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Abstract

We present MUG, a novel interactive task
for multimodal grounding where a user and
an agent work collaboratively on an interface
screen. Prior works modeled multimodal UI
grounding in one round: the user gives a com-
mand and the agent responds to the command.
Yet, in a realistic scenario, a user command
can be ambiguous when the target action is in-
herently difficult to articulate in natural lan-
guage. MUG allows multiple rounds of in-
teractions such that upon seeing the agent re-
sponses, the user can give further commands
for the agent to refine or even correct its ac-
tions. Such interaction is critical for improv-
ing grounding performances in real-world use
cases. To investigate the problem, we create a
new dataset that consists of 77, 820 sequences
of human user-agent interaction on mobile
interfaces in which 20% involves multiple
rounds of interactions. To establish bench-
mark, we experiment with a range of model-
ing variants and evaluation strategies, includ-
ing both offline and online evaluation—the on-
line strategy consists of both human evaluation
and automatic with simulators. Our experi-
ments show that iterative interaction signifi-
cantly improves the absolute task completion
by 18% over the entire test set and 31% over
the challenging split. Our results lay the foun-
dation for further investigation of the problem.

1 Introduction

Natural language understanding on graphical
user interfaces (GUIs) is crucial for realizing
human-computer interaction and assisting scenar-
ios that have accessibility difficulties (Sarsen-
bayeva, 2018). Specifically, interpreting user com-
mands into executable actions has drawn increas-
ing interests as it manifests rich research problems
including multimodal modeling and natural lan-
guage grounding (e.g., Li et al., 2017; Gur et al.,
2019; He et al., 2020; Li et al., 2020a, 2021). Prior
works often consider UI grounding in a single-

pass fashion where the model predicts actions with
a given instruction without looking backward to
refine prediction. However, in a realistic scenario,
user instructions can be ambiguous or imprecise
when the target action is difficult or inconvenient
to articulate. Reasoning in such cases is inherently
iterative. Therefore, it is important and benefi-
cial to incorporate interaction for resilient ground-
ing (Suhr et al., 2019; Chandu et al., 2021).

In this paper, we investigate interactive ground-
ing on GUIs, which aligns multimodal input to ac-
tionable objects of a screen. We focus on single-
screen interaction which is the building block of
UI reasoning. Specifically, we introduce the MUG

(Multi-turn UI Grounding) task in which the user
iteratively guides the agent to select a desired UI
object (see Fig. 1). With a given UI and a tar-
get object, the user instructs the agent via natural
language, ranging from casual intent to more de-
scriptive commands. The agent infers which UI
object is intended by the user and and highlights
it. If the agent is correct, the user can confirm the
selection and the grounding is completed. Other-
wise, the user issues further guidance, e.g., "Click
the one below", to the agent to refine its selection.
We collecte the MUG dataset from live interac-
tion sessions between pairs of human annotators—
one acts as the user and the other as the agent.
Our dataset has 77, 820 examples, each records the
transaction history in a session. Specially, 20%
of the dataset are challenging ones as their human
commands need multiple rounds to ground, even
for human agents.

To establish the benchmark, we experiment
with a range of variants to model the dynamics
between the two roles. While the main goal of
the task is to develop agent models for ground-
ing, we also develop the user models for on-
line instruction simulation. We build our mod-
els upon a Transformer-based encoder-decoder ar-
chitecture (Li et al., 2021), and experiment with
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(a) Example one. (b) Example two.

Figure 1: Two illustrations of MUG with two turns in each. Interactions happen on the same screen. User commands are
shown above the screens. The target object is bounded in . Agent choices are marked with .

various learning methods, including traditional se-
quence modeling and reinforcement learning. To
fully examine the model performances, we evalu-
ate the agent model with a spectrum of evaluation
strategies, including both offline and online evalu-
ations. For the online evaluation, we employ both
automatic and human evaluations, which include
interactions between the agent and the user (ei-
ther a human or the user model) and offer a com-
prehensive probe into model understanding. Our
experiments show that incorporating interaction
substantially improves UI grounding task comple-
tion by 18% on the entire dataset and 31% on
the challenging set, both in absolute scales. Fur-
thermore, our robustness measurements suggest
MUG, while being a seemingly easy single-screen
task, is actually difficult since neural agents some-
times struggle to correct themselves, resulting in
repeated wrong selections across multiple turns.
This suggests large rooms for future improvement
in grounding agents.

In summary, our key contributions1 are:

1. We introduce MUG, a novel interactive
vision-language task that focuses on multi-
turn language grounding on a graphical UI
screen, which is a challenging task to im-
prove language grounding in realistic UIs.

2. We create a rich dataset that includes 77,820
examples recorded from live sessions be-
tween pairs of human users and agents. And
20% of the data are challenging for both hu-
man annotators and neural agents.

1The dataset and code for reproducing our experiments
are at https://github.com/to-be-de-anonymized.

3. We experiment with a range of model vari-
ants and evaluation strategies, showing that
iterative interaction significantly improves
grounding accuracy by 18% and 31% on the
entire and challenging test sets respectively,
with automatic assistance from our user mod-
els. Our work lays a foundation for future in-
vestigations on collaborative grounding.

