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Abstract

Geoparsing is a fundamental technique for ana-
lyzing geo-entity information in text, which
is useful for geographic applications, e.g.,
tourist spot recommendation. We focus on
document-level geoparsing that considers geo-
graphic relatedness among geo-entity mentions
and present a Japanese travelogue dataset de-
signed for training and evaluating document-
level geoparsing systems. Our dataset com-
prises 200 travelogue documents with rich geo-
entity information: 12,171 mentions, 6,339
coreference clusters, and 2,551 geo-entities
linked to geo-database entries.

1 Introduction

Human activities, mobility, and events are often
described with natural language expressions of lo-
cations or geographic entities (geo-entities), which
indicate the geographic positions in the real world.
This signifies the importance of technologies for
extracting and grounding geo-entity expressions
for various application domains, including tourism
management, disaster management, and disease
surveillance (Hu et al., 2022).

Geoparsing (Leidner, 2006; Gritta et al., 2020)
is a fundamental technique involving two subtasks:
geotagging, which identifies geo-entity mentions,
and geocoding, which identifies corresponding
database (DB) entries for (or the coordinates of)
geo-entities. Notably, geoparsing, geotagging, and
geocoding can be regarded as special cases of entity
linking (EL), named entity recognition (NER) or
mention recognition (MR), and entity disambigua-
tion (ED), respectively.

This study focuses on geoparsing from the per-
spective of document-level analysis. Geo-entity
mentions that co-occur in a document tend to be
geographically close or related to each other; thus,

近鉄奈良駅 FAC-NAME
⟨1⟩ に到着。そこ DEICTIC

⟨1⟩ から

奈良公園 FAC-NAME
⟨2⟩ までは歩いてすぐです。

お寺 FAC-NOM
⟨GENERIC⟩が好きなので最初に興福寺

FAC-NAME
⟨3⟩

に行きました。境内 FAC-NOM
⟨3⟩ で鹿と遭遇し、

奈良 LOC-NAME
⟨4⟩ に来たことを実感しました。

I arrived at Kintetsu Nara Station FAC-NAME
⟨1⟩ .

From there DEICTIC⟨1⟩ it’s a short walk to

Nara Park FAC-NAME
⟨2⟩ . I like templesFAC-NOM⟨GENERIC⟩

so I first went to Kofukuji Temple FAC-NAME⟨3⟩ .

I encountered a deer in the precincts FAC-NOM⟨3⟩ and

felt that I had come to Nara LOC-NAME⟨4⟩ .

⟨1⟩ https://www.openstreetmap.org/relation/11532920
⟨2⟩ https://www.openstreetmap.org/way/456314269
⟨3⟩ https://www.openstreetmap.org/way/1134439456
⟨4⟩ https://www.openstreetmap.org/relation/3227707

Figure 1: Example illustration of an annotated docu-
ment with English translation. Expressions underlined
in blue indicate geo-entity mentions, superscript strings
(e.g., FAC-NAME) indicate entity types of mentions, and
subscript numbers (e.g., ⟨1⟩) indicate coreference clus-
ter IDs of mentions. URLs indicate OpenStreetMap
entries that correspond to coreference clusters.

information about some geo-entity mentions can
be useful for specifying information about other
mentions. For example, by considering the context
that describes a trip to Nara Prefecture, Japan, the
mention of興福寺 kofukuji ‘Kofukuji Temple’ in
Figure 1 ⟨3⟩ can be disambiguated to refer to the
temple in Nara rather than temples with the same
name at different locations.

This paper presents a dataset suitable for
document-level geoparsing: the Arukikata Trav-
elogue Dataset with geographic entity Mention,
Coreference, and Link annotation (ATD-MCL).
Our dataset includes the three types of geo-entity
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information illustrated in Figure 1: (1) spans and
entity types of geo-entity mentions, (2) corefer-
ence relations among mentions, and (3) links from
coreference clusters to corresponding entries in a
geographic DB (geo-DB).

Our dataset has two desirable characteristics for
document-level geoparsing. The first character-
istic is that single travelogue documents in our
dataset contain a rich amount of geo-entity men-
tions, in contrast to short documents, e.g., social
media posts (Matsuda et al., 2017; Wallgrün et al.,
2018). To leverage the inherent characteristic of the
original travelogues, we have adopted an annota-
tion policy to exhaustively markup geo-entity men-
tions, which refer to various locations and facilities
expressed by named, nominal, and deictic expres-
sions. The second characteristic is the geographic
continuity among co-occurring mentions; that is,
mentions that refer to nearby locations in the real
world tend to appear near to one another within a
document. Because travel records reflect the actual
trajectories of travelers, this characteristic is more
notable in travelogues than other text genres, e.g.,
news articles (Lieberman et al., 2010; Kamalloo
and Rafiei, 2018; Gritta et al., 2018, 2020).

The potential applications of our dataset (and
constructed geoparsers) include but not limited to
tourism management applications. This is because
geoparsing of location and facility mentions with
diverse surface forms is essential for gaining a
detailed understanding of where some event hap-
pened from text. For example, in disaster preven-
tion/mitigation applications, it is crucial to specify
detailed geographical positions by analyzing ex-
pressions other than named locations, utilizing ge-
ographic continuity if available, from social media
posts about ongoing disasters and reports on past
disasters.

As a result of manual annotation, our dataset
comprises 12,273 sentences from the full text of
200 travelogue documents with 12,171 mentions,
6,339 coreference clusters (geo-entities), and 2,551
linked geo-entities.1 Furthermore, we have con-
ducted two types of evaluation using our dataset.
First, we have measured inter-annotator agree-
ment (IAA) for three types of information; the re-
sults indicate the practical quality of our dataset
in terms of consistency. Second, we have evalu-
ated current entity analysis systems on our dataset

1We conducted link annotation for 100 out of 200 docu-
ments including 3,208 geo-entities as described in §3.

for benchmarking baseline performance; the re-
sults demonstrate that reasonable performance can
be achieved for MR and coreference resolution
(CR), but performance has room for improvement
in ED. We will release our annotated dataset at
https://github.com/naist-nlp/atd-mcl and
experimental codes at https://github.com/
naist-nlp/atd-mcl-baselines.

2 Dataset Annotation

Design Strategy For building geoparsing
datasets, it has been challenging to achieve a
high coverage for facility entity mentions mainly
because of the limited coverage of public geo-DBs,
e.g., GeoNames.2 To address this DB coverage
problem, we adopt OpenStreetMap (OSM),3 a
free, editable, and large-scale geo-DB of the world.
The usefulness of OSM has been continually
increasing, as evidenced by the increase in node
entries from over 1.5B in 2013 to over 80B
in 2023.4 Furthermore, we define entity types
to cover broad types of location and facility
mentions, including districts, buildings, landmarks,
roads, and public transport lines and vehicles, as
described in §2.2.

Annotation Flow Following the data preparation
by the authors, annotation work was performed by
native Japanese annotators at a professional data
annotation company according to the three-step
annotation flow: (1) mention annotation, (2) coref-
erence annotation, and (3) link annotation.

2.1 Data Preparation

As raw text data, we adopted the ATD5 (Arukikata.
Co., Ltd., 2022; Ouchi et al., 2023), which was
constructed from user-posted travelogues written
in Japanese. We first sampled documents about
Japanese domestic travel with a reasonable docu-
ment length (500–3000 characters, that is, approxi-
mately 300–1800 words) from the ATD. We then
applied the GiNZA NLP Library6 (Matsuda et al.,
2019) to the raw text for sentence segmentation and
automatic annotation of named entity (NE) mention
candidates.

