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Abstract

In the universe of Natural Language Process-
ing, Transformer-based language models like
BERT and (Chat)GPT have emerged as lexical
superheroes with great power to solve open
research problems. In this paper, we specif-
ically focus on the temporal problem of se-
mantic change, and evaluate their ability to
solve two diachronic extensions of the Word-in-
Context (WiC) task: TempoWiC and HistoWiC.
In particular, we investigate the potential of a
novel, off-the-shelf technology like ChatGPT
(and GPT) 3.5 compared to BERT, which rep-
resents a family of models that currently stand
as the state-of-the-art for modeling semantic
change. Our experiments represent the first at-
tempt to assess the use of (Chat)GPT for study-
ing semantic change. Our results indicate that
ChatGPT performs significantly worse than the
foundational GPT version. Furthermore, our
results demonstrate that (Chat)GPT achieves
slightly lower performance than BERT in de-
tecting long-term changes but performs signifi-
cantly worse in detecting short-term changes.

1 Introduction

Lexical semantic change is the linguistic phe-
nomenon that denotes words changing their mean-
ings over time (Geeraerts et al., 2024; Bloomfield,
1933). An example is the word gay that changed
from meaning cheerful to homosexual in the last
century. This change is crucial to our understand-
ing of historical texts. A nuanced grasp of seman-
tic variation between groups and genre, and se-
mantic change across time allows us to study lan-
guages, cultures, and societies through digitized
text and opens up a range of research applications.
Computational approaches to semantic change are
thus tools with immense potential for a range of
research fields (Montanelli and Periti, 2023; Tah-
masebi et al., 2021; Kutuzov et al., 2018; Tang,
2018). Not only can they broaden the field of his-
torical linguistics and simplify lexicography, but

they can also be fruitfully applied in the fields of
sociology, history, and other text-based research.
For instance, the computational modeling of se-
mantic change is equally relevant when studying
out-of-domain texts where language differs from
the general language, like in medical (Kay, 1979)
and olfactory (Paccosi et al., 2023; Menini et al.,
2022) domains.

The recent introduction of Transformer-
based (Vaswani et al., 2017) language models
(LMs) has led to significant advances in Natural
Language Processing (NLP). These advances are
exemplified in Pretrained Foundation Models
like BERT (Devlin et al., 2019) and GPT, which
“are regarded as the foundation for various
downstream tasks” (Zhou et al., 2023). BERT
has experienced a surge in popularity over the
last few years, and the family of BERT models
has repeatedly provided state-of-the-art (SOTA)
results for computational modeling of semantic
change (Cassotti et al., 2023; Periti et al., 2023).
However, research focus is now shifting toward
ChatGPT due to its impressive ability to generate
fluent and high-quality responses to human queries,
making it the fastest-growing AI tool. Several
recent research studies have assessed the language
capabilities of ChatGPT by using a wide range
of prompts to solve popular NLP tasks (Laskar
et al., 2023; Kocoń et al., 2023). However, current
evaluations generally (a) overlook the fact that the
output of ChatGPT is nondeterministic,1 (b) rely
only on contemporary and synchronic text, and (c)
consider predictions generated by the ChatGPT2

web interface, which is based on the Chat version
of the GPT foundation model. As a result, these
evaluations provide valuable insights into the
generative, pragmatic, and semantic capabilities of
ChatGPT (Kocoń et al., 2023), but fall short when

1platform.openai.com/docs/guides/gpt/faq
2chat.openai.com
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Figure 1: The title of this paper draws inspiration by
the movie Batman v Superman: Dawn of Justice. We
leverage the analogy of (Chat)GPT and BERT, powerful
and popular LMs, as two lexical superheroes often er-
roneously associated for solving similar problems. Our
aim is to shed lights on the potential of (Chat)GPT for
semantic change detection.

it comes to assess the potential of GPT to solve
NLP tasks and specifically to handle historical
and diachronic text, which constitutes a unique
scenario for testing models’ ability to generalize.

In this paper, we propose to evaluate the use of
both ChatGPT and GPT - i.e., (Chat)GPT3 - to rec-
ognize (lexical) semantic change. Our goal is not
to comprehensively evaluate (Chat)GPT in deal-
ing with semantic change but rather to evaluate
its potential as off-the-shelf model with a reason-
able prompts from a human point of view, which
may not necessarily be optimized for the model.
Recently, a novel evaluation task in NLP, called
Lexical Semantic Change (LSC), has been intro-
duced as a shared task at SemEval (Schlechtweg
et al., 2020). The LSC task involves considering
all occurrences (potentially several thousands) of a
set of target words to assess their change in mean-
ing within a diachronic corpus. As a result, this
setup is currently not suitable for evaluating a GPT
model, due to the limited size of its prompts and an-
swers, as well as accessibility limitations such as an
hourly character limit and economic constraints. In
light of these considerations, we chose to evaluate
the potential of (Chat)GPT through the Word-in-
Context (WiC, Pilehvar and Camacho-Collados,
2019) task, which has recently demonstrated a ro-
bust connection with LSC (Cassotti et al., 2023;
Arefyev et al., 2021). In particular, we consider
two diachronic extensions of the original WiC set-
ting, namely temporal WiC (TempoWiC, Loureiro

3Throughout the text, we distinguish between ChatGPT,
which is the standard (web) version of GPT, and GPT, which
serves as the foundation model. Instances of (Chat)GPT rep-
resent both types of models.

et al., 2022) and historical WiC (HistoWiC). Our
goal is to determine whether a word carries the
same meaning in two different contexts of different
time periods, or conversely, whether those contexts
exemplify a semantic change. While TempoWiC
has been designed to evaluate LMs ability to detect
short-term changes in social media, HistoWiC is
our adaptation of the SemEval benchmark of histor-
ical text to a WiC task for evaluating LMs ability
to detect long-term changes in historical corpora.

