
Findings of the Association for Computational Linguistics: EACL 2024, pages 311–322
March 17-22, 2024 c©2024 Association for Computational Linguistics

OYXOY: A Modern NLP Test Suite for Modern Greek

Konstantinos Kogkalidis1 ⋆

kokos.kogkalidis@aalto.fi
Stergios Chatzikyriakidis2 ⋆

stergios.chatzikyriakidis@uoc.gr

Eirini Chrysovalantou Giannikouri2 Vasiliki Katsouli2

Christina Klironomou2 Christina Koula2 Dimitris Papadakis 2

Thelka Pasparaki2 Erofili Psaltaki2

Efthymia Sakellariou2 Hara Soupiona2

1 Department of Computer Science, Aalto University
2 Department of Philology, University of Crete

⋆ Corresponding

Abstract

This paper serves as a foundational step to-
wards the development of a linguistically moti-
vated and technically relevant evaluation suite
for Greek NLP. We initiate this endeavor by in-
troducing four expert-verified evaluation tasks,
specifically targeted at natural language in-
ference, word sense disambiguation (through
example comparison or sense selection) and
metaphor detection. More than language-
adapted replicas of existing tasks, we con-
tribute two innovations which will resonate
with the broader resource and evaluation com-
munity. Firstly, our inference dataset is the
first of its kind, marking not just one, but
rather all possible inference labels, account-
ing for possible shifts due to e.g. ambigu-
ity or polysemy. Secondly, we demonstrate
a cost-efficient method to obtain datasets for
under-resourced languages. Using ChatGPT
as a language-neutral parser, we transform the
Dictionary of Standard Modern Greek into a
structured format, from which we derive the
other three tasks through simple projections.
Alongside each task, we conduct experiments
using currently available state of the art ma-
chinery. Our experimental baselines affirm the
challenging nature of our tasks and highlight
the need for expedited progress in order for
the Greek NLP ecosystem to keep pace with
contemporary mainstream research.

1 Introduction

It is a well known fact that the natural language
processing world is running at multiple speeds.
A select few languages claim the lion’s share in
the literature, boasting a plethora of models and a
constant stream of results, while others are strug-
gling to keep up with last year’s state of the art.
Meanwhile, multilingual models, despite being her-
alded as the end-all solution to the issue, often
fall short of expectations (Wu and Dredze, 2020;
Ogueji et al., 2021; Pfeiffer et al., 2021; España-
Bonet and Barrón-Cedeño, 2022; Havaldar et al.,
2023; Papadimitriou et al., 2023, inter alia). The
assumption that one-size-fits-all multilingual mod-
els can effectively bridge the language gap is hard
to either refute or validate, given the disproportion-
ate distribution of training and evaluation resources
among languages (Joshi et al., 2020; Yu et al., 2022;
Kreutzer et al., 2022). Further muddying the wa-
ters is the dubious quality of the increasingly trend-
ing multi- and mono-lingual resources generated
through minimally supervised machine translations
from English (Artetxe et al., 2020; Wang and Hersh-
covich, 2023). While such endeavors can certainly
make for good first steps, they are neither suffi-
cient nor without risks. The wide adoption of the
practice threatens resource plurality, as more and
more “new” datasets are in fact old in all but lan-
guage. Furthermore, it condones the accumulation
of academic authority to a select few, namely the
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authors of the originals, promoting the unhindered
perpetuation of their biases and oversights as uni-
versal across languages. Worse yet, it outsources
linguistic expertise to machine labor, as we are now
entrusting our automated processes with capturing
the nuances of under-represented languages; ex-
actly those languages that require opinionated and
targeted expert attention the most.

And while a discussion on the structural causes
behind the problem and the ways to incentivize
change is long overdue, here we set our aims to-
wards something more actionable. Noting the strik-
ing absence of evaluation benchmarks for mod-
ern Greek, and the language’s limited presence in
multi-lingual resources, we set out to develop a lin-
guistically motivated and technically relevant suite
of evaluation tasks. This paper aims to kickstart
this endeavor, while serving as an open invitation
to interested parties. Concretely, we set the pace
with four evaluation tasks:

1. a handcrafted dataset for inference, consisting
of 1 762 sentence pairs, each pair adorned with
a linguistic characterization in the form of tags
à la SuperGlue and labeled with a subset (rather
than an element) of {Neutral, Entailment,
Contradiction}, aiming to account for all pos-
sible inference relations between premise and
hypothesis

2. a structured translation of the Dictionary of Stan-
dard Modern Greek, from which we project into
three tasks:

(i) a word sense disambiguation task à la
Words-in-Context, consisting of 117 662
phrase pairs that correspond to two usage
examples for a single word, where the sys-
tem is tasked with telling whether the two
occurrences have the same meaning or not

(ii) a more compact & linguistically informed
version of the same task consisting of
14 416 unique phrases containing polyse-
mous words, each word associated to a
number of senses and their periphrastic def-
initions, where the system is tasked with
telling which word sense is associated with
each usage example

