - - 21.4 - 25.2
fCODER-Small 97.0 65.6 96.9 65.5 71.2 70.4
fCODER-Base 97.4 70.5 97.2 69.4 73.3 75.0
fCODER-Large 97.5 71.5 97.6 70.6 76.8 77.1

1997) decoder then processes this integrated data
to produce formula sketches and pinpoint reference
cells, yielding the target formula.
▷ GPT-3.5 (Brown et al., 2020). With recent ad-
vancements in the domain of Large Language Mod-
els (LLMs), remarkable breakthroughs have been
achieved in the field of NLP (Zhao et al., 2023;
Kaddour et al., 2023). In this study, we compare
the performance of our proposed methodology with
GPT-3.5 on the NL2FORMULA dataset, utilizing
the open-sourced text-davinci-003 model.
The prompt template used by GPT-3.5 is referred
to Appendix B
▷ fCODER. We adopt the T5 model (Raffel
et al., 2020) as the initial implementation of the
fCODER framework. T5 converts all text-based
language problems into a text-to-text format and
serves as a typical sequence-to-sequence model.
Some variants of the model are also included in
this paper, namely fCODER-Small, fCODER-Base,
and fCODER-Large, with parameter sizes of 60M,
220M, and 770M, respectively.

Additionally, we also perform a preliminary
comparison between fCODER and ChatGPT (Ope-
nAI) in the Appendix C.

5.2 Evaluation Metrics

Inspired by the evaluations in TEXT2SQL, we also
employ two similar metrics: Exact Match (EM) and
Execution Results Assessment (ERA). Furthermore,
we categorize the formulas into two main groups:
Analysis Query and Calculation. Addi-
tionally, within the Analysis Query category,
we further differentiate formulas into three levels,
namely, Simple, Medium, and Complex, based on
the number of functions they incorporate.

Exact Match (EM). The Exact Match is a widely
recognized metric used to evaluate the performance

of models. It demands a flawless match between
the model’s output formulas and standard formulas,
encompassing all its components and table ranges.
To provide a fine-grained analysis of the model’s
performance on different granularities of formu-
las, we present both the Sketch EM score and the
Formula EM score across all models.

Execution Result Assessment (ERA). To assess
the semantic equivalence of predicted formulas, we
also compare their execution results in Microsoft
Excel. To streamline this evaluation process, we
have developed an automated Python script for
large-scale batch execution.

5.3 Results and Analysis

Overall Performance We begin by analyzing
and discussing the overall performance of vari-
ous models, which includes the baseline FOR-
TAP, GPT-3.5, and our proposed fCODER, on the
NL2FORMULA task. Table 2 presents a compre-
hensive evaluation of these models on both the
validation and test datasets, in terms of the EM
(including Sketch EM and Formula EM) and ERA
metrics.

From this table, we can observe a notable perfor-
mance disparity between the baseline model FOR-
TAP and our proposed fCODER models. The for-
mer achieves an EM accuracy of 24.2 on the test set,
indicating its struggle to precisely match the ground
truth answers. One possible reason is that FORTAP

is not specifically designed for this task; instead, it
focuses on the context of individual cells, neglect-
ing to capture the connections between the entire
table and the question. In contrast, the fCODER-
Small model, despite having the smallest number
of parameters, significantly outperforms FORTAP,
achieving an impressive EM accuracy of 65.5 on
the test dataset. These results demonstrate the ef-

2382

Table 3: Experimental results of fCODER models across different types of formulas, with varying levels of difficulty
on the test dataset.

Models Exact Match Execution Result Assessment
Simple Medium Complex Calculation Simple Medium Complex Calculation

GPT3.5 (10-Shot) 8.5 25.8 0.3 55.8 17.4 26.6 0.6 59.5
fCODER-Small 39.9 73.9 54.5 62.2 58.6 82.7 56.3 64.8
fCODER-Base 44.5 76.9 53.4 71.8 63.0 87.4 56.0 74.5
fCODER-Large 45.4 76.0 58.4 76.5 64.5 88.7 61.6 79.5

fectiveness of fCODER in generating accurate for-
mulas from tabular data.