Considering the remarkable performance of
contextualized BERT models in addressing WiC
and LSC tasks (Montanelli and Periti, 2023; Per-
iti and Dubossarsky, 2023; Periti et al., 2023),
we compare the performance of (Chat)GPT in
TempoWiC and HistoWiC to those obtained us-
ing BERT. While BERT is specifically designed
to understand the meaning of words in context,
(Chat)GPT is designed to generate fluent and co-
herent text. Through these two lexical superheros
(see Figure 1), we aim to illuminate the potential
of (Chat)GPT as off-the-shelf model and mark the
dawn of a new era by assessing whether it already
makes the approaches to WiC and LSC, which rely
on BERT-embedding similarities, outdated.

2 Related work

The significant attention garnered by ChatGPT
has led to a large number of studies being
published immediately after its release. Early
studies mainly focused on exploring the bene-
fits and risks associated with using ChatGPT
in expert fields such as education (Lund and
Wang, 2023), medicine (Antaki et al., 2023), or
business (George and George, 2023). Evaluation
studies are currently emerging for assessing
(Chat)GPT’s generative and linguistic capabilities
across a wide range of downstream tasks in both
monolingual and multilingual setups (Bang et al.,
2023; Shen et al., 2023; Lai et al., 2023). Most
evaluations focus on ChatGPT and involve a
limited number of instances (e.g., 50) for each task
considered (Weissweiler et al., 2023; Zhong et al.,
2023; Alberts et al., 2023; Khalil and Er, 2023).
When the official API is used to query the GPT
foundation model, this limit is imposed by the
hourly token processing limit4 and the associated
costs.5 When the web interface is used instead of

4help.openai.com/en/articles/4936856-what-
are-tokens-and-how-to-count-them

5openai.com/pricing
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the API, the limit is due to the time-consuming
process of interacting with ChatGPT that keeps
humans in the loop. Thus far, even systematic
and comprehensive evaluations (Kocoń et al.,
2023; Laskar et al., 2023) rely on repetition of a
single experiment for each task. However, while
individual experiments provide valuable insights
into (Chat)GPT’s capabilities, they fall short in
assessing the potential of (Chat)GPT to solve
specific tasks given its nondeterministic nature.
Multiple experiments need to be conducted to
validate its performance on each task. In addition,
current evaluations generally leverage tasks that
overlook the temporal dimension of text, leaving a
gap in our understanding of (Chat)GPT’s ability to
handle diachronic and historical text.

Our original contribution.
Our evaluation of (Chat)GPT focuses on two di-
achronic extensions of the WiC task, namely Tem-
poWiC and HistoWiC. Our aim is to assess the
potential of (Chat)GPT for Semantic Change De-
tection. To the best of our knowledge, this paper is
the first to investigate the application of (Chat)GPT
for historical linguistic purposes. Thus far, only the
use of ChatGPT for a conventional WiC task has
been evaluated by Laskar et al. (2023) and Kocoń
et al. (2023), who reported low accuracy under a
single setup. In this paper, we challenge their per-
formance by considering diachronic text and the
following setups, totaling 47 experiments each for
TempoWiC and HistoWiC:

• Different prompts. Like Zhong et al.
(2023), we evaluate (Chat)GPT using zero-
shot and few-shot prompting strategies, while
also exploring many-shot prompting. Our re-
sults demonstrate that zero-shot prompting is
more effective on HistoWiC, while few-shot
prompting is more effective on TempoWiC.

• Varying temperature. Like Peng et al.
(2023); Liu et al. (2023), we analyze how
GPT’s performance varies according to its
temperature hyperparameter, which controls
the “creativity” or randomness of its answers.
Our results indicate that GPT used with low
temperature values (i.e., less creativity) is bet-
ter at handling WiC tasks.

• GPT API v ChatGPT Web. We empirically
assess whether GPT produces worse results
through the OpenAI API compared to Chat-

GPT through the web interface.6 Our results
demonstrate that using GPT through the of-
ficial API for WiC tasks is better than using
ChatGPT through the web interface, as has
previously been done (Laskar et al., 2023; Ko-
coń et al., 2023). Furthermore, our findings
suggest that the web interface automatically
sets an intermediate temperature for ChatGPT.

• (Chat)GPT v BERT. Finally, like Zhong
et al. (2023), we compare the performances of
(Chat)GPT and BERT. By leveraging the Tem-
poWiC task and introducing the novel His-
toWiC task, we shed light on the potential of
both models and demonstrate the current su-
periority of BERT in dealing with diachronic
text and WiC tasks, compared to reasonable
GPT prompts templates and strategies.