(iii) a metaphor detection task, associating each
of the previous phrases to a boolean la-
bel indicating whether the word in focus
is used metaphorically or not

To facilitate research with these tasks, we supply
accessible entry points to the raw data in the form

of Python interfaces. For each task, we conduct
experiments using the currently available state of
the art machinery and establish baseline scores for
comparisons.1

2 OYXOY

Inspired by Glue and SuperGlue (Wang et al., 2018,
2019), our goal is to develop a language-adapted
suite that selects and extends a few key aspects of
the original. Our project, which we lightly dub
OYXOY (pronounced /"u.xu/), is not primarily fo-
cused on offering general diagnostics, but rather
on highlighting the semantic, syntactic, and mor-
phological attributes of the Greek language, and
quantifying their impact on NLP systems. To that
end, we present four high-level tasks that require
varying degrees of lexical & sentential meaning
comprehension.

2.1 Natural Language Inference
Our first task is a staple of computational semantics
that has endured the test of time: natural language
inference (NLI). In their most common form, NLI
tasks present the system with an ordered pair of
sentences (called a premise and a hypothesis), and
request one of three inference relations that must
hold between premise to hypothesis: Entailment,
Contradiction and Neutral/Unknown. Despite
its apparent simplicity and the heaps of progress
in modern NLP, the conquest of NLI has proven
challenging to this day. Neural systems show a
tendency to abuse spurious data patterns over ac-
tually performing the (often complicated) reason-
ing required to solve the problem, resulting in lim-
ited generalization capacity across datasets. For
our dataset, we follow Wang et al. (2018, 2019)
in establishing a hierarchy of rudimentary but de-
scriptive linguistic tags that encompass an array of
phenomena that can influence the direction of in-
ference. For a glimpse at the full hierarchy of tags
used, refer to Table 2. These tags are intended to
find use outside the model’s input/output pipeline,
providing a guide for categorizing results and draw-
ing finer-grained quantitative evaluations. Where
our dataset diverges from established practices is
in providing an explicit account of inference-level
ambiguities not only through the tagging but also
through the labeling scheme. Rather than annotat-
ing each example pair with any one inference label,

1Data, interfaces and the code necessary to repli-
cate our experiments is available at https://github.com/
StergiosCha/OYXOY/.
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we instead specify all possible labels that may hold.
To do so, we implicitly consider the product space
of all possible readings of both premise and hypoth-
esis, and construct the label set arising out of all
pairwise interactions; Figure 1 shows two concrete
examples under different settings, as rendered in
the dataset.

To create the collection of samples that make up
the dataset, we follow a three stage process. At
the first stage, each author independently wrote
a number of sentence pairs together with a sug-
gested set of tags and labels.2 Afterwards, each
author was given a collection of sentence pairs
from other authors with the tags and labels hid-
den, and was tasked with assigning the tags and
labels they deemed most appropriate. This way,
we end up with four unique tag and label sets for
each pair. Finally, we perform an aggregation of
the proposed annotations and jointly go through
any and all examples that contain at least one tag or
label that does not reach a majority (i.e. counts less
than three votes). We spot We resolve disagree-
ments by adding or removing annotations, thus
ensuring internal consistency within the dataset. At
the end of the process, we end up with 1 049 sam-
ples, of which 110 contain more than a single la-
bel. The dataset as a whole contains 454 Neutral,
414 Entailment and 292 Contradiction assign-
ments.

In parallel to the above, we re-annotate the Greek
version of FraCaS (Amanaki et al., 2022) according
to our format specifications, skipping directly to the
third stage of the pipeline described earlier. The de-
rived dataset contains an additional 713 examples,
revealing 30 of them as multi-labeled, with a label
distribution of 264 Neutral, 345 Entailment and
134 Contradiction. We serve the two datasets
independently, but as a single resource.

2.2 Repurposing the Lexicon

Transitioning to our next objective, a resource tar-
geting lexical semantics, we immediately run into
a roadblock. The construction of a sufficiently
large dataset centered on the word requires a pro-
hibitive investment of time and effort. Facing the
very same challenge, contemporary contributions
have established the practice of turning to either
machine translation or crowd-sourced labor, with
hired workers being overlooked by applied prac-

2The generation/annotation guidelines handed out are avail-
able online with the rest of the data.

titioners (at best, if at all). Albeit pragmatic, this
approach compromises the quality of the generated
resources, dismissing domain expertise in the pur-
suit of improved cost efficiency (a prerequisite, in
turn, for quantity). As an alternative, we redirect
our focus towards a frequently-overlooked tradi-
tional resource: the lexicon. Reputable lexica offer
a rare mixture of linguistic rigor and extensive cov-
erage virtually for free, making them a prime can-
didate for adaptation and repurposing into modern
applications. In what follows, we showcase how
this insight can be put into practice, enacting a sen-
sible and effective way forward for under-resourced
languages.