Furthermore, we can observe that the GPT-3.5
model with a 10-shot in-context learning approach
achieves an EM accuracy of 21.4 and an execution
results accuracy of 25.2. GPT-3.5 model also falls
short of matching the performance of the fCODER

series models. This discrepancy could be attributed
to the relative simplicity of the current prompt de-
sign. Due to the constraints of length of input
tokens, we can only provide a prompt consisting of
10 examples at a time, which seems to be insuffi-
cient in quantity.

Performance on Varying Hardness We also
evaluate the performance of models across both
types of formulas, namely, Analysis Query
and Calculation, encompassing varying levels
of difficulty, as shown in Table 3. From this table,
it is interesting to see that our fCODER models
demonstrate lower performance in the Simple level
compared to the Medium level, in terms of EM ac-
curacy. Through our human inspection, we have
determined that this phenomenon can be ascribed
to the fact that the model has a tendency to gen-
erate diverse formula queries, primarily stemming
from the ambiguity introduced by NL queries. Fur-
thermore, it is evident that fCODER attains high
performance in the ERA metric. This is attributed
to the fCODER ’s ability to generate diverse ex-
pressions while consistently yielding the correct
result.

In comparing the performance of our model with
GPT-3.5 utilizing a 10-shot context, it is evident
that the GPT-3.5 model exhibits poor performance
in generating formulas within the Analysis
Query category, highlighting a considerable need
for further enhancements. Nonetheless, it is intrigu-
ing to observe that the GPT-3.5 model demonstrates
a comparable level of proficiency in generating for-
mulas within the Calculation category.

Original (1)

(2)
(3)

right

down

Figure 6: An example of a table as well as its three
variants of movement in three different directions.

The Impact of Table Position. As previously
mentioned, the spreadsheet table is flexible. There-
fore, we further explore the performance of the
model in generating formulas under different table
placements. Specifically, the position of the orig-
inal tables in our dataset starts from the first row
and the column “A”. We empirically move these
tables in the following three ways, as shown in Fig-
ure 6: (1) Moving one column to the right, i.e., the
starting position of tables is changed to “B1”. (2)
Moving one row down, i.e., the starting position of
tables is changed to “A2”. (3) Moving down and
right, i.e., the starting position of tables is changed
to “B2”. In this scenario, the formulas will also be
changed. For example, a formula in the original sce-
nario, SORTBY(B2:B5, B2:B5, 1), would
be transformed to SORTBY(C3:C6, C3:C6,
1) in scenario (3). Initially, we use the fCODER-
Base trained in the original position to verify the
three scenarios. We explore whether the model can
adapt to different table placements in spreadsheets,
which were not seen during training. However, the
performance of the model is poor, achieving only
an average EM accuracy of 6.7%. We find that
most of the errors are caused by the fact that our
model fails to infer the cell index accurately.

2383

5.4 Case Study and Error Analysis

Figure 7 presents an illustrative example of the
prediction formula, which differs from the golden
formula, yet yields identical results when executed
in the spreadsheet. The table in A1:J6 contains
the NL description “What is the lowest number of
laps in the 5th position?” provided in the 8th row.
The given golden formula is MINIFS(G2:G6,
J2:J6, “5th”), and the resulting value
after executing this formula in Excel is “3”,
displayed in cell A9. On the other hand, the model
prediction formula, MIN(FILTER(G2:G6,
J2:J6=“5th”)), produces the same result,
which is demonstrated in cell C9.

Figure 7: An example of the prediction formula, which
is different from the ground-truth formula but the exe-
cution results in the spreadsheet are the same.