3 Semantic Change Detection

Our evaluation relies on two diachronic definitions
of the conventional Word-in-Context (WiC) task,
namely TempoWiC and HistoWiC. WiC is framed
as a binary classification problem, where each in-
stance is associated with a target word w, either a
verb or a noun, for which two contexts, c1 and c2,
are provided. The task is to identify whether the oc-
currences of w in c1 and c2 correspond to the same
meaning or not. Both TempoWiC and HistoWiC
rely on the same definition of the task, while being
specifically designed for semantic change detection
in diachronic text.

3.1 Temporal Word-in-Context

NLP models struggle to cope with new content and
trends. TempoWiC is designed as an evaluation
benchmark to detect short-term semantic changes
on social media, where the language is extremely
dynamic. It uses tweets from different time periods
as contexts c1 and c2.

Given the limits on testing (Chat)GPT, we fol-
lowed Zhong et al. (2023); Jiao et al. (2023) and
randomly sampled a subset of the original Tem-
poWiC datasets. While the original TempoWiC
framework provides trial, train, test, and dev sets,
here we did not consider the dev set. Table 1 shows
the number of positive (i.e., same meaning) and

6Discussions on this topic are currently very active, for
example, community.openai.com/t/web-app-vs-api-
results-web-app-is-great-api-is-pretty-awful/
96238
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negative (i.e., different meanings due to semantic
change) examples we considered for each set.

Table 1: Datasets used in our evaluation

TempoWiC HistoWiC
Trial Train Test Trial Train Test

True 8 86 73 11 137 79
False 12 114 127 9 103 61
Total 20 200 200 20 200 140

3.2 Historical Word-in-Context

Given that NLP models also struggle to cope with
historical content and trends, we designed His-
toWiC as a novel evaluation benchmark for detect-
ing long-term semantic change in historical text,
where language may vary across different epochs.
HistoWiC sets the two contexts, c1 and c2, as sen-
tences collected from the two English corpora of
the LSC detection task (Schlechtweg et al., 2020).

Similar to the original WiC (Pilehvar and
Camacho-Collados, 2019), the annotation process
for the LSC benchmark involved usage pair an-
notations where a target word is used in two dif-
ferent contexts. Thus, we directly used the an-
notated instances of LSC to develop HistoWiC.
Since LSC instances were annotated using the
DURel framework (Schlechtweg et al., 2023) and a
four-point semantic-relatedness scale (Schlechtweg
et al., 2021, 2020, 2018), we only binarized the hu-
man annotations (see Appendix A).

As with TempoWiC, we randomly sampled a
limited number of instances to create trial, training,
and test sets. Table 1 shows the number of positive
and negative examples for each set.

4 Experimental setup

In the following, we present our research questions
(RQs) and the various setups we considered in our
work. In our experiments, we evaluated the per-
formance of (Chat)GPT 3.5 over the TempoWiC
and HistoWiC test sets using both the official Ope-
nAI API (GTP API)7 and the web interface (Chat-
GPT Web).8 Of the GPT 3.5 models available
through the API, we assessed the performance of
gpt-3.5-turbo. Following Loureiro et al. (2022),
we employed the Macro-F1 for multiclass classifi-
cation problems as evaluation metric.

7version 0.27.8.
8The August 3 Version.

4.1 (Chat)GPT prompts

Current ChatGPT evaluations are typically per-
formed manually (Laskar et al., 2023). When au-
tomatic evaluations are performed, they are typi-
cally followed by a manual post-processing proce-
dure (Kocoń et al., 2023). As manual evaluation
and processing may be biased due to answer in-
terpretation, we addressed the following research
question:

RQ1: Can we evaluate (Chat)GPT in WiC tasks
in a completely automatic way?

Furthermore, as current evaluations generally
rely on a zero-shot prompting strategy, we ad-
dressed the following research question:

RQ2: Can we enhance (Chat)GPT’s perfor-
mance in WiC tasks by leveraging its in-context
learning capabilities?

To address RQ1 and RQ2, we designed a prompt
template to explicitly instruct (Chat)GPT to an-
swer in accordance with the WiC label format (i.e.,
True, False). We then used this template (see Ap-
pendix C.1) with different prompt strategies:

• zero-shot prompting (ZSp): (Chat)GPT was
asked to address the WiC tasks (i.e., test sets)
without any specific training, generating co-
herent responses based solely on its preexist-
ing knowledge.

• few-shot prompting (FSp): since PFMs have
recently demonstrated in-context learning ca-
pabilities without requiring any fine-tuning
on task-specific data (Brown et al., 2020),
(Chat)GPT was presented with a limited num-
ber of input-output examples (i.e., trial sets)
demonstrating how to perform the task. The
goal was to leverage the provided examples
to improve the model’s task-specific perfor-
mance.

• many-shot prompting (MSp): similar to FSp,
but with a greater number of input-output ex-
amples (i.e., training sets).

4.2 (Chat)GPT temperature

The temperature is a hyperparameter of (Chat)GPT
that regulates the variability of responses to human
queries. According to the OpenAI FAQ, the tem-
perature parameter ranges from 0.0 to 2.0, with
lower values making outputs mostly deterministic

423



and higher values making them more random.9 To
counteract the nondeterminism of (Chat)GPT, we
focused only on TempoWiC and HistoWiC and con-
ducted the same experiment multiple times with
progressively increasing temperatures. This ap-
proach enabled us to answer the following research
questions:

RQ3: Does (Chat)GPT demonstrate comparable
effectiveness in detecting short-term changes
in contemporary text and long-term changes in
historical text?