We begin by procuring a copy of the Dictio-
nary of Standard Modern Greek (Triantafyllides,
1998).3 The dictionary is provided in the form of
a minimally structured SQL database, associating
each lemma with its lexical entry, a raw text field
containing a periphrastic definition and a few us-
age examples for each of its senses. Unfortunately,
senses and examples are not structurally differenti-
ated by the database, but are rather presented in the
same field, further intertwined with supplementary
details such as usage conditions, morphological
information, etc. Instead, the database relies on
a combination of formatting strategies, including
enumeration and styling, to differentiate between
definitions and examples. However, these strate-
gies are not consistently applied across the lexicon.
To make matters worse, definitions and examples
are often woven together (that is, they material-
ize as non-contiguous strings), and can at times
follow ad-hoc hierarchical arrangements. Conse-
quently, even though the textual content effectively
conveys information visually, parsing this content
with traditional methods proves nigh impossible.
As a workaround, and considering that parsing un-
structured data is a staple task for large language
models, we employ ChatGPT (Brown et al., 2020)
for the problem at hand.

Our pipeline is as follows. We first utilize the
existing database fields to filter the lexical entries
that seem to contain at least one example. This
results in a collection of 28 831 unique lemmata,
each mapped to its lexical entry. We randomly
sample 100 of them, which we then manually con-
vert into a succinct and minimally structured JSON
format, specifying (i) the lemma and (ii) a list of

3Hosted online at www.greek-language.gr/greekLang/
modern_greek/tools/lexica/triantafyllides.
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{"samples": [
{"premise": "Ο Κυριάκος φίλησε την Αντιγόνη.",
% Kyriakos kissed Antigone.

"hypothesis": "Ο Κυριάκος και η Αντιγόνη φιλήθηκαν.",
% Kyriakos and Antigone kissed [each other].

"labels": ["Entailment", "Unknown"],
"tags": ["Lexical Entailment:Symmetry/Collectivity"]
},
{"premise": "Ο Γιώργος είπε στη Μαρία ότι ξέρει να παίζει κιθάρα.",
% Giorgos told Maria that [he/she] knows how to play the guitar.

"hypothesis": "Η Μαρία ξέρει να παίζει κιθάρα.",
% Maria knows how to play the guitar.

"labels": ["Entailment", "Unknown"],
"tags": ["Lexical Entailment:Factivity:Factive",

"Predicate-Argument Structure:Anaphora/Coreference"]
}

]
}

Figure 1: NLI examples 761 and 879, showcasing multiple inferences. In the first example, φιλώ (to kiss) can be
a unidirectional or a reciprocal action (i.e., to give a kiss to vs. to exchange kisses with). In the second example,
pro-drop allows for two possible readings, where either Giorgos or Maria can be the subject of the embedded clause.
Translations (in gray font as TeX-style comments) are ours, included for presentation purposes.

senses, each sense structured as a definition and
a list of examples. We put extra effort into disen-
tangling hierarchical senses, repeating the elided
parts of non-contiguous definitions and examples
and removing enumeration identifiers. The yield
of this process then serves as the training set for
a quick one-shot tuning of ChatGPT4, the input
being the raw text (stripped of HTML tags for to-
ken economy) and the target being the structured
JSON representation. We pass all remaining entries
through the trained model. From the model output,
we filter out senses that contain no examples and
entries that contain less than two senses, and end
up with 16 079 examples spread over 7 677 senses
and 2 512 entries. Finally, we manually check each
and every example and entry, fixing the occasional
parsing error, homogenizing the presentation and
fixing the JSON formatting as needed. The result
is 14 416 examples spread over 6 896 senses and
2 326 entries, from which we derive the three eval-
uation tasks described in the subsections to follow.
An example entry, as produced and rendered by the
system, is presented in Figure 2.

The Role of ChatGPT Our decision to incorpo-
rate a large language model model into our data
preparation process does not entail any of the epis-
temological risks commonly associated with gen-
erative models and/or data augmentation. In our
use case, the model does not need a deep under-
standing of the Greek language, the expertise of
a trained linguist, or the creativity required of a
human annotator, as it’s neither generating new ex-
amples nor annotating existing ones per se. Rather,

4We use model gpt-3.5-turbo via the fine-tuning API.

it suffices for it to recognize the inconsistent yet
intuitive hierarchical enumeration patterns present
in the data, and to convert them into recurring struc-
tures with consistent formatting. Large language
models’ attested proficiency in this scenario align
them perfectly with our needs, allowing us to uti-
lize the authoritative resource of the lexicon while
minimizing tedious human labor and cost expendi-
ture. Indeed, our inspection of the model’s output
shows a generally high-quality translation, strictly
faithful to the original input, with only a few minor
occasional inconsistencies5.