To gain a comprehensive insight into the
effectiveness of our constructed model on
NL2FORMULA, we conduct a detailed examina-
tion of the fCODER-Large, specifically focusing
on instances where errors occur. We randomly
sample 200 error instances from the test dataset
(50 per level). We classify them into four cate-
gories, as shown in Figure 8: (1) Wrong Evidence:
The model obtains incorrect supporting evidence
or infers the wrong cell index from the table. Addi-
tionally, the example of the formula demonstrates
the model’s failure to identify the correct evidence
from the NL query. (2) Missing Evidence: The
model fails to extract complete supporting evidence
from the table to arrive at the correct answer. (3)
Wrong Intent Inference: The model is unsuccessful
in understanding the intent expressed by the NL
query. (4) Wrong Calculation: The model correctly
infers the intention from the NL query and accu-
rately locates the cell index in the table. However,
the model fails to compute the answer using the
correct evidence. We find that most of these errors
stem from the model’s inability to accurately infer
or extract the correct evidence from the tables and
NL queries.

6 Related Work

Semantic Parsing. Semantic parsing is a task
to transform NL queries into structured represen-
tations that can be understood and processed by
machines. So far, many datasets for semantic pars-
ing have benn built with different query formats,
such as ATIS (Price, 1990), Geo-Query (Zelle and
Mooney, 1996), and JOBS (Tang and Mooney,
2001). Their output format is logic forms and
has been studied extensively (Dong and Lapata,
2016; Berant and Liang, 2014; Reddy et al., 2014;
Zettlemoyer and Collins, 2012; Wong and Mooney,
2007). In recent years, using SQL queries as pro-
grams in semantic parsing is more popular, and
many datasets have been built, including Restau-
rants (Popescu et al., 2003), Academic (Li and
Jagadish, 2014), Yelp and IMDB (Yaghmazadeh
et al., 2017), Scholar (Iyer et al., 2017), Wik-
iSQL (Zhong et al., 2017), Spider (Yu et al., 2018),
and CoSQL (Yu et al., 2019).

Formula Synthesis. Formula synthesis is a
branch of program synthesis that has been studied
in many works. FlashFill (Gulwani, 2011; Gul-
wani et al., 2012) utilizes input-output examples
to help end-users automatically synthesize string
transformation tasks in spreadsheets. Recent stud-
ies have explored various neural architectures for
learning programs from examples (Kalyan et al.,
2018; Parisotto et al., 2017), but they do not con-
sider context-specific information from spreadsheet
tables. FORTAP (Cheng et al., 2021) and SPREED-
SHEETCODER(Chen et al., 2021) are the prior ap-
proaches for synthesizing spreadsheet formulas
from tabular context. Our work provides a stan-
dardized benchmark for evaluating and comparing
future formula generation work, fostering advance-
ment and understanding of the field.

Tabular Data Processing. Several studies have
pretrained Transformers on tables. Table-
BERT (Chen et al., 2020) linearized tables as sen-
tences so that tables can be directly processed by
the pre-trained BERT model. TUTA (Wang et al.,
2021) is the first effort to pre-train Transformers
on variously structured tables. FORTAP (Cheng
et al., 2021) use formulas for numerical-reasoning-
aware table pre-training. To improve the repre-
sentation of utterances and tables for neural se-
mantic parsing, several works joined contextual
representations of utterances and tables, such as
TAPAS (Herzig et al., 2020) and TABERT (Yin

2384

Wrong
Evidence

NL: How many wins for team with 1800 against and more than 0 byes?

Ground Truth: SUM(FILTER(B2:B11, (B2:B11=1800)*(E2:E11>0)))
Generated: SUM(FILTER(B2:B11, (F2:F11=1200)*(C2:C11>0)))

Missing
Evidence

NL: What is the total value realized on vesting for stock awards for all named executive officers?

Ground Truth: E3+E4+E5+E6+E7
Generated: E3+E4+E5+E6

Wrong Intent
Inference

NL: What is the average annual growth rate of carrying value for Food Care for years 2017-2019?