RQ4: Can we enhance (Chat)GPT’s perfor-
mance in WiC tasks by raising the “creativity”
using the temperature value?

To address RQ3 and RQ4, we evaluated GPT
API in TempoWiC and HistoWiC using eleven tem-
peratures in the range [0.0, 2.0] with 0.2 increments.
For each temperature and prompting strategy, we
performed two experiments and considered the av-
erage performance.

4.3 GPT API v ChatGPT Web
Current evaluations typically prompt GPT through
the web interface instead of the official OpenAI
API. This preference exists because the web in-
terface is free and predates the official API. How-
ever, there are differences between using ChatGPT
through the web interface (ChatGPT Web) and the
official API (GPT API). First of all, the official
API enables to query the GPT foundation model,
while the web interface enables to query the Chat
version. In addition, the GPT API can be set to test
at varying temperatures, but the temperature value
on ChatGPT Web cannot be controlled. However,
while the GPT API allows a limited message his-
tory, ChatGPT Web seems to handle an unlimited
message history (see Appendix B).

We used the following research question to com-
pare the performance of GPT API and ChatGPT
Web:

RQ5: Does GPT API demonstrate comparable
performance to ChatGPT Web in solving WiC
tasks?

Testing GPT API with the MSp strategy would
be equivalent to testing it with the FSp strategy due
to the limited message history. Thus, we evaluated

9platform.openai.com/docs/api-reference/chat

ChatGPT Web with MSp, aiming to address the
following research question:

RQ6: Can we enhance ChatGPT’s performance
in WiC tasks by providing it with a larger number
of in-context examples?

To address these research questions, we tested
(Chat)GPT using a single chat for each prompting
strategy considered. Since testing ChatGPT Web
is extremely time-consuming, we conducted one
experiment for each prompting strategy.

4.4 (Chat)GPT v BERT
The ability of (Chat)GPT to understand has
prompted the belief that ChatGPT is a jack of all
trades that makes previous technologies somewhat
outdated. Drawing upon Kocoń et al. (2023), we be-
lieve that, when used for solving downstream tasks
as off-the-shelf model, (Chat)GPT is currently a
master of none. It works on a comparable level to
the competition, but does not outperform any major
SOTA solutions.

By relying on multiple experiments on Tem-
poWiC and HistoWiC, we aimed to empirically
assess the potential of (Chat)GPT for WiC and
LSC tasks. In particular, we addressed the follow-
ing research question:

RQ7: Does (Chat)GPT outperform BERT
embeddings in detecting semantic changes?

To address RQ7, we evaluated
bert-base-uncased on TempoWiC and His-
toWiC over different layers. Recent research has
exhibited better results when utilizing earlier layers
rather than the final layers for solving downstream
tasks such as WiC (Periti and Dubossarsky, 2023;
Ma et al., 2019; Reif et al., 2019; Liang and Shi,
2023). For each layer, we extracted the word
embedding for a specific target word w in the
context c1 and c2. Since the focus of our evaluation
was on (Chat)GPT, we did not fine-tune BERT and
simply used the similarity between the embeddings
of w in the context c1 and c2. In particular, we
followed Pilehvar and Camacho-Collados (2019),
and trained a threshold-based classifier using the
cosine distance between the two embeddings of
each pair in the training set. The training process
consisted of selecting the threshold that maximized
the performance on the training set. We trained a
distinct threshold-based classifier for each BERT
layer and for each WiC task (i.e., TempoWiC

424

platform.openai.com/docs/api-reference/chat


and HistoWiC). Then, in our evaluation, we
applied these classifiers to evaluate BERT over the
TempoWiC and HistoWiC test sets.

Finally, we addressed the following research
question:

RQ8: Can we rely on the pretrained knowledge
of GPT to automatically solve the LSC task?

Since (Chat)GPT has demonstrated awareness
of historical lexical semantic changes when man-
ually asked about the lexical semantic changes of
some words (e.g., plane), our goal with RQ8 was to
automatically test GPT’s pretrained knowledge of
historical semantic changes covered in the English
LSC benchmark. In addressing this research ques-
tion we relied on the LSC ranking task as defined
in Schlechtweg et al. (2018). Thus, we specifically
asked GPT to rank the set of 37 target words in the
English LSC benchmark according to their degree
of LSC between two time periods, T1 (1810–1860)
and T2 (1960–2010). For each temperature, we
repeated the same experiment ten times, totaling
110 experiments. Then, for each temperature, we
evaluated GPT’s performance by computing the
Spearman correlation using gold scores derived
from human annotation and the average GPT score
for each target (see Appendix C.2).

5 Experimental results

In this section, we report the results of our exper-
iments, while discussing the findings in regard to
each research question.10

RQ1: (Chat)GPT consistently followed our tem-
plate in nearly all cases, thereby allowing us to eval-
uate its answers without human intervention. For
GPT API, however, we noticed that the higher the
temperature, the larger the tendency for deviations
from the expected response format (see Figure 2).
ChatGPT Web only once answered with an incor-
rect format. To ensure impartiality, we classified
the few (Chat)GPT responses that did not adhere
to the required format as incorrect answers.

RQ2: Figure 3 shows the rolling average of the
performance of GPT API across different temper-
atures, prompting strategies, and WiC tasks. By
using a window size of 4, we were able to consider
8 different experiments per temperature (for each

10We provide all our data, code, and results at https://
github.com/FrancescoPeriti/ChatGPTvBERT

Figure 2: Average number of wrongly formatted an-
swers (WFAs) over the temperature values considered.
Background lines correspond to each experiment.