2.2.1 Words-in-Context
The first task is essentially a replica of the Words-
in-Context (WiC) part of SuperGlue. It is formu-
lated as a binary classification problem, where the
system is presented with two sentences containing
the same (potentially polysemous) word, and is
tasked with telling whether the two occurrences
correspond to the same meaning or not. In order
to successfully resolve the task, the system needs
a dynamic embedding strategy, capable of disam-
biguating words depending on their surrounding
context. As such, it serves as a primitive test suite
for the lexical semantic capacities of bidirectional
transformers.

Obtaining the task from our dataset is trivial; it
suffices to consider the sum of the product space
of examples for each lexical entry (with the diago-
nals removed), zipped with a boolean sign indicat-

5The model is sometimes overeager, extending the output
specification with additional fields, in what seems like an
attempt to capture all the information provided in the raw
input.
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{"lemma": "αστικοποίηση",
"senses": [

{"definition": "η ένταξη στην αστική τάξη ενός ατόμου που ανήκει συνήθως στην αγροτική ή στην εργατική",
% One's transition from the rural or working class into the urban class.
"examples": ["Η αύξηση του εισοδήματος συντελεί στην αστικοποίηση."]
% The increase in income contributes to urbanization.
},
{"definition": "αποδοχή των αστικών ιδεωδών και συνηθειών"},
% The acceptance of middle class ideals and habits.
"examples": ["η αστικοποίηση του πρώην αναρχικού"]
% The urbanization of the ex-anarchist.

},
{"definition": "διαρκής συγκέντρωση πληθυσμού σε αστικά κέντρα",
% The accumulation of population into urban centers.
"examples": ["Η αστικοποίηση είναι χαρακτηριστικό φαινόμενο της μεταπολεμικής περιόδου."]
% Urbanization is a characteristic trait of the post-war era.

}
]

}

Figure 2: The processed dictionary entry for αστικοποίηση (urbanization), containing a definition and one example
for each of its three senses. Translations (in gray font as TeX-style comments) are ours, included for presentation
purposes.

ing whether the two examples stem from the same
sense. Doing so yields 117 662 data points (i.e.,
one order of magnitude larger than the correspond-
ing fragment of SuperGlue), with a label ratio of 1
positive to about 6 negative.

2.2.2 Sense Selection
The above formulation is straightforward, and di-
rectly compatible with the standard sequence clas-
sification pipeline commonly employed by NLP
architectures. As such, it makes for an accessible
entry point for evaluation. However, it represents
a dramatic simplification of the disambiguation
problem, requiring two usages in juxtaposition and
providing little information on what the sense of
each usage is. Our source dataset allows us to do
better. Given that we have periphrastic definitions
for all6 the possible meanings of each word, we
can reframe the task as sense selection. Given a
word, the set of its possible meanings and a us-
age context, we can prompt a model to predict the
meaning most likely employed in the given con-
text. Using periphrastic definitions as a proxy for
meaning induces a better informed and more real-
istic evaluation task, requiring and benefiting from
high-quality contextual representations both at the
lexical and the sentential level (since the word un-
der scrutiny will now need to be contrasted to the
full set of “meanings”). It is also more faithful to
the source dataset, since the count of data points is
now in alignment with the number of distinct usage
examples (as duplication is no longer necessary).
Each of the 14 416 points is associated with 3.8
candidate definitions, on average.

6Excluding the ones removed by the filtering process.

2.2.3 Metaphor Detection
Our projection of the raw textual entries into struc-
tured JSON entries has done away with most fields
irrelevant to word disambiguation. However, we
have consciously kept markers of metaphoric us-
age, and homogenized their presentation.7 This
enables us to filter senses (and by extension, us-
age examples) that are used metaphorically, pro-
viding the means for another kind of task alto-
gether: metaphor detection. Making the simpli-
fying assumption that metaphor is only present in
those examples where the word defined is used in a
metaphoric sense, we end up with 1 017 examples
of metaphor (7% of the total of all examples) con-
centrated around 571 senses and associated with
499 entries, yielding a heavily imbalanced dataset
for metaphor detection.

3 Experimental Baselines

To quantitatively evaluate the difficulty of the tasks
described in the previous section, and in order to
facilitate future research in this direction, we set up
some experimental baselines using the current state-
of-the-art machinery available for modern Greek.
All our experiments rest on the tried and tested
fine-tuning process for BERT-like models (Kenton
and Toutanova, 2019), using Greek BERT as our
universal core model (Koutsikakis et al., 2020).