2 Background

Multi-modal modeling has a long history of
research (e.g., Winograd, 1972; Barnard and
Forsyth, 2001; Lavrenko et al., 2003; Plummer
et al., 2015; Yu et al., 2016). One important area
focuses on grounding objects in images where the
natural language is used as an additional input
(Chen et al., 2017; Yu et al., 2016, 2018; Fukui
et al., 2016; Deng et al., 2021).

Interactive Multimodal Grounding Prior
works have formulated grounding as a multi-step
reasoning task, e.g., navigation via multiple steps
of grounding (e.g., Ku et al., 2020; Gur et al.,
2019). Our work differs by focusing on agent’s
ability to self-correct in synchronized turns of
interaction on a UI screen. It is also conceptually
linked to repeated reference game (Hawkins
et al., 2020), except we use a different form
of communication (language-action) instead of
dialogue (language-language). Our task leverages
iteratively refined instructions on atomic action
instead of the increased instruction utility over
multi-step actions (Effenberger et al., 2021).
We model both the user and the agent, and let
them communicate online. This is different from
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single-sided modelings (Suhr et al., 2019; Kojima
et al., 2021). Our observation that interaction
improves grounding is also in line with dialogue-
based works (e.g., Haber et al., 2019; Takmaz
et al., 2020).

UI Grounding Grounding UI objects involves
automatic completion of actions on web or mo-
bile interfaces (e.g. Pasupat et al., 2018; Li et al.,
2020a; He et al., 2020). It is also an important
accessibility task for users who are situationally
impaired when they are occupied by real-world
tasks at hand (Sarsenbayeva, 2018). Compared
to grounding on natural images, these tasks usu-
ally take well-specified user commands and aim to
select the object that best matches the command.
The UI image is often encoded via ResNet (He
et al., 2016) or ViT (Dosovitskiy et al., 2020). The
structure and text features of UI are often encoded
by Transformer model (Vaswani et al., 2017). Fus-
ing multimodal information is widely handled by
cross-attention (e.g. He et al., 2020; Li et al., 2021;
Bai et al., 2021). We adopt these neural compo-
nents in our benchmark.

Mobile UI Datasets Many grounding tasks,
while covering multiple screens, remain one-pass
reasoning, such as PIXELHELP (Li et al., 2020a)
and MOTIF (Burns et al., 2022). Prior works (e.g.,
Todi et al., 2021) used reinforcement learning
(RL) in design space. In contrast, MUG focuses
on correcting a single action on one screen. Tab. 1
summarizes key differences among other Mobile
UI datasets. Importantly, MUG is a challenging
task as it enables corrective interaction in synchro-
nized turn between user and agent.

Data Screen Instr Natural Corrective

RICO multi 7 7 7
PIXELHELP multi 3 3 7
MOTIF multi 3 3 7
RICOSCA single 3 7 7
REFEXP single 3 3 7

MUG (Ours) single 3 3 3

Table 1: Comparison to prior mobile UI Datasets, including
RICO (Deka et al., 2017), RICOSCA (Li et al., 2020a), and
REFEXP (Bai et al., 2021).

Our dataset further differentiate from later
works (e.g. Deng et al., 2023). While tasks are for-
mulated as multi-step navigation in both, we focus
more on corrective interactions for a single action.

3 Task Formulations

As a grounding task, MUG involves two partici-
pants: a user and an agent. Our formulation in-
cludes both roles to provide a holistic view of in-
teractive grounding. The user’s goal is to instruct,
via natural language, the agent to select the de-
sired object g on the UI screen S. The unique as-
pect of MUG is that it allows the user to guide the
agent iteratively to identify the target action by is-
suing a series of commands, each in response to
the agent’s prior inference.

We separate such user-agent interaction into
turns. At turn t, the interaction consists of:

{
ct : user command,
at : agent action.

where the user first instructs the agent with com-
mand ct, and the agent responds with a suggestion
of action at. Here at is essentially the index of
object. The task is completed when at = g.

3.1 Agent Task
In MUG, the action space for the agent consists of
a set of UI objects to click on the interface, e.g., in
Fig 1. Intuitively, we would want the agent to take
the desired action g as early as possible. Thus, at
turn t, the agent models

Pθ(at|S, c[0,t], a[0,t−1]) (1)

where θ denotes the agent parameters. This itera-
tive grounding early stops once at = g or t reaches
a maximum number of turns allowed.

3.2 User Task
The user’s role is to provide guidance to the agent
through iteratively refined instructions. In contrast
to one-pass prediction tasks (e.g. Pasupat et al.,
2018; He et al., 2020) where the agent makes
a one-shot guess, a MUG user issues follow-up
commands that are dependent of prior instructions
c[0,t−1] and agent actions a[0,t−1], which is formal-
ized as the following:

Pφ(ct|S, g, c[0,t−1], a[0,t−1]) (2)

where φ denotes the user. Here, the user model is
aware of the target object g.

Interplay between User and Agent The agent
task (Eq. 1) is the pivot of MUG. The user task
(Eq. 2) aims to guide agent towards task comple-
tion, which potentially includes online training. In
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our benchmark, we let the user and agent play to-
gether. Although automatic evaluation is not as
realistic as human evaluation, it offers a fast, low-
cost, and reproducible environment. This setting
also allows us to study various questions surround-
ing the interplay between the two, e.g., whether an
automatic user can assist an agent? and whether
agent errors would confuse the user?