Figure 3: Performance of GPT API (Macro-F1) as tem-
perature increases.

Figure 4: Performance of ChatGPT Web (Macro-F1).
Temperature is unknown.

temperature, we ran two experiments)11. Figure 4
shows the performance of ChatGPT Web across
different prompting strategies and WiC tasks.

Figure 3 and 4 show that ZSp consistently out-
performs FSp on HistoWiC. By contrast, FSp con-
sistently outperforms ZSp in TempoWiC when the
GPT API is used. This result suggests that the in-
context learning capability of GPT is more limited
for historical data. In Figure 4, ChatGPT Web’s per-
formance with ZSp outperforms that obtained with
FSp for both TempoWiC and HistoWiC, although
the discrepancy is smaller.

RQ3: Figures 3 and 4 show that (Chat)GPT’s per-
formance on TempoWiC is consistently lower than
its performance on HistoWiC. In particular, in our

11Except for the first and last two temperatures.
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Table 2: Macro-F1 scores obtained by SOTA systems,
(Chat)GPT (best score), and BERT (last layer).

Macro-F1
Chen et al., 2022 .770

Loureiro et al., 2022 .703
Loureiro et al., 2022 .670

Lyu et al., 2022 .625
GPT API .689

ChatGPT Web .580
BERT .743

experiments we observe that (Chat)GPT’s perfor-
mance ranges from .551 to .689 on TempoWiC and
from .552 to .765 on HistoWiC. This suggests that
(Chat)GPT is significantly more effective for long-
term change detection than for short-term change
detection. We believe that this might involve word
meanings that were not explicitly covered during
training, potentially allowing (Chat)GPT to detect
anomalies from the usual patterns. We will further
investigate this aspect in our future research.

For the sake of comparison, we report SOTA
performance in Table 2. Results from this research
are in italics.

RQ4: Figure 3 shows that, on average, higher
performance is associated with lower temperatures
for both TempoWiC and HistoWiC, with accuracy
decreasing as temperature values increase. Thus,
we argue that high temperatures do not make it eas-
ier for GPT to solve WiC tasks or identify semantic
changes effectively.

RQ5: ChatGPT Web results are presented in Ta-
ble 3, along with the average performance we ob-
tained through the GPT API across temperature
values ranging from 0.0 to 1.0 (API 0–1), from 1.0
to 2.0 (API 1–2), and from 0.0 to 2.0 (API 0–2).
As with GPT API, the performance of ChatGPT
Web is higher for HistoWiC than for TempoWiC.
In addition, our evaluation indicates that ChatGPT
Web employs a moderate temperature setting, for
we obtained consistent results when using a moder-
ate temperature setting through GPT API. This sug-
gests that the GPT API should be preferred for solv-
ing downstream task like WiC. It also suggests that
the current SOTA evaluations may achieve higher
results if the official API were used instead of the
web interface. Thus, this implies that previous re-
sults using web interface should be interpreted with
caution.

RQ6: As shown in Figure 4, the performance
of (Chat)GPT Web decreases as the number of
example messages increases (from ZSp to MSp).

Table 3: Comparison of GPT API and ChatGPT Web
performance (Macro-F1)

TempoWiC HistoWiC
API API API web API API API web

Temp. 0–1 1–2 0–2 - 0–1 1–2 0–2 -
ZSp .609 .589 .600 .580 .713 .665 .688 .686
FSp .636 .606 .622 .569 .693 .626 .657 .674
MSp - - - .500 - - - .565
all .622 .598 .611 .550 .703 .645 .672 .642

Figure 5: Comparison of BERT Performance (Macro-
F1) for TempoWiC and HistoWiC tasks across layers

This suggests that improving the performance of
(Chat)GPT requires a more complex training ap-
proach than simply providing a few input-output ex-
amples. Furthermore, it indicates that the influence
of message history is extremely significant in shap-
ing the quality of conversations with (Chat)GPT.
Indeed, a limited message history proved to be ben-
eficial for the evaluation of GPT API through FSp.

RQ7: Figure 5 shows Macro-F1 scores obtained
on TempoWiC and HistoWiC over the 12 BERT
layers (see Appendix E). When considering the
final layer, which is conventionally used in down-
stream tasks, BERT obtains Macro-F1 scores of
.750 and .743 for TempoWiC and HistoWiC, re-
spectively. Similar to Periti and Dubossarsky
(2023), BERT performs best on HistoWiC when
embeddings extracted from middle layers are con-
sidered. However, BERT performs best on Tem-
poWiC when embeddings extracted from the last
layers are used.

We compared the performance of GPT and
BERT across their respective worst to best sce-
narios by sorting the Macro-F1 scores obtained
by BERT and GPT in ascending order (bottom
x-axis). For ChatGPT, we consider the results ob-
tained through FSp and ZSp prompting for Tem-
poWiC and HistoWiC, respectively. As shown in
Figure 6, even when considering the best setting,
GPT does not outperform the Macro-F1 score ob-
tained by using the last layer of BERT, marked
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Figure 6: GPT v BERT (Macro-F1). Performance is
sorted in ascending order regardless of temperatures and
layers. A black circle denotes the use of the last layer
of BERT.