3.1 Natural Language Inference

Despite our efforts to create a comprehensive eval-
uation suite for natural language inference, the

7They are indicated with (μτφ.) in the periphrastic defini-
tion.
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practical use of our dataset presents several chal-
lenges. First and foremost, its comparatively small
size renders it unsuitable for fine-tuning purposes.
This becomes especially problematic considering
the lack of NLI datasets tailored specifically for
Greek. Compounding these challenges is the fact
that our dataset utilizes a multi-label setup, which
complicates direct cross-dataset evaluations. To
address these challenges, we have chosen to lever-
age XNLI (Conneau et al., 2018), a cross-lingual
dataset for language inference of substantial size;
while XNLI was not initially designed for training
purposes, it presents a viable solution considering
the constraints we face. We employ an iterative ap-
proaching when splitting our dataset, aiming for a
30/70 division and taking care to keep the ratio con-
sistent for each of the linguistic tags used. We then
fine-tune BERT, training on the joined test set of
XNLI and the smaller of the two splits, evaluating
on the dev set of XNLI, and testing on the larger
split. This setup accounts for domain adaptation,
while allowing us to frame the problem as multi-
label classification (where the XNLI problems are
“coincidentally” single-label).

Concretely, we independently contextualize the
premise and hypothesis sentences, concatenate
their [CLS] tokens and project them into three in-
dependent logits via an intermediate feed-forward
layer of dimensionality 64, gated by the GELU ac-
tivation function (Hendrycks and Gimpel, 2016).
We train using AdamW (Loshchilov and Hutter,
2018) with a batch size of 32 and a learning rate
of 10-5. Despite heavy regularization (weight de-
cay of 0.1, dropout of 0.33 and early stopping),
the model is quick to overfit the training set, with
development set performance lagging significantly
behind (despite the matching domain). Since ac-
curacy is no longer a suitable performance metric,
owing to the multi-label setup we have adopted,
we report per-class precision, recall and F1 scores
over the test set instead, averaged over three rep-
etitions. The results, presented in Table 1, are
largely underwhelming, indicative of the difficulty
of the dataset and confirming the inadequacy of
(the Greek fragment of) XNLI as a training and
evaluation resource – a fact also noted by Evdai-
mon et al. (2023) and consistent with the compar-
atively low scores of Amanaki et al. (2022). To
gain a better understanding of the trained model’s
behavior across different linguistic phenomena, we
group samples according to their linguistic tags,

Label Prec. Rec. F1
Unkn. 0.32±4.9% 0.41±1.0% 0.35±3.7%

Ent. 0.52±2.8% 0.46±2.7% 0.48±1.1%

Contr. 0.20±0.7% 0.26±7.6% 0.23±0.6%

Table 1: Per-label test metrics for NLI.

and measure the average Jaccard similarity coef-
ficient between predicted and true labels (i.e., the
length of the intersection over the length of the
union between the two sets). As Table 2 suggests,
performance is consistently low across the board.
The model seems to especially struggle with recog-
nizing the effect of embedded clauses (regardless
of whether they are restrictive or not), focus associ-
ating operators, non-intersective adjectives, hypo-
and hypernymy, antonymy and negation.

3.2 Sense Disambiguation

For both variants of the sense disambiguation task,
we split the dataset’s examples into three subsets:
a 60% training set, a 20% development set, and a
20% test set. Additionally, we designate 10% of
the total lexical entries as test-only, and move the
associated examples from the training set to the test
set. This will allow us to evaluate the model’s per-
formance separately on in- and out-of-vocabulary
examples (IV and OOV, respectively), i.e. involv-
ing words that have or have not been encountered
during training.

To find the relevant word within each example,
we lemmatize examples using SpaCy (Honnibal
et al., 2020, model el_core_news_sm) and iden-
tify the element within each sequence that corre-
sponds to the source entry’s lemma, falling back
to the element with the minimal edit distance if no
absolute match can be found. Following tokeniza-
tion, this permits us to create a boolean mask for
each example, selecting only these tokens that are
associated with the word/lemma of interest.

Words-in-Context For the WiC variant, we
gather minibatches consisting of all examples that
belong to the same lexical entry. We contextualize
examples independently, and extract the represen-
tations of the words of interest by mean pooling
the last layer representations of the tokens selected
by each example’s mask. We then compute pair-
wise similarity scores between pairs in the cartesian
product of examples by applying the dot-product
operator on the extracted representations, scaling
the results by the inverse of the square root of the
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Tag Jaccard Index (ave.)
Logic