4 Dataset Creation

As there is no available dataset for model train-
ing and evaluation, we developed an interactive
labeling interface to collect data for MUG. Our
data collection involves two human annotaters to
play the roles of the user and the agent respec-
tively in a live session. The user and the agent
have two separate views, running on different ma-
chines (Appx. A). Both views share the same UI
screen and a message box showing instruction his-
tory. Our task embodies the eyes-on, hands-free
situation for mobile interaction where the user is
required to only use language for the task, and the
machine responds its prediction by highlighting.
The user can commit the action if the prediction
is confirmed. In a session, only the user can see
the target; and the message box is read-only to the
agent so no language-base dialogue would happen.

4.1 Annotation Workflow

We use the UI corpus, mobile UI screenshots
and view hierarchies, from RICO (Deka et al.,
2017) and auxiliary object features from the CLAY

dataset (Li et al., 2022). Each session starts with
a randomly sampled UI object (e.g., a button),
from the visible view hierarchy, as the target ob-
ject g. User annotators are encouraged to artic-
ulate their initial command (c0) casually or goal-
oriented. We consider such design to cover the re-
alistic scenarios discussed in Sec. 1, and free users
from composing long and precise instructions.

In the agent view, all clickable objects on the
UI screen are revealed with their bounding boxes
highlighted, which show what objects the agent
can select, without indicating which one is the tar-
get g. The current agent selection is reflected on
both the user and the agent’s view. The session
continues to the user’s turn if the agent selection
does not match g. In follow-up turns, the user is
not allowed to repeat a command issued in previ-
ous turns, and likewise the agent is not allowed to
select an previously chosen object. Upon the agent

selection matching the target in the user view, the
task is completed. Each session allows up to 5
turns and we filter out those unfinished. We refer
to Appx. C for labeling details.

4.2 Data Analysis
We collected 77,820 examples based on 31,265
unique screens from 7,132 apps (see details in Ta-
ble 2). We split the dataset into the training, devel-
opment, and test sets. We use app-wise split (Li
et al., 2020b) to avoid potential leaking across sets.
As shown in Table 2, the splits have a similar dis-
tribution of number of turns per example. Simple
statistics on vocabulary distribution is in Appx. D.

Human performance establishes a high upper
bound. While users tend to provide short and
sometimes vague instructions (∼4 words), ∼80%
of the tasks are solved in one turn by human
agents. A critical question we aim to answer is that
can agent models approach this bar?. In Sec. 6,
we will show that agent models are far behind hu-
man performances, especially for examples that
requires more turns for human agents (i.e., the rest
∼20%). We will call this 20% as the Challenging
subset. Detailed examples are in Appx. H.

Multi-turn interaction is long-tailed. While
the 20% multi-turn ratio seems a low percentage
but it can lead to large impact in practice. Real-
world navigation problems often span over mul-
tiple screens with individual instruction on each
screen. If we assume the 20% multi-turn ratio on
each screen, the probability for multi-turn interac-
tion to happen in a navigation task can be signifi-
cantly larger, e.g., 67% with 5 screens.

In Appx B, we categorize 200 Challenging ex-
amples from the development split. We found
follow-up commands are mainly for spatial adjust-
ments or asking for extra information.

5 Grounding Models

We aim to have a general architecture for the UI
domain and explore its variants to model multi-
turn interaction. Our agent model is based on
a transformer encoder-decoder network, inspired
by (Li et al., 2021). Specifically, we extend the ar-
chitecture to handle interaction history as input in
the decoder.

5.1 Multimodal Encoder for UI
Our encoder processes the interface S. Each S
consists of two modalities of information, i.e., a
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Statistics of examples Distribution of Turns (%)

Split Apps Screens Interactions Avg. #Turns Avg. #Token/Turn 1 2 3 4 5

Train 6,039 26,090 65,235 1.24 4.26 78.91 18.31 2.37 0.35 0.06
Dev 544 2,625 6,377 1.23 4.18 79.99 17.77 1.91 0.27 0.06
Test 549 2,550 6,208 1.23 4.18 80.20 16.82 2.55 0.40 0.03

All 7,132 31,265 77,820 1.24 4.25 79.10 18.15 2.35 0.35 0.06

Table 2: Dataset statistics. Interaction is encouraged in multiple and short communication. Human performance establishes a
practical upper bound ∼ 80% in solving the task in 1 turn. Agent models aim to approach this bar.

screenshot IS and view hierarchy featuresψ (Deka
et al., 2017; Li et al., 2022). The concrete list of
ψ is in Appx. E. The output is an encoding vk for
each object indexed by k, similar to (e.g., Li et al.,
2020a; He et al., 2020; Li et al., 2020b):

ΦS = ResNet(IS) (3)

v = Tenc({ROIk(ΦS)|ψk}) (4)

For the image, we use a pre-trained ResNet-50 (He
et al., 2016) which is fine-tuned with other mod-
ules. The resulted ΦS (grid size of h × w) is then
mapped to object level by region-of-interest (ROI)
pooling (Ren et al., 2015). The multimodal fea-
tures for each object are fused by a transformer
encoder Tenc. The final v stands for a sequence of
objects which are interaction-agnostic.