2https://www.geonames.org/
3https://www.openstreetmap.org/
4https://wiki.openstreetmap.org/wiki/Stats
5https://www.nii.ac.jp/dsc/idr/arukikata/
6https://github.com/megagonlabs/ginza
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Type and subtype Example mentions

LOC-NAME 奈良 ‘Nara’;生駒山 ‘Mt. Ikoma’
LOC-NOM 町 ‘town’;島 ‘island’

FAC-NAME 大神神社 ‘Omiwa Shrine’
FAC-NOM 駅 ‘station’;公園 ‘park’

LINE-NAME 近鉄奈良線 ‘Kintetsu Nara Line’
LINE-NOM 国道 ‘national route’;川 ‘river’

TRANS-NAME 特急ひのとり ‘Ltd. Exp. Hinotori’
TRANS-NOM バス ‘bus’;フェリー ‘ferry’

Table 1: Examples of NAME and NOM entity mentions.

2.2 Mention Annotation
In the mention annotation step, we required the
annotators to identify spans of geo-entity mentions
in the documents, which may or may not refer to
real-world locations, and assign entity type tags
to the identified mentions by modifying the auto-
annotated NE mentions. We adopted the brat anno-
tation tool7 (Stenetorp et al., 2012) for mention an-
notation (and succeeding coreference annotation).

The criteria for mention annotation define the
entity types of geo-entity mentions, along with men-
tion spans explained in Appendix B. Specifically,
we define the following eight main entity types,
which roughly correspond to Location, Facility,
and Vehicle in Sekine’s Extended Named En-
tity (ENE) taxonomy (version 9.0)8 (Sekine et al.,
2002). (1) LOC, (2) FAC, and (3) TRANS respec-
tively represent locations, facilities, and public
transport vehicles; (4) LINE represents roads, wa-
terways/rivers, or public transport lines. The above
four types are further divided into NAME and NOM
subtypes, corresponding to whether a mention
is named or nominal, as described in Table 1.
(5) LOC_ORG and (6) FAC_ORG indicate location
and facility mentions, respectively, that metonymi-
cally refer to organizations, e.g., ホテル hoteru
in a sentence such as “The hotel serves its lunch
menu.” (7) LOC_OR_FAC_NOM indicates nominal
mentions that can refer to both location and facility,
e.g., 観光地 kankōchi ‘sightseeing spot.’ Finally,
(8) DEICTIC indicates deictic expressions that refer
to other geo-entity mentions or real-world loca-
tions, e.g.,そこ soko ‘there’ in Figure 1.

2.3 Coreference Annotation
In the coreference annotation step, we required
the annotators to assign mention-level specificity

7https://github.com/nlplab/brat
8http://ene-project.info/ene9/?lang=en

tags or mention-pair-level relations to mentions
identified in the previous step (except for those
labeled with TRANS tags) using brat.

The criteria for coreference annotation define
three types of specificity tags and two types of rela-
tions. As the representative cases, we introduce
here the GENERIC specificity tag and the COREF
coreference relation, and explain the remaining tags
and relations in Appendix B. GENERIC is assigned
to a generic mention, e.g.,お寺 otera ‘temples’ in
Figure 1, to distinguish singleton mentions that re-
fer to real-world location, but are not coreferenced
with other mentions. COREF is assigned to two men-
tions that both refer to the same real-world location,
e.g.,近鉄奈良駅 kintetsu nara eki ‘Kintetsu Nara
Station’ andそこ soko ‘there’ in Figure 1 ⟨1⟩. Af-
ter relation annotation, a set of mentions that is
sequentially connected through binary relations is
regarded as one coreference cluster. A mention
without any relations or specificity tags is regarded
as a singleton, e.g., Figure 1 ⟨2⟩ and ⟨4⟩.9

2.4 Link Annotation

In the link annotation step, we required the anno-
tators to link each coreference cluster to the URL
of the corresponding OSM entry (e.g., ⟨1⟩–⟨4⟩ in
Figure 1) on the basis of OSM and web search re-
sults. For URL assignment, the annotators added
URLs to the cells representing coreference clusters
in TSV files, which were converted from the brat
output files.

The criteria for link annotation define the an-
notation flow as follows. For each coreference
cluster, an annotator determines one or more nor-
malized names of the referent location, e.g., formal
or common name. The annotator then searches and
assigns a URL of an appropriate OSM entry to the
coreference cluster using search engines.10

The specific assignment process of entries is as
follows. (a) If one or more candidate entries for a
coreference cluster are found, assign the most prob-
able candidate as BEST_REF_URL and (up to two)
other possible candidates as SECOND_REF_URLS. (b)
If the only candidate entry geographically includes
but does not exactly match with the real-world ref-

9Although singleton mentions are marked with corefer-
ence cluster IDs in Figure 1 for clarity, singletons were not
annotated with any coreference information in the actual work.

10Because it was sometimes difficult to find the desired
entries using the Nominatim search engine available on the
official OSM site, we asked the annotators to use additional
search engines: web search engines and an original search
engine that we developed.
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#Doc #Sent #Word #Men #Ent

Set-A 100 5,949 85,741 6,052 3,131
Set-B 100 6,324 87,074 6,119 3,208

Total 200 12,273 172,815 12,171 6,339

Table 2: Statistics of the ATD-MCL.

erent, assign the found entry with the PART_OF tag.
(c) If no candidate entries are found in OSM, search
and assign an appropriate entry from alternative
DBs: Wikidata,11 Wikipedia,12 and general web
pages describing the real-world referent. (d) If
no candidate entries are found in any DBs, assign
the NOT_FOUND tag instead of an entry URL. The
annotators can skip the search steps and assign
the NOT_FOUND tag when all member mentions and
surrounding context do not provide any specific
information that identifies the referent.

3 Dataset Statistics

The annotators first annotated 200 documents with
mention information, then annotated the same 200
documents with coreference information, and fi-
nally annotated 100 documents, which were ran-
domly sampled from the 200 documents, with link
information.13 We call the latter 100 documents
that contain link annotation Set-B and refer to the
remaining 100 documents without link annotation
as Set-A. The numbers of documents (#Doc), sen-
tences (#Sent), words (#Word), mentions (#Men),
and entities (coreference clusters) (#Ent) in the
ATD-MCL are listed in Table 2. We used Mode B
(the middle unit) of the SudachiPy tokenizer (ver-
sion 0.6.7)14 (Takaoka et al., 2018) for counting
the number of words in the Japanese text.

The notable characteristics or our dataset are
summarized below. For more details, see Ap-
pendix C.

1. As shown in Table 3, facility mentions account
for 50.3% (6,090/12,114) and nominal or
demonstrative expressions account for 48.4%
(5,867/12,114) of geo-entity mentions.15

11https://www.wikidata.org/
12https://ja.wikipedia.org/
13To construct the dataset within budget, we sampled 100

articles for link annotation, which is a heavy workload. It
took 60, 70, and 200 hours to annotate 100 documents with
mention, coreference, and link information, respectively.

14https://github.com/WorksApplications/
SudachiPy

1557 out of 12,171 mentions were non-geo-entity mentions,
i.e., FAC_ORG and LOC_ORG.