Disjunction 0.32±3.2%

Conjunction 0.41±1.6%

Negation
Single 0.30±1.6%

Multiple 0.46±5.6%

Negative Concord 0.32±0.4%

Comparatives 0.42±3.5%

Quantification
Existential 0.43±1.0%

Universal 0.36±1.3%

Non-Standard 0.37±2.8%

Temporal 0.32±1.1%

Conditionals 0.32±3.2%

Lexical Entailment

Redundancy 0.33±1.1%

Factivity
Factive 0.41±2.2%

Non-Factive 0.32±4.0%

Intersectivity
Intersective 0.38±4.2%

Non-Intersective 0.29±7.4%

Restrictivity
Restrictive 0.28±2.9%

Non-Restrictive 0.27±4.0%

Lexical Semantics
Synonymy 0.46±2.9%

Hyponymy 0.47±1.8%

Hypernymy 0.29±5.6%

Antonymy 0.30±3.2%

Meronymy 0.50±2.5%

Morph. Modification 0.33±1.8%

FAO 0.28±1.3%

Symmetry/Collectivity 0.44±4.1%

Predicate-Argument Structure

Alternations 0.38±2.0%

Ambiguity 0.40±2.9%

Anaphora/Coreference 0.39±0.1%

Ellipsis 0.44±1.7%

Core Arguments 0.55±5.0%

Common Sense/Knowledge 0.36±0.3%

Table 2: Per-tag test metrics for NLI. The tag hierarchy
follows along Wang et al. (2019), with few divergences.
For Logic, we replace Double Negation with Multiple
Negations and differentiate it from Negative Concord.
We add a tag for Non-Standard Quantification, and drop
the Numeral/Interval tag. For Lexical Entailment, we
substitute Morphological Negation with the (more gen-
eral) Morphological Modification. We subcategorize
Lexical Semantics, specifying left-to-right or premise-
to-hypothesis (directional) lexical relations. Finally, we
merge Common Sense and World Knowledge into a
single meta-tag.

model’s dimensionality. These similarity scores
serve as logits for binary cross entropy training,
predicting whether the two occurrences of the word
share the same sense between the two examples.

Sense Selection For the sense selection variant,
we create batches by (i) sampling over training ex-
amples and (ii) constructing the set union of all re-
lated (candidate) definitions, together with a binary
boolean relation specifying whether an example
and a definition belong to the same entry. We then
independently contextualize all examples and defi-
nitions, extracting contextual word representations
for each example as before, and taking each defi-
nition’s [CLS] token representation as a proxy for
the sense’s meaning. We compare each word (in
the context of a single example) to each meaning
using the same scaled dot-product mechanism as
before, masking out invalid pairs according to the
example-to-definition relation mentioned earlier.
We finally obtain softmax scores for each example
yielding a probability distribution over candidate
meanings, which serves as the model outputs for
standard negative log-likelihood training.

We train on either task using AdamW with a
learning rate of 10-5, a weight decay of 10-2 and
a 25% dropout applied at the dot-product indices,
and perform model selection on the basis of devel-
opment set accuracy; once more, development and
training set performances quickly diverge after a
few epochs. At this point, we note that both tasks
use the same notion of sense agreement and both
our models approximate it by means of the same
vector operation; their difference lies in the fact
that one compares a word occurrence to a word oc-
currence (or: an example to an example), whereas
the other compares a word occurrence to a set of
“meanings” (or: an example to all candidate defi-
nitions) (Hauer and Kondrak, 2022). Intuitively, it
would make sense that a model that has acquired
the sense selection task should be able to perform
adequately on the WiC task without further train-
ing; indeed, if two word occurrences select the
same meaning (i.e., maximize their similarity to
the same vector), they must also be similar to one
another. To test this hypothesis, we simply apply
the model obtained by fine-tuning on the sense se-
lection task, except now recasting the test set in the
form of the WiC task.

We report repetition-averaged aggregates in Ta-
ble 3. Performance is not astonishing, but remains

317



Sense Selection Words-in-Context
Subset # examples accuracy # pairs accuracy1 accuracy2

IV 2 494 0.63±0.20% 8 274 0.50±0.41% 0.51±1.7%

OOV 1 289 0.64±0.41% 9 954 0.48±1.77% 0.54±0.2%

Total 3 784 0.63±0.29% 18 678 0.49±1.09% 0.53±0.86%

1 In-domain evaluation of the words-in-context model.
2 Transfer evaluation of the sense selection model.

Table 3: Test set sizes and performance metrics for the two sense disambiguation tasks.

well above the random baselines for both tasks
(25% for sense selection and 16.7% for WiC), in-
dicating that the core model has some capacity
for learning and generalization. Sense selection
may initially appear as the more challenging of the
two tasks, seeing as it involves selecting one target
out of multiple options. Nonetheless, the model
achieves a consistently higher absolute accuracy
there; evidently, comparing one example to a fixed
set of senses is easier than comparing two ad-hoc
usage examples. To our surprise, we find that the
task transfer setup works straight out of the box,
to the point where the transfer model in fact out-
performs the in-domain model without as much as
recalibrating the sigmoid classification threshold.
One might hypothesize that this is due to the model
memoizing a fixed set of senses and their repre-
sentations. However, this is not entirely the case:
interestingly, accuracy now improves instead of de-
clining in the OOV fragment of the test set. We
interpret this as evidencing that the sense selection
formulation produces a higher quality error signal,
which induces a better informed disambiguation
prior during fine-tuning, allowing the (more rudi-
mentary) WiC task to be captured without addi-
tional effort.