Figure 7: True Negative Rate v False Negative Rate.
Each cross represents a (Chat)GPT experiment. Each
dot represents the use of a specific layer of BERT.

with a black circle. However, although it exhibits
lower performance, the results obtained from GPT
are still comparable to BERT results on HistoWiC
when embeddings extracted from the last layer of
BERT are used.

Since our goal is to evaluate the potential
of (Chat)GPT for recognizing lexical semantic
changes, we analyzed the true negative rate
and false negative rate scores, because negative
examples represent semantic change in TempoWiC
and HistoWiC datasets. As shown in Figure 7,
regardless of the temperature and layer considered,
(Chat)GPT falls short in recognizing semantic
change for both TempoWiC and HistoWiC
compared to BERT. However, it produces fewer
false negatives than BERT for TempoWiC.

RQ8: In our experiment, GPT achieved low
Spearman’s correlation coefficients for each tem-
perature when ranking the target word of the LSC

English benchmark by degree of lexical semantic
change. Higher correlations were achieved by us-
ing low temperatures rather than high ones (see
Appendix F). Table 4 shows the GPT correlation
for the temperature 0. For comparison, we report
correlations obtained by BERT-based systems that
leverage pretrained models. Note that, when BERT
is fine-tuned, it generally achieves even higher cor-
relation scores (see survey by Montanelli and Periti,
2023).

Table 4: LSC comparison: correlation obtained by
SOTA, pre-trained BERT systems and GPT (temper-
ature=0).

Spearman’s correlation
Periti et al., 2023 .651

Laicher et al., 2021 .573
Periti et al., 2022 .512

Rother et al., 2020 .512
GPT API .251

As shown in Table 4, the BERT-based system
largely outperforms GPT, suggesting that GPT is
not currently well-adapted for use in solving LSC
downstream tasks.

5.1 BERT for Semantic Change Detection
There are notable differences between the Macro-
F1 for TempoWiC and HistoWiC in terms of how
the results increase and decrease across layers (see
Figure 5). For TempoWiC the results increase until
the 8th layer, after which they remain almost stable.
Conversely, for HistoWiC the BERT performance
rapidly increases until the 5th layer, after which
it linearly decreases until the 12th layer. As re-
gards Tempo WiC, we hypothesize that BERT is
already aware of the set of word meanings consid-
ered for evaluation as it was pretrained on modern
and contemporary texts. As regards HistoWiC, we
hypothesize that BERT is not completely aware of
the set of word meanings considered for evaluation
and that word representations adopted for the histor-
ical context of HistoWiC12 might be slightly tuned.
Thus, using medium embedding layers could prove
beneficial in detecting semantic changes, as these
layers are less affected by contextualization (Etha-
yarajh, 2019). In other words, for HistoWiC, we
hypothesize that the performance diminishes in the
later layers due to the increasing contextualization
of the medium and final embedding layers, which
reduces the presence of noise in untuned word rep-
resentations. This prompts us to question the ap-

121810–1860, as referenced in Schlechtweg et al. (2020)
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propriateness of using the last embedding layers to
recognize historical lexical semantic change. We
will address this question in future research.

6 Conclusion

In this study, we empirically investigated the use
of the current (Chat)GPT 3.5 to detect semantic
change. Our goal is not to comprehensively evalu-
ate (Chat)GPT in dealing with semantic change, but
rather to acknowledge its potential while also rais-
ing concerns and questions about its off-the-shelf
use. In this regard, we used reasonable prompts
from a human point of view, which may not nec-
essarily be optimized for the model. We used
the TempoWiC benchmark to assess (Chat)GPT’s
ability to detect short-term semantic changes, and
introduced a novel benchmark, HistoWiC, to as-
sess (Chat)GPT’s ability to recognize long-term
changes. When considering the standard 12 layer
of BERT, our experiments show that (Chat)GPT
achieves comparable performance to BERT (al-
though slightly lower) in regard to detecting long-
term changes, but performs significantly worse in
regard to recognizing short-term changes. We find
that BERT’s contextualized embeddings consis-
tently provide a more effective and robust solution
for capturing both short- and long-term changes in
word meanings.

There are two possible explanations for the dis-
crepancy in (Chat)GPT’s performance between
TempoWiC and HistoWiC: i) HistoWiC might in-
volve word meanings not explicitly covered during
training, potentially aiding (Chat)GPT in detecting
anomalies; ii) TempoWiC involves patterns typical
of Twitter (now X), such as abbreviations, men-
tions, or tags, which may render it more challeng-
ing than HistoWiC.

In light of our findings, we argue that (Chat)GPT
3.5 might be the hero the world deserves but not
the one it needs right now13, in particular for com-
putationally modeling meaning over time, and by
extension, for the study of semantic change. Never-
theless, during the course of our research, updates
to (Chat)GPT became available and gained popu-
larity, leading research and practitioners to conduct
new experiments on these updated models. Particu-
larly noteworthy is a recent study by Karjus (2023),

13This quote draws inspiration by the movie Batman: The
Dark Knight. We leverage the analogy of (Chat)GPT achiev-
ing lower results than BERT to acknowledge the potential of
(Chat)GPT while also raising concerns and questions about its
use for Semantic Change detection.

which showcased remarkable performance on LSC
using the GPT-4 model. Inspired by this research,
our ongoing and future work is focused on further
exploring the capabilities of GPT-4 for modeling
semantic change.