5.2 Grounding Decoder
We use a causal transformer Tdec to predict click
action from interaction history. We extend the
architecture of (Li et al., 2021) to incorporate
multi-turn interaction as input (instead of single
grounding statement). Specifically, we concate-
nate c[0,t] and a[0,t−1], and combine it with imita-
tion/reinforcement learning losses (instead of di-
rect supervision loss). The output of Tdec is a vec-
tor zt that summarizes prior interaction up to ct:

zt = Tdec(v, c0, v
a0 , c1, ..., v

at−1 , ct) (5)

where at denotes object index, either from model
prediction or human selection. The specific input
to Eq. 5 will be subject to modeling variants in
Sec 6.1. For classification, we use a linear layer f
to score the k-th object:

at = arg max
k

f([zt|vk]) (6)

6 Experiments

The goal of our experiments is to explore train-
ing and evaluation methods for MUG and estab-
lish a benchmark. For a naive baseline, one could

simply match the instruction tokens to the object
texts on the screen. However, this turns out to
be insufficient due to the often incomplete ele-
ment attributes2. In Sec. 6.1, we explore multi-
ple modeling variants for the agent. In Sec. 6.2,
we present a simple and effective heuristics-based
user model and a neural version for automatic
evaluation. Lastly, we show extensive F1 results
in Sec. 6.4 and 6.5, robustness in 6.6, ablations
in 6.7 and 6.8. We refer readers to appendices
for hyperparameters (Appx. F), sample predictions
(Appx. I), error analysis (Appx. G).

Separation of User and Agent Modeling We
train user model and agent model separately to
avoid test leakage when using user models in au-
tomatic benchmark. Such setup limits our agent
choices to offline ones. Future work can explore
online agent (e.g., DAGGER (Ross et al., 2011))
with separate treatment on user models during
training and inference.

To avoid confusion, we thereafter use a′t to re-
fer to the selection predicted by the agent model
at turn t, while at to the human agent’s selection.
Similarly, we refer c′t to instruction generated by
user model while ct to the one by human user.

6.1 Agent Models

Our agent models use the Tenc and Tdec (in Sec. 5)
as a backbone, denoted as θ. Recall that Tenc pro-
cesses S while Tdec processes interaction. Here,
we discuss different handlings of Tdec.

Single or Multi-turn Model The first factor we
investigate is how allowing multiple turns helps
grounding. For each example, we can feed the en-
tire interaction history as input to the agent model
and supervise agent selection on the last turn T :

P (a′T = g|S, c[0,T ], a[0,T−1]; θ) (7)

2For instance, the validation split has 46% objects missing
text, and a deterministic classifier using METEOR (Banerjee
and Lavie, 2005) has only 21% F1.
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We can further reduce the input to be (S, c0) only,
making a single-turn model. To evaluate single-
turn model with multi-turn examples, we simply
concatenate all ct into one instruction.

Instruction-only Model To understand how it
helps grounding by taking into account of previ-
ous actions of the agent in the multi-turn model
(Eq. 7), we introduce the command-only baseline,
which ignores agent actions (selections) in the in-
teraction history:

P (a′T = g|S, c[0,T ]; θ) (8)

Imitation Model Instead of supervising the
agent only at the last turn, we can model the en-
tire action sequence as an imitation model:

∏
t
P (a′t = at|S, c[0,t], a[0,t−1]; θ) (9)

This variant investigates whether the supervision
of the intermediate actions helps.

Offline RL Lastly, because each turn the agent
action affects how the user responds, MUG can be
formulated as a RL problem where the user and
the UI constitute the environment. We use the De-
cision Transformer (Chen et al., 2021) for offline
RL. In addition to imitation learning, we use it to
promote early tasks completion by following the
standard configuration: inserting extra learnable
return tokenswt to the Tdec before each action, i.e.,
Tdec(v, c0, w0, v

a0 , ..., ct, wt). The model is:
∏

t
P (a′t = at|S, c[0,t], w[0,t], a[0,t−1]; θ) (10)

The encoder-decoder construction remains same
as the above. Possible discrete return tokens are
{1, 2, 3, 4} where 1 on the last turn. During test-
ing, we follow Chen et al. (2021) to force the cur-
rent turn to have return 1 and adjust prior returns.

6.2 User models
Here, we design a simple and effective heuristics-
based user model, and then develop a neural ver-
sion. To show automatic online evaluation is a
promising direction for MUG, we also conducted
human evaluation on a shared set of 500 examples
from the test split (Sec. 6.7).

Heuristics-based Model We observe that, when
the selection a′ is incorrect, we can determinis-
tically devise a follow-up instruction by using a
template as below:

Not the a′t, click the g to/on the dir.

This template is to be instantiated on view hier-
archy features (in Appx. E). Compared to human
follow-ups, heuristic ones are more specific and
longer, such as:

• Not the icon, click the action notifications on the top
right of the screen.

• Not the text, click the input search to the slight right
and below of your choice.