3.3 Metaphor Detection

The last task, metaphor detection, is also the sim-
plest one, being essentially a case of sequence clas-
sification. We start by filtering all entries that have
at least one metaphoric sense, so as to alleviate the
severe class imbalance of the full dataset. From
the 499 filtered entries, we reserve 5% for use as
an OOV test set. We extract all examples from all
entries, and assign to each example a boolean label,
indicating whether the sense the example is associ-
ated with is metaphoric or not. This produces 3 015
examples (2 856 IV and 159 OOV), with a class
distribution of about 1 positive to 2 negative. We
proceed with training using once more a 60/20/20

Subset # Examples Accuracy
IV 572 0.84±6.29%

OOV 159 0.71±2.94%

Total 731 0.82±4.29%

Table 4: Test set performance on the metaphor detection
task.

split on the IV set.
We attach a feedforward classifier to the contex-

tualized [CLS] token and train using binary cross
entropy, optimizing with the same hyper-parameter
setup as before. Our results, presented in Table 4,
showcase a good ability to recognize metaphoric
senses in the words trained on, and a decent gener-
alization potential to unseen words. Unlike prior
experiments, we detect a high variability in the
results between repetitions; one model instance
has a moderate performance that does not differ
between the two subsets of the test set, whereas an-
other achieves a near-perfect score on the IV subset
while being barely above the random baseline in
the OOV subset.

4 Related Work

NLI is widely considered one of the core problems
towards natural language understanding, with a
plethora of evaluation suites (Bowman et al., 2015;
Conneau et al., 2018; Wang et al., 2018, 2019; Nie
et al., 2020) which continue to pose significant chal-
lenge for current state-of-the-art models (Glockner
et al., 2018; Talman and Chatzikyriakidis, 2019; Be-
linkov et al., 2019; McCoy et al., 2019; Richardson
et al., 2020, inter alia). Like GLUE and Super-
Glue, our inference examples come packed with
linguistic tags to facilitate diagnostic analysis. Un-
like other datasets, our examples may specify more
than one inference label, accounting for all possi-
ble sentence readings. At the time of writing, other
than a fragment of XNLI (produced by automatic
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translation), the only NLI dataset for Greek we are
aware of is by Amanaki et al. (2022) (which we
adapt here to our format).

Sense repositories, i.e., mappings between
words and sets of meanings are often framed as
dictionary-like structures (Fellbaum, 1998; Nav-
igli and Ponzetto, 2012). Our dataset stands out
in providing both a definition and a collection of
examples for each sense, allowing the incorpora-
tion of either or both into various possible tasks
and model pipelines; we show three concrete ex-
amples of how this can be accomplished. The tasks
obtained, namely words-in-context, sense selection
and metaphor detection, are of prime importance
for the experimental validation of the lexical seman-
tic capacities of language processing systems (Ma
et al., 2021; Zhang and Liu, 2023; Choi et al., 2021;
Sengupta et al., 2022; Luo et al., 2023). To the best
of our knowledge, this is the first dataset of its kind,
and among the first lexical resources for Greek in
general.

5 Conclusions and Future Work

Our vision is that of an open-source, community-
owned, dynamically adapted, gold-standard suite
that enables the linguistically conscious evaluation
of the capacities of Greek language models. We
have presented four novel tasks and correspond-
ing baselines towards that goal. While our results
aren’t directly comparable to existing benchmarks,
they do highlight the significant challenge our tasks
present. This underscores the urgency for acceler-
ated progress within the Greek NLP ecosystem
to stay aligned with contemporary mainstream re-
search.

Pending community feedback, we hope to enrich
the existing datasets by scaling them up, correct-
ing possible artifacts and extending the language
domain with regional and dialectal variations. Pos-
sible tasks that we would like the project to even-
tually incorporate include gender bias detection,
paraphrase identification, and natural language in-
ference with explanations, among others. We are
curious to continue experimenting with ways to
utilize traditional resources, and exploring their po-
tential as dataset generators for under-resourced
languages in conjunction with large language mod-
els.

Limitations

The NLI dataset’s limited size renders it inadequate
as a comprehensive resource for training and evalu-
ating NLI systems from scratch. Furthermore, the
examples were crafted by the authors of this paper,
who belong to a distinct demographic, unavoidably
introducing our own cultural, sociopolitical, and
linguistic biases. The focus is exclusively on stan-
dard modern Greek, omitting examples of regional
or dialectal language use. Finally, while the tag
set employed may provide valuable information, it
offers only a coarse and incomplete summary of
the full range of linguistic phenomena observed in
the wild.

The lexical dataset, conversely, is not indicative
of our opinions as authors; the source dictionary
may contain language use that is outmoded or so-
cially exclusive. The dataset structure is sufficient
for us to extract the three tasks we have presented,
but might prove lacking for more complex tasks
(like tasks requiring hierarchical or clustered sense
arrangements, for instance). Despite efforts to en-
sure semantic accuracy in every entry, sense, and
example, occasional mistakes may have gone unno-
ticed. Users should approach the resource critically,
keeping this in mind.