LOC FAC LINE TRANS GeoOther

NAME 2,289 3,239 462 257 –
NOM 861 2,851 582 666 –
Other – – – – 907

Total 3,150 6,090 1,044 923 907

Table 3: Tag distribution of geo-entity mentions in the
whole dataset. “GeoOther” mentions consist of 372
LOC_OR_FAC_NOM and 535 DEICTIC mentions. Non-geo-
entity mentions (23 LOC_ORG and 34 FAC_ORG) are ex-
cluded from this table.

2. Multi-member clusters account for 35.6%
(2,256/6,339) of coreference clusters, and the
average number of member mention text types
(distinct strings) for the multi-member clus-
ters is 1.85, suggesting that the same geo-
entity is often repeatedly referred to by named,
nominal, and deictic expressions in a docu-
ment (Appendix C.2 Table 12).

3. Geo-entities assigned with some URLs ac-
count for 97.1% (1,942/2,001) of entities
with NAME mentions (“HasName” entities) and
50.5% (609/1,207) of the remaining entities,
suggesting that identifying the referents that
are not clearly written in text is difficult even
for humans (Appendix C.3 Table 14).

4. Geo-entities assigned with OSM entry URLs
account for 75.7% (1,514/2,001) of all “Has-
Name” entities and 74.0% (811/1,096) of
“HasName” facility entities, indicating that
OSM has reasonable coverage of various
types of locations in Japan (Appendix C.3
Table 15).

4 Inter-Annotator Agreement

For mention, coreference, and link annotation, we
requested two annotators to independently annotate
the same 10, 10, and 5 documents out of the 200,
200, and 100 documents, respectively; we simply
selected 10 or five documents in ascending order
based on document ID.16 We measured the inter-
annotator agreement (IAA) for the three annotation
tasks.

4.1 Mention Annotation
As the IAA measure for mention annotation, we
calculated the F1 scores between the results of two

16For coreference annotation, 10 documents annotated by
two annotators did not include any mentions with specificity
tags or mention pairs with attributive coreference relations.
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Tag set Token Type
F1 #W1 #W2 #M #W1 #W2

NAME 0.835 229 243 197 162 174
NOM 0.846 214 207 178 105 109
DEICT 0.621 19 10 9 6 3
ORG 0 1 0 0 1 0

All 0.832 463 460 384 274 283

Table 4: IAA for mention annotation. NAME, NOM, DEICT,
and ORG indicate the (micro-averaged) scores for all
NAME mentions, all NOM mentions, DEICTIC, and both
LOC_ORG and FAC_ORG, respectively. The token and type
columns indicate the scores and numbers based on token
and type frequencies of mention text, respectively.

annotators (W1 and W2), based on exact match
of both spans and tags.17 Table 4 shows the F1
score for each tag set and the numbers of annotated
mentions by W1, W2, and both (M).

The F1 score for all mentions was 0.832. Higher
F1 score for NOM mentions (0.846) than that for
NAME mentions (0.835) is probably because the less
variety of NOM mention text types eased the annota-
tion work for those mentions, as suggested by the
mention token/type frequencies in Table 4.

4.2 Coreference Annotation

To assess IAA for COREF relation annotation, we
used the metrics commonly used in coreference
resolution studies: MUC (Vilain et al., 1995), B3

(Bagga and Baldwin, 1998), CEAFe (Luo, 2005),
and the average of the three metrics (a.k.a the
CoNLL score) (Pradhan et al., 2012).18

Table 5 shows the F1 scores between two anno-
tators’ (W1 and W2) results for each IAA measure
and the numbers of clusters constructed from two
annotators’ results for 2×2 settings: (a) original
coreference clusters with all mentions or (b) clus-
ters where only NAME mentions are retained, and
(i) clusters with size ≥ 1 or (ii) clusters with size
≥ 2. In the basic setting (a)-(i), the average F1
score was 0.802. In addition, we observed two in-
tuitive results. One is the lower scores for (a) than
for (b), indicating that it was difficult to identify
which mentions coreferenced with non-NAME men-
tions. The other is the higher scores for (i) than for

17We did not adopt a tag-level Kappa score regarding
character-level BIO tags) because it would be biased toward
being higher due to the majority of tags being O tags.

18A mention-level Kappa score can be calculated by re-
garding the task as, for example, classifying mentions into
singleton or multi-member clusters. However, we did not
adopt it because the resulting scores would be biased toward
preferring singletons.

MUC B3 CEAFe Avg. #W1/#W2

(a) Original clusters with all mentions

(i) 0.797 0.827 0.782 0.802 237/297
(ii) 0.797 0.768 0.811 0.792 91/79

(b) Clusters only with NAME mentions

(i) 0.912 0.914 0.893 0.906 142/159
(ii) 0.912 0.868 0.844 0.874 46/46

Table 5: IAA between two annotators for coreference
clusters in coreference annotation. The top two rows
(a) and the bottom two rows (b) show the results in the
described settings. (i) and (ii) show the results in the set-
tings where singletons are included or not, respectively.

F1 κ #W1 #W2 #M

(a) Original URL

URL 0.718 – 81 75 56
NOT_FOUND 0.737 – 16 22 14
All 0.722 0.707 97 97 70

(b) Grouped URL

URL 0.821 – 81 75 64
NOT_FOUND 0.737 – 16 22 14
All 0.804 0.793 97 97 78

Table 6: IAA between two annotators for link annota-
tion in (a) the original URL and (b) the grouped URL
settings. The “URL” and NOT_FOUND columns show the
results for the assigned URLs and tag, respectively.

(ii); this is because leaving mentions as singletons
is more likely to agree, since each mention is a
singleton by default.

4.3 Link Annotation
As the IAA measure for link annotation, we cal-
culated the F1 score and the Kappa score κ of
OSM (or other DB) entry URL assignment for
the same entities between two annotators (W1 and
W2), which is similar to cluster-level hard F1 score
(Zaporojets et al., 2022).19

Table 6 shows the agreement scores along with
the numbers of entities to which URLs or the
NOT_FOUND tags were assigned by W1, W2, and
both (M).20 We used two settings about the equiv-
alence for assigned URLs. (a) The original URL

19The same coreference information were provided to the
annotators, but W1 and W2 merged or split three and one
clusters, respectively, as a result of adopting the editable policy
of clusters. We then evaluated link agreement only for clusters
in which all members matched between the two annotators’
results.

20We regarded an entity as a matched URL instance
when both annotators assigned the same URL and as a
matched NOT_FOUND instance when both annotators assigned
NOT_FOUND.
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setting compares raw URL strings assigned by the
annotators. (b) The grouped URL setting treats
OSM entries or web pages representing practically
the same locations as the same and compares the
grouped URL sets instead of original URLs.21

The F1 scores for URLs and NOT_FOUND were
over 0.7 in both settings, indicating that the annota-
tor could assign the same URL (or the NOT_FOUND
tag) to the majority of geo-entities in spite of the
huge number of candidate URLs. The lower agree-
ment scores in (a) the original setting than those in
(b) the grouped setting is because the annotators
assigned different but practically equivalent entry
URLs to eight entities.

5 Experiments

We conducted experiments on the ATD-MCL for
three tasks: MR, CR, and ED. The purpose of the
experiments is to clarify the performance level of
current entity analysis systems, including off-the-
shelf and finetuned models, on our dataset.