Ground Truth: ((B9-B4)/B4+(B14-B9)/B9)/2
Generated: (B14+B3+B4+B5+B6)/5

Wrong
Calculation

NL: What was the increase / (decrease) in the net revenues from March 31, 2019 to December 31 2019?

Ground Truth: E4-B4
Generated: B4-E4

Figure 8: Case studies of error cases. (NL: Natural Language)

et al., 2020). Furthermore, Chen et al. (2021) in-
troduced SPREADSHEETCODER, which leverages
machine learning to assist in formula prediction in
spreadsheets.

7 Conclusion

In this paper, we have presented a novel and chal-
lenging research problem, NL2FORMULA, and
develop an accompanying dataset that includes
spreadsheet tables, NL queries, and formulas.
We construct a comprehensive dataset consisting
of 70,799 paired NL queries and corresponding
spreadsheet formulas, covering 21,670 tables and
37 types of formula functions. We also realize the
NL2FORMULA task by providing a sequence-to-
sequence baseline implementation called fCODER.
Through in-depth error analysis, we identify poten-
tial challenges in the NL2FORMULA task and ad-
vocate for further investigation. We believe that the
benchmark developed in this paper can prompote
the related research in NL2FORMULA.

8 Limitations

There are several limitations of our research. One
is that the formula queries in our NL2FORMULA

dataset are converted from several TEXT2SQL
datasets, resulting in a relatively fixed table struc-
ture. Additionally, while we made efforts to in-
clude as many formula functions and combinations
as possible in our experiments, we have not yet
fully covered all types of formula functions, such
as the “FIND” function used for string queries. In
our future work, we aim to expand the range of for-
mula queries by incorporating additional formula

functions, specifically targeting a broader array of
scenarios. This expansion will include incorpo-
rating diverse data samples that utilize functions
like “CONCATENATE”, “LEN”, and “REPLACE”.
These particular functions are essential for tasks
related to data cleaning, preparation, and textual
data manipulation. Moreover, we intend to explore
the capabilities of models under multi-type tables,
including horizontal and vertical tables, to simulate
more realistic application scenarios. Furthermore,
we aim to investigate situations involving multiple
tables under the same spreadsheet.

Another limitation is the maximum length of
model input, which is generally 512 characters.
Despite controlling the length of rows and columns
in the tables in this paper, we observed some errors
caused by the model not fully encoding the table.

An additional potential limitation of our ap-
proach is the inability to directly execute custom-
defined lambda functions in the current Excel envi-
ronment. The DAX library, with its different gram-
mar from Excel formulas, is used to build formulas
and expressions in Excel data models like Power BI,
Analysis Services, and Power Pivot. Consequently,
we cannot use our execution result metric to mea-
sure the performance of custom-defined lambda
functions. This limitation may impact the accuracy
and comprehensiveness of our evaluation for this
specific functionality.

Acknowledgements

This work is supported by the National Natural
Science Foundation of China under grand No.
62102157.

2385

References
J. Berant and P. Liang. 2014. Semantic parsing via

paraphrasing. In Proceedings of the 52nd Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers).

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Harrison Chase. 2022. LangChain.

Wenhu Chen, Hongmin Wang, Jianshu Chen, Yunkai
Zhang, Hong Wang, Shiyang Li, Xiyou Zhou, and
William Yang Wang. 2020. Tabfact: A large-scale
dataset for table-based fact verification. In 8th Inter-
national Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30,
2020. OpenReview.net.

Xinyun Chen, Petros Maniatis, Rishabh Singh, Charles
Sutton, Hanjun Dai, Max Lin, and Denny Zhou. 2021.
Spreadsheetcoder: Formula prediction from semi-
structured context. In International Conference on
Machine Learning, pages 1661–1672. PMLR.