Neural Instruction Model We extend the Multi
agent architecture to model follow-up commands:

P (c′t = ct|S, g, c[0,t−1], a[0,t−1];φ) (11)

which uses Tdec(v, v
g, c0, v

a0 , c1, ..., v
at−1) at turn

t. For training, we teacher-force at each turn
(t > 0). We found that using heuristics as prompt
greatly boosts development CIDEr (Vedantam
et al., 2015) to from 70 to 78. For inference, we
use greedy decoding with a maximum length 12.

6.3 Metrics

We focus on evaluating the agent model as it is the
pivot task of MUG. Intuitively, we want the agent
to take the desired action g with less turns:

F1t =
∑

t
P (at = g|S, c[0,t], a[0,t−1]) (12)

where, in practice, we compute F1t with early stop
over turns to avoid double counting. Clearly, an
agent with high F1 and a lower value of t is better
than an agent that requires more turns for the same
accuracy. With t limited to 0, the task is reduced
to a one-pass grounding task.

In an extreme case, we consider an agent with
high F10 but flat changes in F1t > 0 to be prob-
lematic, since it questions the agent’s understand-
ing about the interface. For more comprehensive
testing, we also use a simple robustness metric for
prediction changes across turns:

Γ = P (|{at}| 6= T ) (13)

which is the percentage of examples that have du-
plicate actions within T valid turns. We expect a
robust agent model is able to understand previous
errors and failed attentions so as not to repeat the
same mistake. Furthermore, this metric is useful
as we observe that neural users can issue the same
instruction across turns. In this case, errors on the
user side is further complicated when agents re-
peat the same error.
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Challenging All

Model F10 F11 F12 F13 F14 avgstd F10 F11 F12 F13 F14 avgstd

Single 26.8 44.7 45.6 45.7 45.7 46.11.3 56.9 60.5 60.7 60.7 60.7 60.30.8

Ins-only 25.2 49.7 52.1 52.2 52.2 53.51.3 58.5 63.4 63.8 63.8 63.9 64.00.5

Multi 25.2 54.2 57.2 57.4 57.4 59.91.5 58.6 64.3 64.9 64.9 64.9 65.10.2

Imitation 23.5 56.5 59.6 59.6 59.6 59.41.5 56.6 63.1 63.7 63.7 63.7 64.00.8

Offline RL 24.2 55.4 58.1 58.2 58.2 58.11.1 58.0 64.2 64.7 64.8 64.8 65.10.5

Table 3: Offline agent F1↑ on the test set. F10-4 are from model trained with seed 1 and avgstd is F14 of 5 runs. Single/Multi:
single/multi-turn model.

Heuristics Neural

Model F10 F11 F12 F13 F14 avgstd F10 F11 F12 F13 F14 avgstd

C
ha

lle
ng

in
g Single 26.8 39.8 43.3 44.6 44.6 44.10.5 26.8 41.7 43.9 44.6 45.2 44.91.0

Ins-only 25.2 47.4 51.7 52.9 53.5 52.91.4 25.2 43.4 46.5 48.2 48.5 49.10.7

Multi 25.2 47.8 50.9 51.7 52.4 54.31.1 25.2 43.9 47.4 48.9 49.4 50.01.1

Imitation 23.5 39.8 43.3 46.8 48.1 55.20.4 23.5 44.1 51.4 55.5 57.6 57.71.5

Offline RL 24.2 47.6 52.7 54.1 54.6 54.61.2 24.2 44.6 49.4 51.3 52.0 53.41.3

A
ll

Single 56.9 65.2 67.4 68.1 68.1 68.70.8 56.9 65.0 66.5 67.0 67.4 67.10.8

Ins-only 58.5 70.9 72.9 73.6 74.0 73.50.4 58.5 67.8 69.9 70.9 71.3 70.90.3

Multi 58.6 71.7 72.9 73.3 73.6 74.20.5 58.6 67.9 69.8 70.6 70.8 71.10.6

Imitation 56.6 69.1 72.4 73.5 73.9 74.60.5 56.6 68.7 72.6 74.4 75.5 75.40.5

Offline RL 58.0 71.6 74.0 74.7 75.0 74.60.6 58.0 68.4 71.2 72.2 72.7 73.30.5

Table 4: Online agent F1↑ on the test set. F10-4 are from model trained with seed 1 and avgstd is F14 of 5 runs. Single/Multi:
single/multi-turn model.

6.4 Offline Results

Tab. 3 presents offline results on the test set, over
the Challenging (see Sec. 4) and the All sets. Dur-
ing inference, we use instructions from the human
user and actions from the human agent for turns in
between and ask an agent model to predict at each
turn. Doing so requires agent models to correct
human agent actions, instead of the model’s own.
Clearly, the models that take into account interac-
tion history outperform those use none or partially.
While the Ins-only and the Imitation models per-
form closely on the All set, they bear larger mar-
gins on the Challenging and online tests.

6.5 Online Results

Tab. 4 presents online test scores. In general, mod-
els that are supervised by action sequences (i.e.,
Imitation and Offline RL) perform better. Both
heuristics-based and neural user models are able
to guide agents towards task completion. Compar-
ing Single’s F10 and Imitation’s F14, we see that
properly using interaction boosts task completion
by 18 and 31 on the Challenging and All test sets.

The average F14‘s show that heuristics-based
user works better, except that the Imitation collab-
orates better with the neural user. This might be
attributed to the neural user is trained to mimic hu-
man command patterns which can be ambiguous
and short, while heuristics are more precise while

being artificial. This also implies that a large room
for further improvement to the user modeling.