5.1 Data Split

We regarded all Set-A documents as train-a and
split the Set-B documents into train-b, develop-
ment, and test sets at a ratio of 10:10:80. The union
of train-a and train-b was used as the training set
for both MR and CR, whereas train-b was used
as the training set for ED. Thus, the data split of
110:10:80 was used for MR and CR, and that of
10:10:80 was used for ED. We determined to assign
the large part of datasets to the test set to obtain
less biased and more reliable evaluation results.22

5.2 Database Preprocessing

To the OSM data file consisting of Japanese domes-
tic location entries,23 we applied preprocessing to
group together entries that refer to almost the same
real-world locations by assigning the same group
ID string, which resulted in 1.8M entry groups.
Thus, we adopted a setting where entry groups are
considered as linking units rather than individual
entries. Detailed processing is described in Ap-
pendix D.3.

21The first author manually judged the practical equiva-
lence of different OSM entries and web pages for entities
unmatched between two annotators.

22The unsupervised ED systems in our experiments did
not actually use any training examples. Different data split
that includes more training examples can also be useful for
future experiments involving supervised ED systems.

23We used japan-230601.osm.bz2, which was available
at http://download.geofabrik.de/asia/.

Examples of entry group IDs are as follows.

• “name=スターバックス|branch=None|prefecture=
奈良県|city=奈良市| quarter=樽井町|road=猿沢
遊歩道|amenity=cafe” (Starbucks Coffee at Saru-
sawa pathway, Tarui-cho, Nara City, Nara Prefecture)

• “name=ロ ー ソ ン|branch=京 王 多 摩 川 駅|
prefecture=東 京 都|city=調 布 市|shop=
convenience” (Lawson Keio Tamagawa Station
store at Chofu City, Tokyo Prefecture)

• “name=首都高速湾岸線|prefecture=千葉県,東
京 都,神 奈 川 県|city=None|route=road” (The
Metropolitan Expressway Bayshore Route passing
through Chiba Prefecture, Tokyo Prefecture, and
Kanagawa Prefecture)

• “name=JR予讃線|prefecture=愛媛県,香川県|city
=None|route=railway” (The JR Yosan line passing
through Ehime Prefecture and Kagawa Prefecture)

Whereas the first two groups contain only one entry,
the third and fourth groups contain 140 and 718
entries, respectively.

5.3 Mention Recognition
Task Setting We treat MR as the task of identi-
fying spans and entity types of mentions in given
documents. As the evaluation measure, we use
the F1 score between the gold and predicted men-
tions based on exact match of both spans and entity
types.

Systems We evaluated two systems that we fine-
tuned models on our training set (spaCy-MR and
mLUKE-MR) and two off-the-shelf systems with-
out model finetuning (KWJA and GiNZA). spaCy-
MR indicates a transition-based parsing model on
the spaCy NLP library24 that we built using a pre-
trained Japanese ELECTRA (Clark et al., 2020)
model.25 This corresponds to the finetuned ver-
sion of the GiNZA model. mLUKE-MR is our
implementation of a span-based MR system us-
ing a pretrained multilingual LUKE (mLUKE) (Ri
et al., 2022) model.26 As the off-the-shelf systems,
we used KWJA “base” (version 2.1.1)27,28 (Ueda
et al., 2023) and GiNZA “ja_ginza_electra” (ver-
sion 5.1.2). GiNZA and KWJA follow the ENE
and IREX (Sekine and Isahara, 2000) tag sets,
which are different from ours. Thus, we applied

24https://spacy.io/api/architectures#parser
25https://huggingface.co/megagonlabs/transform

ers-ud-japanese-electra-base-discriminator
26https://huggingface.co/studio-ousia/

mluke-large-lite
27https://github.com/ku-nlp/kwja
28There was no KWJA documentation describing how to

train a custom model, and we attempted but failed to perform
training/finetuning.
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System Tag P R F1

KWJA Overall 0.279 0.352 0.311
NAME 0.279 0.695 0.398

GiNZA Overall 0.574 0.277 0.374
NAME 0.574 0.548 0.560

spaCy-MR

Overall 0.752 0.732 0.742
NAME 0.733 0.719 0.726
NOM 0.790 0.753 0.771
DEICTIC 0.645 0.721 0.681
ORG 0.353 0.250 0.293

mLUKE-MR

Overall 0.813 0.817 0.815
NAME 0.828 0.813 0.821
NOM 0.826 0.818 0.822
DEICTIC 0.616 0.896 0.730
ORG 0.833 0.417 0.556

Table 7: System performance for mention recognition:
precision (P), recall (R), and F1.

tag conversion rules to their outputs. Because
the LOCATION tag in IREX semantically includes
LOC_NAME, FAC_NAME, and LINE_NAME tags, we
converted each KWJA output mention with the
LOCATION tag into three mention instances with the
same span and with one of the three tags, which
prioritizes recall over precision. More detailed set-
tings are described in Appendix D.

Results Table 7 shows the performance of the
MR systems for the test set. The off-the-shelf sys-
tems, GiNZA and KWJA, achieved the recall of
0.55–0.70 for NAME mentions, indicating moderate
coverage for named geo-entity mentions. How-
ever, the two systems failed to extract non-NAME
mentions (the F1 scores were 0), which is natural
because these systems had been trained on only NE
annotations (not nominal phrases). Owing to our
finetuning, spaCy-MR and mLUKE-MR improved
the performance: the overall F1 scores of 0.74–
0.82. More specifically, both finetuned models
achieved F1 scores of 0.73–0.82 for NAME and NOM,
but they exhibited lower F1 scores for DEICTIC and
ORG. These results are likely because it is difficult
for the models to learn from a limited number of
training examples whether DEICTIC mentions re-
fer to real-world locations or not, and whether ORG
mentions metonymically refer to organizations or
not. For the fine-grained results for each tag, see
Appendix E.

5.4 Coreference Resolution

Task Setting We define CR as the task of cluster-
ing the given gold mentions that corefer the same
real-world locations. We use the same evaluation

System Size MUC B3 CEAFe Avg.

Rule-CR-1 ≥ 1 0 0.755 0.639 0.465
≥ 2 0 0 0 0

Rule-CR-2 ≥ 1 0.622 0.840 0.790 0.750
≥ 2 0.622 0.613 0.629 0.621

KWJA ≥ 1 0.694 0.839 0.793 0.775
≥ 2 0.694 0.661 0.658 0.671

mLUKE-CR ≥ 1 0.753 0.875 0.839 0.822
≥ 2 0.753 0.733 0.737 0.741

Table 8: System performance for coreference resolution.

metrics as the IAA measures.

Systems We evaluated one finetuned system
(mLUKE-CR), one off-the-shelf system (KWJA),
and two rule-based systems (Rule-CR-1 and 2).
mLUKE-CR is our implementation of an end-to-
end CR model based on a pretrained mLUKE
model,29 which identifies the antecedent (preced-
ing coreference mention) for a given mention fol-
lowing Lee et al. (2017). We used the KWJA
‘base’ model and applied a modification rule to
the KWJA’s output clusters so that the union of all
output clusters matched the set of all gold men-
tions.30 Simple rule-based systems are as follows.
Rule-CR-1 treats all given mentions as singletons.
Rule-CR-2 groups together sets of mentions with
the same surface form in a document into clusters
and treats the remaining mentions as singletons.