Zhoujun Cheng, Haoyu Dong, Fan Cheng, Ran Jia,
Pengfei Wu, Shi Han, and Dongmei Zhang. 2021.
Fortap: Using formulae for numerical-reasoning-
aware table pretraining. In Proceedings of the As-
sociation for Computational Linguistics.

Shing-Chi Cheung, Wanjun Chen, Yepang Liu, and
Chang Xu. 2016. Custodes: automatic spreadsheet
cell clustering and smell detection using strong and
weak features. In Proceedings of the 38th Interna-
tional Conference on Software Engineering, pages
464–475.

L. Dong and M. Lapata. 2016. Language to logical form
with neural attention. Office for Official Publications
of the European Communities,.

Sumit Gulwani. 2011. Automating string processing
in spreadsheets using input-output examples. ACM
Sigplan Notices, 46(1):317–330.

Sumit Gulwani, William R Harris, and Rishabh Singh.
2012. Spreadsheet data manipulation using examples.
Communications of the ACM, 55(8):97–105.

Jonathan Herzig, Pawel Krzysztof Nowak, Thomas
Müller, Francesco Piccinno, and Julian Eisenschlos.
2020. TaPas: Weakly supervised table parsing via
pre-training. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 4320–4333, Online. Association for Computa-
tional Linguistics.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural Computation, 9(8):1735–
1780.

Srini Iyer, Ioannis Konstas, Alvin Cheung, Jayant Kr-
ishnamurthy, and Luke Zettlemoyer. 2017. Learning
a neural semantic parser from user feedback. In An-
nual Meeting of the Association for Computational
Linguistics.

Jean Kaddour, Joshua Harris, Maximilian Mozes, Her-
bie Bradley, Roberta Raileanu, and Robert McHardy.
2023. Challenges and applications of large language
models.

Ashwin Kalyan, Abhishek Mohta, Oleksandr Polozov,
Dhruv Batra, Prateek Jain, and Sumit Gulwani. 2018.
Neural-guided deductive search for real-time pro-
gram synthesis from examples. In ICLR.

F. Li and H. V. Jagadish. 2014. Constructing an in-
teractive natural language interface for relational
databases. Proceedings of the Vldb Endowment,
8(1):73–84.

OpenAI. ChatGPT plugins.
https://openai.com/blog/chatgpt-plugins. 2023.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Emilio Parisotto, Abdel-rahman Mohamed, Rishabh
Singh, Lihong Li, Dengyong Zhou, and Pushmeet
Kohli. 2017. Neuro-symbolic program synthesis.
In International Conference on Leaning Represen-
tations.

A. M. Popescu, O. Etzioni, and H. Kautz. 2003. To-
wards a theory of natural language interfaces to
databases. International Conference on Intelligent
User Interfaces.

P. J. Price. 1990. Evaluation of spoken language sys-
tems: the atis domain. In Proceedings of the third
DARPA Speech and Natural Language Workshop.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, Peter J Liu, et al. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21(140):1–67.

S. Reddy, M. Lapata, and M. Steedman. 2014. Large-
scale semantic parsing without question-answer pairs.
Transactions of the Association for Computational
Linguistics, 2(1):377–392.

L. R. Tang and R. J. Mooney. 2001. Using multiple
clause constructors in inductive logic programming
for semantic parsing. Springer, Berlin, Heidelberg.

Zhiruo Wang, Haoyu Dong, Ran Jia, Jia Li, Zhiyi Fu,
Shi Han, and Dongmei Zhang. 2021. Tuta: tree-
based transformers for generally structured table pre-
training. In Proceedings of the 27th ACM SIGKDD

2386

https://github.com/hwchase17/langchain
https://doi.org/10.18653/v1/2020.acl-main.398
https://doi.org/10.18653/v1/2020.acl-main.398
https://api.semanticscholar.org/CorpusID:497108
https://api.semanticscholar.org/CorpusID:497108
http://arxiv.org/abs/2307.10169
http://arxiv.org/abs/2307.10169
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135

Conference on Knowledge Discovery & Data Mining,
pages 1780–1790.