Limitations

There are limitations we had to consider in the
making of this paper. Firstly, a limitation arises
when working with temporal HistoWiC bench-
marks. While we ensure the utilization of di-
achronic data, we cannot guarantee that if the mean-
ing of a word differs across contexts, it unequivo-
cally indicates either the presence of stable poly-
semy (existing stable multiple meanings) or exem-
plifies a semantic change (either a new sense that it
did not previously possess or a lost sense that it no
longer has).

Other limitations are about the use of language
models. We could not evaluate (Chat)GPT across
different languages due to both price and API lim-
itations. This means that while the results holds
for English, we do not know how (Chat)GPT will
behave for the other languages. Although we are
aware of open source solution such as LLaMA, it
still necessitates expensive research infrastructure,
and we thus chose to focus on (Chat)GPT.

Like all research on (Chat)GPT (Laskar et al.,
2023; Kocoń et al., 2023; Zhong et al., 2023), our
work has a significant limitation that we cannot
address: our (Chat)GPT results are not entirely
reproducible as (Chat)GPT is inherently nondeter-
ministic. In addition, like Zhong et al. (2023);
Jiao et al. (2023), we found that time and economic
constraints when using (Chat)GPT dictated that our
evaluation of the software had to be based on only
a subset of the TempoWiC and HistoWiC dataset.

In our study, we utilized (Chat)GPT 3.5. This
could be considered a limitation, given the re-
cent release of GPT 4. However, we opted for
(Chat)GPT 3.5 based on the guidance provided in
the current OpenAI documentation.14 Additionally,
we argue that (Chat)GPT-3.5 is a cheaper alter-
native than the current GPT-4 model, making the
investigation of (Chat)GPT-3.5 still significant for
researchers with limited economic resources. We
acknowledge that OpenAI continues to train and
release new models, which could potentially affect
the reproducibility of our results.

14https://platform.openai.com/docs/guides/gpt/
which-model-should-i-use
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One of the many features of (Chat)GPT is its
ability to incorporate the history of preceding mes-
sages within a conversation while responding to
new input prompts. However, there remain several
unanswered questions regarding how this history
influences the model’s answers. This holds true
even for the zero-shot prompting strategy, where a
general setting is lacking. Multiple prompts can be
provided as part of the same chat or across differ-
ent chats. For simplicity, and similar to previous
research, we assigned only one chat for each ZSp
experiment. We intend to use different chats in our
future work to examine and investigate the effect
of the message history.

Finally, as highlighted by Laskar et al. (2023),
since the instruction-tuning datasets of OpenAI
models are unknown (that is, not open source), the
datasets used for evaluation may or may not be part
of the instruction-tuning training data of OpenAI.

Despite these limitations, we argue that our work
is significant as it may prompt new discussion on
the use of LMs such as BERT and (Chat)GPT,
while also dispelling the expanding belief that the
use of ChatGPT as off-the-shelf model already
makes BERT an outdated technology.
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Appendix

A Historical WiC

We shifted from the LSC to the WiC setting as fol-
lows. First, we selected only the annotated LSC
instances containing contexts from different time
periods. We then filtered out all the instances anno-
tated by a single annotator15 and all the instances
that are associated with an average score, s, such
that 1.5 < s < 3.5, which represents ambiguous
cases even for humans. Finally, we binarized the
LSC annotations by converting each s ≤ 1.5 to
False (i.e. different meanings) and each s ≥ 3.5 to
True (i.e. same meaning). We report in Table 5 the
four-point semantic-relatedness used to annotate
the LSC instances through the DURel framework.

x

4: Identical
3: Closely related
2: Distantly related
1: Unrelated

Table 5: The DURel relatedness scale used
in Schlechtweg et al. (2020, 2018)

B Message history

Although one of the many features of (Chat)GPT is
its ability to consider the history of preceding mes-
sages within a conversation while responding to
new input prompts, GPT API and the web version
handle message history differently. In GPT API,
the message history is limited to a fixed number
of tokens (i.e., 4,096 tokens for gpt-3.5-turbo);
however, we are not aware of how the message
history is handled in ChatGPT Web, where an un-
limited number of message for chat seems to be
supported.

In our experiments, we use a single chat for each
considered prompting strategy, both for ChatGPT
Web and GPT API. However, in ChatGPT Web,
we considered the full message history for the ZSp,
FSp, and MSp strategies. Instead, to avoid exceed-
ing the token limit set by the OpenAI API, we
tested GPT API for the ZSp and FSp strategies
by considering a message history of 33 messages.
Note that due to the token limit, testing the MSp
strategy for GPT API wasn’t possible, as the lim-
ited message history would make MSp equivalent
to FSp. The 33-message history was organized as

15Different instances were annotated by varying numbers
of annotators.