Results Table 8 shows the performance of the CR
systems for the test set. The simplest rule-based
system, Rule-CR-1, appears to have achieved the
moderate B3 and CEAFe scores for clusters with
size≥ 1 (although resulted in the zero score for
the link-based MUC metric), due to the dataset
distribution biased toward a high population of sin-
gletons. Thus, it is necessary to pay attention to the
improvement from these baseline scores as mean-
ingful performance evaluation measures. Another
rule-based system, Rule-CR-2, achieved the scores
of 0.61–0.84 for the three metrics, indicating that
the simple heuristic regarding surface forms was
a strong clue for finding coreferent mentions. The
superior performance of KWJA and mLUKE-CR
over Rule-CR-2 indicates that these two systems

29https://huggingface.co/studio-ousia/
mluke-large

30The modification rule removes predicted mentions that
do not match any gold mentions from the output clusters and
adds gold mentions that do not match any predicted mentions
as singletons on the basis of mention span overlapping.
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System R@1 R@5 R@10 R@100

Rule-ED 0.221 0.323 0.345 0.362
BERT-ED 0.245 0.401 0.443 0.555

Table 9: System performance for entity disambiguation.

identified (part of) coreferent mentions with differ-
ent surface forms, although mLUKE-CR expect-
edly performed better owing to finetuning.

5.5 Entity Disambiguation

Task Setting We define ED as the task of se-
lecting appropriate entry group IDs from all entry
groups for each given geo-entity. As the evaluation
measure, we use recall@k (R@k) for the given
entities; the prediction is regarded as correct if one
of the predicted k entity groups contains the gold
OSM entry URL for each geo-entity.

Systems We evaluated an unsupervised system
(BERT-ED) and a rule-based system (Rule-ED).
For an input entity, both systems regard the longest
mention surface among its member mentions with
NAME entity subtype tags as the entity name and pre-
dict DB entry groups based on the entity name. The
systems return no entry groups if the entity contains
no NAME mentions. BERT-ED is our implemen-
tation of an ED system without hyperparameters
based on a pretrained Japanese BERT (Devlin et al.,
2019) model.31 BERT-ED calculates the similarity
between each entity’s name and “name” attribute
value of each candidate entry group, and then ranks
the candidates. For the similarity score, we used
the cosine similarity score between vector represen-
tations, that is, the average of hidden states at the
last layer for input words within the name string.32

Rule-ED extracts entry groups whose “name” at-
tribute values exactly match the entity’s name for
each given entity, and then ranks them in lexico-
graphic order of full group ID strings.

Results Table 9 presents the performance of the
ED systems for the test set. Overall, BERT-ED
achieved better scores than Rule-ED owing to soft
matching and ranking using vector representations.
In particular, BERT-ED outperformed Rule-ED by
a larger margin on R@k with larger k. Although
this result suggests the effectiveness of vector rep-

31https://huggingface.co/cl-tohoku/
bert-base-japanese-whole-word-masking

32We also tried an entity representation calculated from
the full sentence where its representative mention occurred,
but confirmed its poor performance.

resentations, the performance for R@1 can be im-
proved by introducing more sophisticated disam-
biguation strategies that consider the geography-
related content in a document, including location
and facility types identified from the surrounding
context, and geographic areas mentioned within
the document.

5.6 Discussion

For MR and CR, the finetuned systems achieved the
reasonable performance in our experiments. For
ED, in contrast, the simple unsupervised systems
did not achieve practical performance. A possi-
ble solution is training supervised ED systems on
in-domain training data. However, we suppose
that predicting appropriate DB entries for unknown
instances would remain a main challenge due to
limits to improving coverage by increasing training
instances.

Another challenge in geographic ED is that natu-
ral language descriptions of geo-DB entries are un-
available, different from general DBs represented
by Wikipedia. This also makes it difficult to di-
rectly apply state-of-the-art general ED systems
using entry description text (Wu et al., 2020; Ya-
mada et al., 2022) to geographic ED, i.e., geocod-
ing. Instead, OSM entries have rich information of
semantic attributes and geographic relations, such
as distance and hierarchy. A prospective direction
is learning mention/entry representations that lever-
age or encode such geographic information, as well
as entity type and population information (Zhang
and Bethard, 2023). For example, if some geo-
graphic relations between two mentions are indi-
cated by calculation based on their representations,
geo-entities referred to by them may also have sim-
ilar relations, which would be useful for CR and
ED.

6 Related Work

Entity Analysis Datasets For over two decades,
efforts have been devoted to developing annotated
corpora for English entity analysis tasks, includ-
ing NER (Tjong Kim Sang, 2002; Ling and Weld,
2012; Baldwin et al., 2015), anaphora/coreference
resolution (Grishman and Sundheim, 1996; Dod-
dington et al., 2004; Pradhan et al., 2011; Ghaddar
and Langlais, 2016), and ED and EL (McNamee
et al., 2010; Hoffart et al., 2011; Ratinov et al.,
2011; Rizzo et al., 2016). For Japanese text, an-
notated corpora have been developed for general
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Dataset Name Lang Text Genre Geo-DB #Men Facility Nominal

LGL Corpus (Lieberman et al., 2010) en News GeoNames 4.8K ✗ ✗
TR-News (Kamalloo and Rafiei, 2018) en News GeoNames 1.3K ✗ ✗
GeoVirus (Gritta et al., 2018) en News Wikipedia 2.2K ✗ ✗
GeoWebNews (Gritta et al., 2020) en News GeoNames 2.7K △ ✓
SemEval-2019 T12 (Weissenbacher et al., 2019) en Science GeoNames 8.4K ✗ ✗
CLDW (Rayson et al., 2017) en Historical Unlock 3.7K △ ✗
GeoCorpora (Wallgrün et al., 2018) en Microblog GeoNames 3.0K △ ✗
LRE Corpus (Matsuda et al., 2017) ja Microblog ISJ & Orig. 1.0K △ ✓
ATD-MCL (Ours) ja Travelogue OSM 12.3K ✓ ✓

Table 10: Characteristics of representative geoparsing datasets and ours. “#Men” indicates the number of annotated
mentions in each dataset. The facility and nominal columns show the availability of geoparsed facility mentions and
nominal mentions, respectively: ✓ (available), ✗ (not available), and △ (available to a limited extent).

NER (Sekine et al., 2002; Hashimoto and Naka-
mura, 2010; Iwakura et al., 2016), coreference res-
olution (Kawahara et al., 2002; Hashimoto et al.,
2011; Hangyo et al., 2014), and EL (Jargalsaikhan
et al., 2016; Murawaki and Mori, 2016).

Geoparsing Datasets Table 10 summarizes
the characteristics of representative geoparsing
datasets and the ATD-MCL. For English geop-
arsing, annotated corpora have been developed
and used as benchmarks for system evaluation.
The Local Global Lexicon (LGL) Corpus (Lieber-
man et al., 2010), TR-News (Kamalloo and Rafiei,
2018), and GeoWebNews (Gritta et al., 2020) con-
tain approximately 100–600 news articles from
global and local news sources. Although GeoWeb-
News contains facility mentions, which account
for 8% of the total, Gritta et al. (2020) estimated
their coordinates using the Google Maps API due
to the absence of GeoNames entries, and excluded
them from their experiments. GeoVirus (Gritta
et al., 2018) comprises 229 WikiNews articles fo-
cusing on viral infections. The SemEval-2019 Task
12 dataset (Weissenbacher et al., 2019) comprises
150 biomedical journal articles on the epidemiol-
ogy of viruses. The GeoCorpora project (Wallgrün
et al., 2018) constructed a geo-microblog corpus
that comprises 6,711 tweets with the very limited
amount of facility mentions.33 The Corpus of Lake
District Writing (CLDW) (Rayson et al., 2017) con-
sists of 80 historical texts, including travelogues
and tourist guidebooks. The location and facil-
ity mentions in their gold standard subset of 28
texts were manually checked, but the coordinates
were not. For Japanese geoparsing, Matsuda et al.
(2017) constructed the Location Reference Expres-

33According to their supplemental material, the propor-
tion of mentions referring to facilities, such as buildings and
airports, is less than 3%.

sions (LRE) corpus, comprising 10,000 Japanese
tweets, 951 of which have geo-entity-related tags.
They used Ichi Sansho Joho (ISJ) ‘City-block-level
location reference information’ and their original
gazetteer of facilities, but the latter gazetteer has
not been available due to licensing reasons.