Regarding our baselines, we have experimented
with only a single model. While we acknowledge
this might entangle the effects of dataset difficulty
and model robustness, we justify ourselves in re-
fraining from experimenting with more models,
since this is neither the prime concern of this paper,
nor a practice that we necessarily agree with.
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Jonas Pfeiffer, Ivan Vulić, Iryna Gurevych, and Sebas-
tian Ruder. 2021. UNKs everywhere: Adapting mul-
tilingual language models to new scripts. In Proceed-
ings of the 2021 Conference on Empirical Methods in
Natural Language Processing, pages 10186–10203,
Online and Punta Cana, Dominican Republic. Asso-
ciation for Computational Linguistics.

Kyle Richardson, Hai Hu, Lawrence Moss, and Ashish
Sabharwal. 2020. Probing natural language inference
models through semantic fragments. In Proceedings
of the AAAI Conference on Artificial Intelligence,
volume 34, pages 8713–8721.

Meghdut Sengupta, Milad Alshomary, and Henning
Wachsmuth. 2022. Back to the roots: Predicting
the source domain of metaphors using contrastive
learning. In Proceedings of the 3rd Workshop on
Figurative Language Processing (FLP), pages 137–
142.

Aarne Talman and Stergios Chatzikyriakidis. 2019.
Testing the generalization power of neural network
models across NLI benchmarks. In Proceedings of
the 2019 ACL Workshop BlackboxNLP: Analyzing
and Interpreting Neural Networks for NLP, pages 85–
94, Florence, Italy. Association for Computational
Linguistics.

G Triantafyllides. 1998. Dictionary of standard modern
Greek. Institute for Modern Greek Studies of the
Aristotle University of Thessaloniki.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Aman-
preet Singh, Julian Michael, Felix Hill, Omer Levy,
and Samuel Bowman. 2019. SuperGLUE: A stick-
ier benchmark for general-purpose language under-
standing systems. Advances in neural information
processing systems, 32.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R Bowman. 2018.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. arXiv
preprint arXiv:1804.07461.

Zi Wang and Daniel Hershcovich. 2023. On evaluating
multilingual compositional generalization with trans-
lated datasets. In Proceedings of the 61st Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1669–1687,
Toronto, Canada. Association for Computational Lin-
guistics.

Shijie Wu and Mark Dredze. 2020. Are all languages
created equal in multilingual BERT? In Proceedings
of the 5th Workshop on Representation Learning for
NLP, pages 120–130, Online. Association for Com-
putational Linguistics.

321

https://doi.org/10.1162/tacl_a_00447
https://doi.org/10.1162/tacl_a_00447
https://doi.org/10.1162/tacl_a_00447
https://doi.org/10.18653/v1/2023.findings-acl.165
https://doi.org/10.18653/v1/2023.findings-acl.165
https://doi.org/10.18653/v1/P19-1334
https://doi.org/10.18653/v1/P19-1334
https://doi.org/10.18653/v1/P19-1334
https://doi.org/10.18653/v1/2021.mrl-1.11
https://doi.org/10.18653/v1/2021.mrl-1.11
https://doi.org/10.18653/v1/2021.mrl-1.11
https://aclanthology.org/2023.sigtyp-1.16
https://aclanthology.org/2023.sigtyp-1.16
https://doi.org/10.18653/v1/2021.emnlp-main.800
https://doi.org/10.18653/v1/2021.emnlp-main.800
https://doi.org/10.18653/v1/W19-4810
https://doi.org/10.18653/v1/W19-4810
https://doi.org/10.18653/v1/2023.acl-long.93
https://doi.org/10.18653/v1/2023.acl-long.93
https://doi.org/10.18653/v1/2023.acl-long.93
https://doi.org/10.18653/v1/2020.repl4nlp-1.16
https://doi.org/10.18653/v1/2020.repl4nlp-1.16


Xinyan Yu, Trina Chatterjee, Akari Asai, Junjie Hu,
and Eunsol Choi. 2022. Beyond counting datasets:
A survey of multilingual dataset construction and
necessary resources. In Findings of the Association
for Computational Linguistics: EMNLP 2022, pages
3725–3743, Abu Dhabi, United Arab Emirates. As-
sociation for Computational Linguistics.

Shenglong Zhang and Ying Liu. 2023. Adversarial
multi-task learning for end-to-end metaphor detec-
tion. In Findings of the Association for Compu-
tational Linguistics: ACL 2023, pages 1483–1497,
Toronto, Canada. Association for Computational Lin-
guistics.

322

https://doi.org/10.18653/v1/2022.findings-emnlp.273
https://doi.org/10.18653/v1/2022.findings-emnlp.273
https://doi.org/10.18653/v1/2022.findings-emnlp.273
https://doi.org/10.18653/v1/2023.findings-acl.96
https://doi.org/10.18653/v1/2023.findings-acl.96
https://doi.org/10.18653/v1/2023.findings-acl.96