a combination of a fixed and a sliding window. We
set the fixed window to ensure the model is always
aware of the task we asked it to answer in the early
prompts; instead, we set the sliding window to em-
ulate the flow of the conversation as in ChatGPT
Web. In particular, i) in ZSp, the fixed window
covers our first prompt (i.e., task explanation) and
the (Chat)GPT answer, while the sliding window
covers the i-th prompts and the last 30 messages
(i.e., 15 prompts and 15 (Chat)GPT answers); ii)
in FSp, the fixed window covers the first 26 mes-
sages (i.e., task explanation and example instances),
while the sliding window covers the i-th prompts
and the last 6 messages. Figure 8 summarizes the
message history we set for testing GPT API.
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Figure 8: Message history used for GPT API in the zero-shot prompting (ZSp) and few-shot prompting
(FSp) strategies. The message history is organized as a combination of a fixed and a sliding window,
encompassing a total of 33 messages. The fixed window ensures that the model remains constantly
aware of the task we have asked it to address in the initial prompts and the given examples (if any).
Conversely, we establish the sliding window to emulate the conversational flow of ChatGPT Web.
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C (Chat)GPT templates

C.1 WiC template
Description Template

task explanation
Task: Determine whether two given sentences use a target word with the same meaning or different meanings
in their respective contexts.

explicit behavioral
guidelines

I’ll provide some negative and positive examples to teach you how to deal with the task before testing you.
Please respond with only "OK" during the examples; when it’s your turn, answer only with "True" or "False"
without any additional text. When it’s your turn, choose one: "True" if the target word has the same meaning in
both sentences; "False" if the target word has different meanings in the sentences. I’ll notify you when it’s your
turn.

example instance

This is an example. You have to answer "OK":
Sentence 1: [First sentence containing the target word]
Sentence 1: [First sentence containing the target word]
Target: [Target word]
Question: Do the target word in both sentences have the same meaning in their respective contexts?
Answer: [True/False]

task instance

Now it’s your turn. You have to answer with "True" or "False":
Sentence 1: [First sentence containing the target word]
Sentence 1: [First sentence containing the target word]
Target: [Target word]
Question: Do the target word in both sentences have the same meaning in their respective contexts?
Answer: [The model is expected to respond with "True" or "False"]

Table 6: Sections of the prompt template used for testing (Chat)GPT.

ID Strategy Prompt

ZSp zero-shot prompting

task explanation
explicit behavioral guidelines

task instance
...

task instance

FSp few-shot prompting

task explanation
explicit behavioral guidelines

example instance
...

example instance
task instance

...
task instance

MSp many-shot prompting like FSp

Table 7: Prompt template for each employed prompting strategy.

C.2 LSC template
Strategy Template

ZSp

Consider the following two time periods and target word. How much has the meaning of the target word
changed between the two periods? Rate the lexical semantic change on a scale from 0 to 1. Provide only a score.
Target: [Target word]
Time period 1: 1810–1860
Time period 2: 1960–2010
Answer: [The model is expected to respond with a continuous score s, with 0 ≤ s ≤ 1 ]

Table 8: Prompt template for LSC.
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D GPT API performance on TempoWiC
and HistoWiC

D.1 Experiment 1 - temperature
GPT API - Temperature

prompt 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 avg

TempoWiC ZSp .568 .584 .604 .599 .592 .576 .604 .560 .560 .599 .579 .584
FSp .648 .648 .664 .634 .597 .631 .645 .585 .608 .581 .598 .622

HistoWiC ZSp .728 .683 .689 .676 .666 .694 .715 .609 .704 .671 .594 .675
FSp .684 .698 .721 .698 .671 .700 .686 .599 .552 .607 .601 .656

Table 9: Comparison of GPT performance (Macro-F1) for TempoWiC and HistoWiC at various temperature values
using the official API and different prompts.

D.2 Experiment 2 - temperature
GPT API - Temperature

prompt 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 avg

TempoWiC ZSp .645 .628 .643 .605 .664 .602 .600 .598 .575 .580 .636 .616
FSp .659 .632 .649 .627 .644 .597 .689 .627 .597 .551 .562 .621

HistoWiC ZSp .751 .758 .711 .765 .729 .712 .678 .652 .679 .664 .604 .700
FSp .684 .678 .707 .700 .706 .665 .607 .662 .615 .592 .623 .658

Table 10: Comparison of GPT performance (Macro-F1) for TempoWiC and HistoWiC at various temperature values
using the official API and different prompts.

D.3 Average performance per temperature
GPT API - Temperature

prompt 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 avg

TempoWiC ZSp .606 .606 .624 .602 .628 .589 .602 .579 .568 .589 .607 .600
FSp .654 .640 .657 .631 .620 .614 .667 .606 .602 .566 .580 .622

HistoWiC ZSp .740 .720 .700 .720 .698 .703 .696 .631 .692 .668 .599 .688
FSp .684 .688 .714 .699 .688 .682 .647 .631 .584 .599 .612 .657

Table 11: Comparison of GPT performance (Macro-F1) for TempoWiC and HistoWiC at various temperature values
using the official API and different prompts. We report the average performance for each temperature.

E BERT performance on TempoWiC and
HistoWiC

Layers
1 2 3 4 5 6 7 8 9 10 11 12 avg

TempoWiC .669 .631 .635 .627 .604 .627 .704 .749 .744 .730 .737 .751 .684
HistoWiC .650 .678 .739 .782 .828 .801 .806 .771 .771 .749 .722 .744 .753

Table 12: Comparison of BERT Performance (Macro-F1) for TempoWiC and HistoWiC tasks at different embedding
layers.

F GPT API performance on LSC

Temperature
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

SemEval-English .251 .200 .207 .279 .008 .012 .230 .154 .011 .194 .004

Table 13: Comparison of (Chat)GPT performance (Spearman’s correlation) for LSC on SemEval-English at various
temperature values using the official API.
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