Overall, we can see interactive grounding is a
challenging task, even on a single screen. The
agent modeling involves robust multimodal under-
standing to self-correct. The user modeling re-
quires controlled language generation, which is
still an open problem. The best task completion
rate on the Challenging subset is only∼ 55%, sug-
gesting a large room for future improvements.

6.6 Agent Robustness
We take a deeper look at agent behavior in Tab. 8.
We observe that agents with higher F1 tend to be
more robust (lower Γ). The best agent model (Im-
itation) repeats the same mistake for only 16.8%
on the All test set. However, if we ignore those ex-
amples finished in 1 turn i.e., T > 1 columns, the
repeating rate rises to∼ 40%. The Heuristics user,
while generally improves agent F1 more than the
Neural user, has a mixed robustness impact on the
Imitation and Offline RL agents. On weaker agents
(the first 3 rows), the Heuristics user leads to more
salient robustness. These observations suggest im-
proving agent F1 has a more direct and positive
impact on robustness.

6.7 Automatic v.s. Human Evaluation
To show automatic online test is a promising sur-
rogate for human-in-the-loop evaluation, we com-
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Challenging All Challenging (T>1) All (T>1)

Heuristics Neural Heuristics Neural Heuristics Neural Heuristics Neural

Single 44.40.9 44.91.1 25.80.4 26.90.3 60.30.9 61.01.3 59.10.9 61.70.5

Ins-only 37.91.4 40.51.0 21.20.4 23.40.3 51.41.3 55.00.8 51.20.5 56.40.9

Multi 38.31.3 41.31.0 21.30.3 23.80.5 51.51.8 55.61.4 51.30.8 57.91.0

Imitation 31.01.2 28.31.4 17.60.3 16.80.5 40.71.7 37.21.8 40.70.5 38.91.1

Offline RL 36.41.1 35.50.8 19.90.4 20.50.3 48.61.0 47.41.0 48.00.7 49.50.8

Table 5: Agent Γ ↓ on the test split. Results are from 5 random runs. Smaller Γ means more robust. Single/Multi: single/multi-
turn model.

pare Single with Multi3 with a group of human
annotators (acting as the user) (Tab. 6). We ask
the user annotators to follow the same annotation
interface and guideline in Sec. 4, and let them to
use the trained agent model to ground their com-
mands. That is, human plays the user role and a
trained agent model plays the agent role. This set-
ting maximally mimics a realistic situation where
a human user guides the agent to locate a tar-
get solely using language commands. The results
(Tab. 6) are generally consistent with those from
the automatic evaluation (Tab. 4). We should also
note that such human study is not meant to reflect
every minor differences in automatic evaluations.

Model F10 F11 F12 F13 F14 Γ ↓
Single 50.0 56.4 58.2 58.4 59.4 42.6
Multi 49.6 58.4 60.4 62.2 62.6 39.4

Table 6: Human-in-the-loop evaluation on 500 examples
from the All test set. Models are trained with seed 1.

6.8 Ablation on Heuristics

To show agent improves from follow-up instruc-
tions effectively, instead of overfitting potential ar-
tifacts in the dataset, we report our ablation studies
in Tab. 9. Specifically, we focus on the heuristics-
based user since it offers well-controlled instruc-
tion generation. We can see that random heuris-
tics underperform by ∼14% and repeating the ini-
tial instruction is even worse. The Γ scores also
suggest that randomly instantiated instructions are
less effective in guiding the agent.

7 Analysis

Tab. 8 shows how model predictions are affected
by corrective instructions generated by heuristics
or the neural instruction model. On the challeng-
ing subset, there are about half of examples where

3We choose these two models as a pilot study since they
perform consistently different in all our metrics.

Multi F10 F11 F12 F13 F14 avgstd Γ ↓
Heuristics 25.2 47.8 50.9 51.7 52.4 - 40.0
Random 25.2 32.7 34.3 34.7 35.1 35.60.9 51.61.5

Repeat c0 25.2 29.3 30.9 31.6 32.0 - -

Table 7: Ablation of instructions using heuristics-based user
model for the Multi agent (trained with seed 1) on the Chal-
lenging test set. Random: randomly instantiated heuristics
for ct>0 across 5 seeds.

our agent models make repeatedly the same in-
correct selection, irrespective of the corrective in-
struction. Even considering the entire test set,
there are still ≥ 26% such cases. We broadly at-
tribute this observation to the difficulty of the task
as well as the challenge in multimodal modeling.

Challenging All

Heuristics Neural Heuristics Neural

Single 57.8 56.6 33.4 34.0
Ins-only 48.4 53.3 27.0 30.4
Multi 49.5 52.9 27.4 30.6
Imitation 57.8 45.3 26.6 26.2
RL 47.3 50.8 26.0 29.0

Table 8: Percentage of example have duplicated predictions
across turns. Lower values indicates less robustness.

Multi F10 F11 F12 F13 F14 %Dup↓
Heuristics 25.2 47.8 50.9 51.7 52.4 49.5
Random 25.2 34.0 37.4 38.2 38.6 62.7
Reuse 1st 25.2 29.3 30.9 31.6 32.0 70.2

Table 9: Heuristics v.s. immediate alternatives on the Chal-
lenging split using the Multi model. Random: instruction
templates instantiated with random target object on the in-
terface. Reuse 1st: reusing the first instruction across turns.