Y. W. Wong and R. J. Mooney. 2007. Learning syn-
chronous grammars for semantic parsing with lambda
calculus. In Acl, Meeting of the Association for Com-
putational Linguistics, June, Prague, Czech Repub-
lic.

Navid Yaghmazadeh, Yuepeng Wang, Isil Dillig, and
Thomas Dillig. 2017. Sqlizer: query synthesis from
natural language. Proceedings of the ACM on Pro-
gramming Languages, 1(OOPSLA):1–26.

Pengcheng Yin, Graham Neubig, Wen-tau Yih, and Se-
bastian Riedel. 2020. TaBERT: Pretraining for joint
understanding of textual and tabular data. In Proceed-
ings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 8413–8426.

Tao Yu, Rui Zhang, Heyang Er, Suyi Li, Eric Xue,
Bo Pang, Victoria Lin, Yi Tan, Tianze Shi, Zihan Li,
Youxuan Jiang, Michihiro Yasunaga, Sungrok Shim,
Tao Chen, Alexander Fabbri, Zifan Li, Luyao Chen,
Yuwen Zhang, Shreya Dixit, and Dragomir Radev.
2019. Cosql: A conversational text-to-sql challenge
towards cross-domain natural language interfaces to
databases. pages 1962–1979.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-
ing Yao, Shanelle Roman, et al. 2018. Spider: A
large-scale human-labeled dataset for complex and
cross-domain semantic parsing and text-to-sql task.
In Proceedings of EMNLP.

J. M. Zelle and R. J. Mooney. 1996. Learning to parse
database queries using inductive logic programming.
AAAI Press.

L. S. Zettlemoyer and M. Collins. 2012. Learning to
map sentences to logical form: Structured classifi-
cation with probabilistic categorial grammars. In
Conference on Uncertainty in Artificial Intelligence.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,
Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen
Zhang, Junjie Zhang, Zican Dong, Yifan Du, Chen
Yang, Yushuo Chen, Zhipeng Chen, Jinhao Jiang,
Ruiyang Ren, Yifan Li, Xinyu Tang, Zikang Liu,
Peiyu Liu, Jian-Yun Nie, and Ji-Rong Wen. 2023. A
survey of large language models.

Victor Zhong, Caiming Xiong, and Richard Socher.
2017. Seq2sql: Generating structured queries from
natural language using reinforcement learning. arXiv
preprint arXiv:1709.00103.

Fengbin Zhu, Wenqiang Lei, Youcheng Huang, Chao
Wang, Shuo Zhang, Jiancheng Lv, Fuli Feng, and Tat-
Seng Chua. 2021. TAT-QA: A question answering
benchmark on a hybrid of tabular and textual con-
tent in finance. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing (Volume 1: Long

Papers), pages 3277–3287, Online. Association for
Computational Linguistics.

A BNF Grammar of Formula

The extended BNF grammar of the Microsoft Excel
formula studied in this paper is defined as follows:

⟨Formula⟩ ::= = ⟨Expr⟩

⟨Expr⟩ ::= ⟨Term⟩ {⟨AddOp⟩ ⟨Term⟩}

⟨Term⟩ ::= ⟨Factor⟩ { ⟨MulOp⟩ ⟨Factor⟩ }

⟨Factor⟩ ::= ⟨Number⟩ | ⟨CellReference⟩ |
⟨FunctionCall⟩ |(⟨Expr⟩)

⟨CellReference⟩ ::= ⟨ColumnName⟩ ⟨RowNumber⟩

⟨ColumnName⟩ ::= ⟨Letter⟩ { ⟨Letter⟩ }

⟨RowNumber⟩ ::= ⟨Digit⟩ { ⟨Digit⟩ }

⟨FunctionCall⟩ ::= ⟨FunctionName⟩ ([⟨ArgumentList⟩])