7 Conclusion

This paper has described the ATD-MCL dataset,
which is designed for document-level geoparsing,
along with the annotation criteria, IAA assessment,
and performance evaluation of the baseline systems.
Our dataset enables other researchers to conduct re-
producible experiments through the public release
of our annotated data. We expect that our dataset
contributes to fostering future research and advanc-
ing geoparsing techniques.

In future work, we plan to (1) develop a
document-level geoparser that leverages both char-
acteristics of geo-entity mentions in text and geo-
DB entries, (2) enhance our dataset with additional
semantic information, such as the movement tra-
jectories of travelogue writers, for more advanced
analytics, and (3) construct annotated travelogue
datasets in other languages by extending our anno-
tation guidelines.

Limitations

Optimization of Database Preprocessing As
the preprocessed DB for ED, we used 2.8M OSM
entries of Japanese domestic locations with “name”
attributes. While checking a portion of the gener-
ated entry groups, we performed rule engineering
to make the original DB more desirable for our ED
task, which means entries that can be regarded as
practically equivalent to each other belong to the
same groups. Over- and under-aggregated groups
in the final DB could produce the evaluation results
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with underestimated or overestimated system per-
formance. This would have a greater influence on
the recall@k scores with smaller k for evaluating
disambiguation accuracy, but a lesser influence on
the scores with larger k for evaluating extraction
coverage.

Optimization of System Performance We per-
formed not systematic but minimum hyperparam-
eter search for mLUKE-based models due to time
and resource limitations. Similarly, we used the
fixed hyperparameters for spaCy-MR, which corre-
spond to those used for GiNZA. Thus, performing
optimized experiments has potential for further per-
formance improvement in these systems.

Independent Experiments on Geoparsing Sub-
tasks As a first step toward comprehensive evalu-
ation of geoparsing techniques, we independently
evaluated the baseline systems on each subtask in
the gold input setting; that is, gold mention spans
were given in the CR experiments and gold en-
tities were given in the ED experiments. How-
ever, it is also necessary to explore developing and
evaluating more practical systems in the full geop-
arsing setting, which requires systems to predict
mentions, coreference clusters, and links from raw
documents.

Ethics Statement

As a potential risk associated with our dataset, a
model trained on the dataset has the ability, to some
extent, to identify locations mentioned in input
texts and could be applied to link the content of in-
dividual posts containing private information with
the mentioned locations. In addition, regardless of
the purpose of use, the predicted locations may be
inaccurate due to the limitations of the model’s per-
formance or the discrepancy of domains, writing
styles, and mentioned regions between our dataset
and input texts.

Consistently with their intended use, we used
existing language resources and tools to develop or
evaluate NLP datasets or models under the speci-
fied license or terms of use. As for the dataset that
we constructed, its intended use is for academic
research purposes related to information science,
similarly to that of the ATD. The text in our dataset
is a subset of the original ATD data, and the orig-
inal data does not contain any information about
the travelogue authors.

The annotation work was performed by anno-

tators at a professional data annotation company.
The payment amount to the company was based on
the estimate submitted by the company. The actual
annotators and the payment amount to each annota-
tor was determined by the company. For mention,
coreference, and link annotation, the annotation
work were performed by five (four men and one
woman), five (four men and one woman), and seven
(five men and two women) annotators, respectively.
The age range of the annotators is from their 20s to
50s. All of them are native Japanese speakers. Be-
fore commencing the annotation work to construct
our dataset, we explained to the annotators that we
or other researchers would use the annotated data
for future research related to NLP.
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Kakuchō koyū hyōgen tag tsuki corpus-no kōchiku—
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A Licenses of Used Resources

We used some existing NLP software and language
resources as described in the main sections. The
licenses of the used resources are as follows. The
Arukikata Travelogue Dataset is available via the
Informatics Research Data Repository, National
Institute of Informatics under specific terms of
use.34 brat, spaCy, GiNZA, KWJA, the pretrained
Japanese ELECTRA model are available under
the MIT License. SudachiPy and the pretrained
mLUKE models are available under the Apache
License 2.0. The pretrained Japanese BERT model
is available under CC BY-SA 4.0. OpenStreetMap
data files are available via Geofabrik35 under the
Open Database License 1.0.

B Detailed Annotation Criteria

B.1 Mention Span Annotation

The spans of geo-entity mentions are determined
as follows. Generally, a noun phrase (NP) in which
a head h is modified by a nominal modifier m is
treated as a single mention (Table 11-a). An appos-
itive compound of two nouns n1 and n2 is treated
as a single mention (Table 11-b) unless there is
some expression (e.g., no-particle “の”) or separa-
tor symbol (e.g., tōten “、”) inserted between them.
A common name is treated as a single mention even
if it is not a simple NP (Table 11-c). For an NP
with an affix or affix-like noun a representing di-
rections or relative positions, a cardinal direction
prefix preceding a location name is included in
the span (Table 11-d-1), but other affixes are ex-
cluded from the span (Table 11-d-2). There may
be instances in which a modifier m represents a
geo-entity, but its NP head h does not. In such
cases, the modifier is treated as a single mention if
the head is a verbal noun that means move, stay, or
habitation (Table 11-e-1), but the NP is not treated
as a mention if not (Table 11-e-2). In the case
that a geo-entity name g is embedded in a non-
geo-entity mention n, the inner geo-entity name is
treated as a geo-entity mention if the external en-
tity corresponds to an event held in the real world
(Table 11-f). If the external entity corresponds to
other types of entities, such as an organization or
the title of a work, the inner geo-entity name is not
treated as a geo-entity mention.

34https://www.nii.ac.jp/dsc/idr/arukikata/
documents/arukikata-policy.html (in Japanese)

35http://www.geofabrik.de/data/download.html

(a)
[山頂]m [駐車場]h
[parking area]h [on top of the mountain]m

(b)
[駅ビル]n1 [「ビエラ奈良」]n2

[station building]n1 [Vierra Nara]n2

(c)
天国への階段

Stairway to Heaven

(d-1)
[東]a [東京]
[East]a [Tokyo]

(d-2)
[北海道] [全域]a
[the whole area of]a [Hokkaido]

(e-1)
[京都]m [旅行]h
[Kyoto]m [Travel]h

(e-2)
[三輪]m [そうめん]h
[Miwa]m [somen noodles]h

(f)
[[保津川]g 下り]n
[[Hozugawa river]g boat tour]n

Table 11: Examples of mention spans.