Tab. 9 compares our heuristics-based online
evaluation against immediate alternatives. The
large and consistent performance gaps suggest our
agent models follow the hints in corrective instruc-
tions instead of random-guessing. For brevity, we
used the Multi model to demonstrate. Other multi-
turn models performed in a similar pattern (e.g.,
15∼20% better F14 with Heuristics).
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In Appx. I, we demonstrate predictions from the
Imitation model with successfully solved exam-
ples as well as failed ones.

8 Conclusions

In this paper, we presented MUG, a novel and
challenging task for multimodal grounding on UI.
MUG requires a grounding agent being able to cor-
rect its own prediction, and allows a user to guide
the agent via natural language instructions. For
the task, we contribute a new dataset, investigate
modeling options for the agent, and propose evalu-
ation strategies along with two user models for au-
tomatic online testing. We found that interaction
greatly improves grounding accuracy in the UI do-
main. Our experiments and analyses also suggest
large room for grounding performances, even on a
seemingly easy single screen task, which calls for
future investigation. Our work also contributes to
the general effort of multimodal language under-
standing and its robustness by enabling synchro-
nized multi-turn interactivity.

Limitations

English-only Dataset While non-English exam-
ples exists, we acknowledge that MUG mostly
consists of English UI. Other languages do exist in
the dataset, but consists of a small portion. Specifi-
cally, our instructions are English-only. Future ex-
tensions to our work should address or alleviate
this issue.

Platform-specific Interfaces Our interfaces,
since coming from RICO, only consist of Android
screens. In practice, it is also difficult to obtain
non-Android interfaces. We acknowledge this is
an application limitation. And the bias from the
top and bottom banner of Android could make
trained model brittle in other domains.

Going beyond Single Screen We aim to estab-
lish the task and report baseline performances for
future work. The interaction in MUG happens
within the same user interface. A natural extension
would be extending the task to span over sequence
of interfaces. Indeed, the task would become more
challenging, and potentially require large offline
training data and reliable online simulation.

Better User Model The current best neural in-
struction generation we use has a CIDEr 78.0 on
the validation set. We acknowledge there is space

for further improvement. Note that our neural in-
structions are trained on multi-turn examples in
MUG, which amounts to ∼20% of the training
data. It suggests external resources could be useful
for improving user model performances.

Interaction Dynamics between User and Agent
It would be helpful to study how/why the agent
sometime repeatedly makes incorrect actions in
Tab. 8, such as whether repeated mistakes are due
to the lack of language utility/diversity in user in-
struction or the lack of understanding in the agent.

Online Learning for Agent As a starting point,
we explored modeling variants that are immediate
to the multi-turn interaction problem on UI. Since
agent model is the pivot, future work should exper-
iment agent models in an online setting where au-
tomatic interaction traces can be used to augment
human annotations (e.g., DAGGER (Ross et al.,
2011)). This, however, requires carefully separat-
ing the use of user model during training and au-
tomatic evaluation.

Focus on Correcting Single Action In this pa-
per, we exclusively focused on the corrective in-
teraction between user and agent models centered
on a single action on a screen. Such focus, in the
future, could be extended to fit the multi-screen
navigation test case of generalist agents.
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A Labeling Interface

Fig. 2 presents the user and agent views in our data
collection interface. In the user view, the user can
send commands in the message box, to instruct
the agent to select the target object as highlighted
by a red bounding box on the UI screen. On the
agent’s view, the agent annotator can respond the
user request by performing object selection on the
UI screen, which has all the clickble objects high-
lighted. But there is no indication of the target
object so the agent annotator has to guess from the
user instruction. The agent is not allowed to text
back to the user. The agent’s current selection is
reflected on the UI screen so the user understands
how to further instruct the agent. The annotation
task is designed based on the eyes-on hands-free
situation of mobile interaction.

B Manual Analysis on the Challenging
Subset

In Tab. 10, we categorize 200 Challenging exam-
ples from the development split. We found follow-
up commands are mainly for spatial adjustments
or asking for extra information.
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Percentage Attribution Example

50% Adjusting relative position in the layout. the value before the text.
31% Providing more information of the target. show me channels. → click tv icon.
10% Adjusting direction/position on the screen. not reward but collect at the bottom.

3% Rephrasing the instruction. go to books. → show me books logo.

Table 10: Major categories for the second turn from 200 examples in the development split.

C Details of the Labeling Task

The labelers of the task were native English speak-
ers and had experience using mobile phones. They
were trained with a few pilot tasks to get familiar
with the task, during which we also improved the
labeling interface and the guidelines based on la-
belers’ feedback. The dataset was completed by
30 labelers in 10 batches. The labeling quality was
monitored by sampling examples from each batch
for manual examination.

D Vocabulary Diversity

The word-level vocabulary in the training set con-
sists of 13, 794 unique words. Fig. 3 shows the
distribution of the 50 most frequent words in the
training split with certain non-content words (e.g.,
is, of, comma) filtered out.