⟨ArgumentList⟩ ::= ⟨Expr⟩ { , ⟨Expr⟩ }

⟨AddOp⟩ ::= + | -

⟨MulOp⟩ ::= * | /

⟨RelOp⟩ ::= < | > | <= | >= | = | !=

⟨LogicalOp⟩ ::= + | *

⟨FunctionName⟩ ::= [a-zA-Z]+

⟨Number⟩ ::= ⟨Integer⟩ | ⟨Decimal⟩

⟨Integer⟩ ::= ⟨Digit⟩ { ⟨Digit⟩ }

⟨Decimal⟩ ::= ⟨Integer⟩ . ⟨Digit⟩ | . ⟨Digit⟩

⟨Letter⟩ ::= [a-zA-Z]

⟨Digit⟩ ::= [0-9]

B Prompt Template Used by GPT-3.5

We utilize a 10-shot in-context learning strategy,
where for each new question and table, we dynami-
cally select the Top-10 most similar NL-Formula
pair examples from our training set. The similarity
is determined based on their BLEU scores (Pap-
ineni et al., 2002). These selected examples, com-
prising 10 pairs of NL queries and formulas, are
then integrated into a prompt to guide the model in
generating its result. We use the following prompt
template:

NL: [NL description]
Formula: [Excel Formula]
...(*10)
NL: [NL description]
Formula: [Excel Formula]
NL: [NL description]
Formula: [to be generated]

2387

https://doi.org/10.18653/v1/D19-1204
https://doi.org/10.18653/v1/D19-1204
https://doi.org/10.18653/v1/D19-1204
http://arxiv.org/abs/2303.18223
http://arxiv.org/abs/2303.18223

Table 4: Execution results of fCODER and ChatGPT, at
different levels of hardness.

Simple Medium Complex Calculation Overall
ChatGPT3.5-DirectQA 11.5 38.9 21.1 0.8 27.7
ChatGPT3.5-Agent 22.4 67.9 44.7 3.6 49.4
fCODER -Large 87.0 91.6 71.1 80.5 89.1

C Preliminary Comparison to ChatGPT

We explore the capabilities of ChatGPT for the
task of NL2FORMULA. In addition to prompt-
ing LLMs to generate formulas (see Sect. 5), we
also explore alternative approaches utilizing LLMs
for the processing of tabular data. We leverage
Langchain (Chase, 2022), a framework purpose-
fully crafted to harness the potential of LLMs in
the realm of application development. We inves-
tigate ChatGPT through two distinct approaches:
(1) Direct Question-Answering (Direct-QA): We
input the complete flattened table directly into the
LLMs, prompting it to provide a direct answer to
the NL query without any intermediate process-
ing. (2) Langchain-Agent (Agent): We employ the
Langchain CSVAgent workflow, which entails the
transformation of the original spreadsheet into a
Pandas data frame and the generation of Python
code to extract or manipulate data to respond to the
NL query.

We comprehensively evaluate ChatGPT’s ability
to handle tabular information and respond to NL
queries. We randomly select 3,000 samples from
the test dataset, which exclusively feature built-
in Excel functions and exclude custom-defined
lambda functions. Table 4 shows the evaluation
results on the NL2FORMULA dataset. From this
table, we can observe that ChatGPT exhibits mod-
erate proficiency in processing spreadsheet data.
They also unveil limitations in performing basic
numerical operations within the Calculation
subset, due to their constrained arithmetic and com-
plex reasoning capabilities. Interestingly, the uti-
lization of ChatGPT with Langchain CSVAgents
exhibits notably superior performance when com-
pared to the Direct-QA method. This is because the
Langchain agent generates Python code for manip-
ulating Dataframes, which closely aligns with the
current Code Interpreter in handling tabular data.

2388