B.2 Coreference Annotation

We consider coreference and link annotation for
TRANS mentions to be outside the scope of this
study. This is because how to treat the identity
of those mentions is not obvious, and OSM does
not contain such type of entries. However, TRANS
(-NAME) mentions would be helpful to identify the
referents of other types of mentions that are not
clearly written.

Following (or concurrently with) specificity tag
annotation, relations are assigned to pairs of men-
tions that have not been labeled with either speci-
ficity tag.

Specificity Tags Specificity tags can be either
GENERIC, SPEC_AMB, or HIE_AMB. GENERIC is as-
signed to a generic mention, as explained in §2.3.
SPEC_AMB (which means “specific but ambiguous”)
is assigned to a mention that refers to a specific
real-world location, but there is some ambiguity
about the detailed area to which it refers, e.g.,海
umi in a sentence like “You can see a beautiful sea
from this spot.” HIE_AMB (which means “hierarchi-
cally ambiguous”) is assigned to an ambiguously
described mention with multiple potential referents
at both higher and lower-level locations, e.g.,奈良
in a sentence like “We are heading to Nara.” Anno-
tators were instructed to annotate with coreference
and link information, operating under the hypoth-
esis that such mentions refer to the lowest-level
location among candidate referents, e.g., not Nara
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1世界遺産・2白川郷は素敵な3ところでした。

A 1world heritage site, 2Shirakawago was a nice 3place.

Figure 2: Examples of attributive mentions.

Prefecture but Nara City.

Coreference Relations Coreference relations
can be either the identical coreference rela-
tion COREF or the attributive coreference relation
COREF_ATTR. The coreference relation COREF is as-
signed to two mentions that both refer to the same
real-world location, as explained in §2.3. The di-
rected relation COREF_ATTR is assigned to mention
pairs in which one expresses the attribute of the
other, either in appositive phrases or copular sen-
tences. For example, a sentence in Figure 2 is anno-
tated with COREF_ATTR relations from mention 2 to
mention 1 and from mention 2 to mention 3. This
schema is similar to that in WikiCoref (Ghaddar
and Langlais, 2016).

Notably, no coreference relations are assigned
to mentions whose referents geographically over-
lap but are not identical; e.g., 首都高速道路
shuto kōsoku dōro ‘Metropolitan Expressway’ and
湾岸線 wangansen ‘Bayshore Route,’ which have
a whole–part relation.

C Detailed Dataset Statistics

C.1 Mention Annotation

In the mention annotation step, 12,171 mentions
were identified; they consist of 12,114 geo-entity
and 57 non-geo-entity mentions (23 LOC_ORG and
34 FAC_ORG mentions). Table 3 shows the distri-
bution of geo-entity mentions for entity type tags.
The tag distribution represents some characteristics
of travelogue documents of our dataset. First, the
documents contain the largest number of facility
mentions, which is even more than the number of
location mentions. Second, the documents also
contain the similar number of non-NAME (5,867)36

to NAME mentions (6,247).

C.2 Coreference Annotation

As a result of the coreference annotation step, 289
GENERIC mentions and 322 SPEC_AMB mentions
along with 923 TRANS mentions were excluded
from the coreference relation annotation. Out of
the remaining 10,580 mentions, 6,497 mentions

36Non-NAME mentions include *-NOM, and DEICTIC men-
tions, in addition to all NOM mentions.

Size 1 2 3 4 5 6 ≥7

#Cls 4,083 1,278 507 240 103 58 70
#Typ 1.0 1.5 2.0 2.3 2.6 2.8 3.3

Table 12: Number of geo-entity coreference clusters
(#Cls) and the average number of member mention text
types (#Typ) for each size.

LOC FAC LINE MIX UNK

Set-A 819 1,823 327 29 133
Set-B 852 1,819 370 22 145

Total 1,671 3,642 697 51 278

Table 13: Tag distribution of geo-entities.

were annotated with one or more COREF and/or
COREF_ATTR relations among other mentions, of
which 350 mention pairs were annotated with
COREF_ATTR relations. These mentions comprise
coreference clusters with size ≥2, and the remain-
ing 4,083 mentions correspond to singletons. Ta-
ble 12 shows the number of clusters and the aver-
age number of mention text types (distinct strings)
among members37 for each cluster size. This in-
dicates that 35.6% (2,256/6,339) of coreference
clusters have more than one member; that is, multi-
ple mentions in a document often refer to the same
referent.

In addition, we automatically assign an entity
type tag to each coreference cluster, i.e., entity,
from the tags of its member mentions.38 Table 13
shows the tag distribution of entities, which is sim-
ilar to the tag distribution of mentions shown in
Table 3.

C.3 Link Annotation

As shown in Table 14, in the link annotation step
for Set-B, 79.5% (2,551) and 64.2% (2,059) of
3,208 entities have been annotated with any URLs
and OSM entry URLs, respectively, including enti-
ties annotated with PART_OF tags. For “HasName”
entities in which at least one member mention is
labeled as NAME, any URLs and OSM entry URLs

37For example, for clusters C1 = {“Nara Station”, “Nara
Sta.”, “Nara”} and C2 ={“Kyoto Pref.”, “Kyoto”, “Kyoto”},
the numbers of mention text types are three and two, respec-
tively, and their average is 2.5.

38(a) LOC, FAC, or LINE is assigned to an entity that the
members’ tags include only one of the three types and option-
ally include DEICTIC or LOC_OR_FAC_NOM (for LOC and FAC).
(b) UNK is assigned to an entity that all members’ tags are
DEICTIC or LOC_OR_FAC_NOM. (c) MIX is assigned to an entity
that the members’ tags include two or three of LOC, FAC, and
LINE.
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All HasRef HasOSMRef

HasName 2,001 1,942 1,574
HasNoName 1,207 609 485

Total 3,208 2,551 2,059

Table 14: Numbers of Set-B entities that have names
and/or references in the PART_OF-inclusive setting
where entities assigned with PART_OF (along with
URLs) are counted as instances of “Has(OSM)Ref.”

All HasRef HasOSMRef

HasName 2,001 1,861 1,514
HasNoName 1,207 298 221

Total 3,208 2,159 1,735

Table 15: Numbers of Set-B entities that have names
and/or referents in the PART_OF-exclusive setting where
entities assigned with PART_OF (along with URLs) are
NOT counted as instances of “Has(OSM)Ref.”

are assigned to 97.1% (1,942/2,001) and 78.7%
(1,574/2,001) of them, respectively. This indicates
that the real-world referents can be easily identified
for most of the entities explicitly written with their
names. For the remaining “HasNoName” entities,
any URLs and OSM entry URLs are assigned to
50.5% (609/1,207) and 40.2% (485/1,207) of them,
respectively. This suggests that identifying the ref-
erents from unclearly written mentions and context
is difficult even for humans.

As shown in Table 15, the percentages of
referent-identified entities decrease in the setting
where entities assigned with PART_OF are excluded.
The result indicates the reasonable coverage of
OSM for various types of locations in Japan. Over-
all, entities assigned with OSM entries account for
75.7% (1,514/2,001) of “HasName” entities. For
details on each entity type tag of LOC, FAC, LINE,
and the others, entities assigned with OSM entries
account for 79.3% (811/1,096), 74.0% (544/686),
72.7% (144/198), and 71.4% (15/21) of “HasName”
entities with the specified tag, respectively.