E View Hierarchy Features

Tab. 11 lists the complete view hierarchy features
we used. We unify each feature into a real-valued
vector. These view hierarchy features are first rep-
resented with trainable embeddings, and then en-
coded by the transformer model (Sec. 6.1). For
text attributes (e.g., text), we max-pool their non-
contextualized token embeddings, which are ran-
domly initialized and trained. For discrete-valued
attributes (e.g., type), we use a trainable vector
for each possible value. The ordering of objects
in transformer input follows the pre-order traver-
sal in the view hierarchy (which is a tree struc-
ture). We then combine the vision representa-
tions of individual UI objects via ROI pooling over
ResNet featuremap of the encoded screenshot im-
age, and view hierarchy encoding to form a mul-
timodal representation of each UI object for the
downstream computation of the model.

We consider these view hierarchy features to be
auxiliary. There is often a huge gap between what
command the user would issue based on what they
see on the UI, and what the underlying information
is for the UI. As we discussed in Sec. 6, about 46%
of UI objects do not have a text label, and the user

would need to come up with their own language
description about the object, which is why the text
matching baseline fails. Even when there are text
descriptions, they are not necessarily what the user
would articulate since a user command can be ab-
stract. Fundamentally, the internal representation
of the UI is often inaccessible or uninterpretable
to the user, thus calling for the help of multimodal
modeling and interaction modeling.

Feature Example

bounding box [xmin, xmax, ymin, ymax]
leaf true/false
type button/checkbox/...
clickable true/false
text email address/passcode
resource id login_icon
dom [pre/post-order index]

Table 11: Features ψ used for visual structure.

F Hyperparameters & Training

For all our agent models, we use the same config-
urations, which are grid-searched based on mod-
els’ offline validation performances. Our hyperpa-
rameters are chosen from the best offline develop-
ment F1 scores. For the number of self-attention
modules, we grid-searched in {1, 2, 4, 6}, which
resulted in 2 hidden layers for the user interface
Transformer encoder and 6 hidden layers for the
grounding decoder. Each self-attention module
uses 8-head self and encoder-decoder attention
with a 256 hidden size. The dropout rate for atten-
tion and MLP layers is 0.1, which is grid-searched
in {0.1, 0.2, 0.5}. For learning rate, we grid-
searched from {1e-3, 3e-4, 1e-4, 3e-5, 1e-5},
and use 3e-4 with linear warmup with cosine an-
nealing for the first 10k steps. All the models are
trained to 100k steps with a batch size of 128 on a
32-core Google Cloud TPUv3. Models are evalu-
ated every 1k steps and the version with the best
development offline F14 is saved. The training
time for our agent model is around 8 hours.

Our neural user model has the same grid-
searched configuration as the agent, i.e., 2 encoder
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layers, 6 decoder layers, 0.1 for dropout, and the
same warmup scheduling. The best learning rate
is 1e-4. Different from the agent model, we found
the neural user model’s development CIDEr score
quickly drops after 6k steps, possibly due to over-
fitting and data sparsity, thus its training early-
stops there.

G Error Analysis

We manually analyze errors from the best agent
(Imitation). In Tab. 12, we inspect 30 failed de-
velopment examples (i.e., unfinished after 5 turns)
that are subject to the Neural user. Due to the role
interplay, we also count problematic commands.
We observe that the user model sometimes is-
sues repetitive or uninformative instructions start-
ing from the 3rd turn, leading the agent to the same
wrong selection. This might be caused by the data
sparsity for examples with ≥ 3 turns.

Agent User

Incapabilities text icon UI layout pos/dir wrong ct stale ct

#Example 6 7 9 7 15 27

Table 12: Major error categories of the Imitation model on
30 failed development examples (150 turns). stale ct: repeti-
tive/uninformative instruction. Model is trained with random
seed 1.

H Examples in the MUG Dataset

We present some examples from the MUG dataset
in Fig. 4 and 5. Each example contains instruc-
tions and selections from human user and agent
annotators.

I Prediction Examples

Here, we demonstrate predictions from the Imi-
tation model. Fig. 6 demonstrates successfully
solved examples following the instructions gener-
ated by the Heuristic user model, while failed ones
are in Fig. 7. Similarly, Fig. 8 demonstrates solved
ones following the instructions generated by the
Neural user model, and failed ones are in Fig. 9.
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(a) The user sees the target object (boxed in red) and the agent selection in the previous round (boxed
in yellow). The user can issue commands in the message box.

(b) The agent sees the user commands, and all the available candidates (clickable objects) on the
screen, which are all boxed in red, and the current selection boxed in yellow.

Figure 2: MUG annotation interfaces consist of a user view and an agent view.
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Figure 3: Distribution of top 50 words in MUG training split.
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Figure 4: MUG examples 1-4. Instructions are at top of each turn. Agent selection is in and target is in .
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Figure 5: MUG examples 5-8. Instructions are at top of each turn. Agent selection is in and target is in .
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Figure 6: Completed examples by the Imitation agent following the instructions generated by the Heuristic user.
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Figure 7: Failed examples by the Imitation agent following the instructions generated by the Heuristic user.
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Figure 8: Completed examples by the Imitation agent following the instructions generated by the Neural user.
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Figure 9: Failed examples by the Imitation agent following the instructions generated by the Neural user.
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