C.4 Geographical Distribution of Linked
Entities

As we expected, most of the mentions in our (Set-
B) dataset refer to locations in Japan, except for 34
mentions that refer to overseas locations. Figure 3
shows the geographical distribution of linked enti-
ties in our dataset, namely, the number of entities
located in each prefecture among entities annotated
with OSM entry URLs. For example, there are 45
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Figure 3: Numbers of linked entities located in each
prefecture. Deeper red indicates the larger number. The
units of the numerical values on the vertical and hori-
zontal axes of the map are kilo-miles.

linked entities to which the coordinates of OSM en-
tries are linked within the area of Tokyo Prefecture
in all annotated travelogue documents, and thus the
count of Tokyo Prefecture is 45. The minimum,
maximum, and average numbers of entity counts
in all 47 prefectures are 9 (Aichi), 88 (Kyoto), and
42.8, respectively.

Figure 4 shows actual examples of mentions with
geographic continuity; that is, mentions that refer
to nearby locations in the real world tend to appear
near to one another within a document (§1). The
example text in document ID 00019 describes five
geo-entities located nearby in the real world. Ta-
ble 16 further shows actual sentences, being the
first five sentences that include at least one anno-
tated mention, extracted from three documents with
the smallest ID values in the development set. In-
cluding the examples depicted in Figure 4, we can
observe mentions with geographic continuity.

D Details on Experimental Settings

D.1 Evaluation Scripts
We used our code that calculates general precision,
recall, and F1 score in the mention recognition
and entity disambiguation experiments. We used
our code that calculates the MUC, B3, and CEAFe

scores in the manner equivalent to an existing eval-
uation tool39 in the coreference resolution experi-
ments.

39https://github.com/ns-moosavi/coval/blob/
master/coval/eval/evaluator.py
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猿沢池 興福寺 五重塔 国宝館 東金堂

Sarusawaike 
Pond

Kohfukuji 
Temple

Five-storied 
Pagoda

National 
Treasure Hall

Eastern 
Golden Hall

写真は からも見える の です。 と に行く場合は、...

Figure 4: Example of actual text, including mentions with geographic continuity in document ID 00019 (sentence
IDs 009–010, the English translation is given in Table 16). The map depicts part of the Nara Park area, a popular
sightseeing area in Nara City, Japan.

SentID Text English Translation

001 奈良公園 FAC-NAME
way/456314269のアイドル「しか」で~す。 There are deers, the idols in the Nara Park.

004 奈良 LOC-NAME
⟨HIE_AMB⟩,relation/3227707の有名スポット

LOC_OR_FAC_NOM
way/456314269 It’s a famous spot in Nara, right?

ですよね!

005 大仏 FAC-NOM
way/43558119様はとっても大きかったなぁ~ The Great Buddha was really huge.

009 写真は猿沢池 LOC-NAME
way/59465653からも見える It’s a photo of the five-storied pagoda at

興福寺 FAC-NAME
way/1134439456の五重塔

FAC-NOM
way/98093571です。 Kofukuji Temple visible from Sarusawaike Pond.

010 国宝館 FAC-NAME
way/98093576と東金堂

FAC-NAME
way/98093572に行く場合は. . . If you go to the National Treasure Museum and

Eastern Golden Hall. . .

001 . . .瀬戸大橋 LINE-NAME
relation/10375178をようやく通ります。 I’m finally crossing Seto Ohashi Bridge. . .

002 四国 LOC-NAME
relation/2906044にも初上陸。 I just landed in Shikoku for the first time, too.

009-01 こんぴら狛 FAC-NAME
general_page。 Kompira Dog.

010 みやげ屋 FAC-NOM
⟨GENERIC⟩が連なる参道

LINE-NOM
⟨SPEC_AMB⟩もまた、. . . The approach lined with souvenir shops is. . .

012 3~4年前に浪速餃子スタジアム FAC-NAME
general_pageで. . . About 3–4 years ago at the Naniwa Gyoza

Stadium. . .

001-01 二社一寺は日光山内 LOC-NAME
Wikidata:Q1063133ともいいますが. . . The “two shrines and one temple” are also called

Nikko San’nai. . .

002 まずは、輪王寺 FAC-NAME
way/699236460の金堂

FAC-NOM
way/388017115・ First, the main holl, Sambutsudo at Rin’noji

三仏堂 FAC-NAME
way/388017115。 Temple.

003-02 三仏堂 FAC-NAME
way/388017115では干支のお守りも購入できます。 At Sambutsudo, you can purchase zodiac charms.

004 三仏堂 FAC-NAME
way/388017115の裏手にある護摩堂

FAC-NAME
way/388017145で. . . At Gomado located behind Sambutsudo. . .

005-01 次は徳川家康公を祭る日光東照宮 FAC-NAME
way/388017091です。 Next is Nikko Toshogu Shrine, where Tokugawa

Ieyasu is enshrined.

Table 16: Examples of actual sentences and annotated mention (blue underline and superscript) and coreference/link
information (subscript). The displayed sentences are the first five sentences that include at least one annotated
mention in each document: ID 00019 (top), 01158 (middle), and 03088 (bottom).
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https://www.openstreetmap.org/way/456314269
https://www.openstreetmap.org/relation/3227707
https://www.openstreetmap.org/way/456314269
https://www.openstreetmap.org/way/43558119
https://www.openstreetmap.org/way/59465653
https://www.openstreetmap.org/way/1134439456
https://www.openstreetmap.org/way/98093571
https://www.openstreetmap.org/way/98093576
https://www.openstreetmap.org/way/98093572
https://www.openstreetmap.org/relation/10375178
https://www.openstreetmap.org/relation/2906044
https://www.konpira.or.jp/articles/20200907_konpira-dog/article.htm
https://www.hotpepper.jp/strJ000020235/
https://www.wikidata.org/wiki/Q1063133
https://www.openstreetmap.org/way/699236460
https://www.openstreetmap.org/way/388017115
https://www.openstreetmap.org/way/388017115
https://www.openstreetmap.org/way/388017115
https://www.openstreetmap.org/way/388017115
https://www.openstreetmap.org/way/388017145
https://www.openstreetmap.org/way/388017091


D.2 Entity Type Conversion Rules
IREX We used the following rules to convert
the IREX tags to our entity type tags. (1) Each
output mention with the LOCATION tag was con-
verted into three mention instances with the same
span and with one of LOC_NAME, FAC_NAME, and
LINE_NAME tags. (2) ARTIFACT was converted into
TRANS_NAME.

ENE We used the following rules to convert the
ENE tags (version 7.1.0),40 which GiNZA adopted,
to our entity type tags. (1) The Location subtype
tags except for the Astral_Body subtype tags, the
Address subtype tags and River were converted
to LOC_NAME. (2) The Facility subtype tags ex-
cept for the Line subtype tags were converted
to FAC_NAME. (3) River and the Line subtype
tags were converted to LINE_NAME. (4) Service
and the Vehicle subtype tags were converted to
TRANS_NAME.

D.3 Details of Database Preprocessing
The original OSM data contains a huge number
of entries, and multiple entries can refer to almost
the same real-world locations; for example, we
found 72 entries named 東京 ‘Tokyo,’ including
four railway stations, two railway station platforms,
one ferry terminal, 30 train stop positions, and 27
footway sections, 8 flights of steps on footways,
some of which can be equated with each other. For
practical evaluation of ED systems, different entries
that can be treated as equivalent should be grouped
together, and such groups should be considered as
linking units rather than individual entries.

Therefore, we reorganized the raw OSM data as
follows. (1) We downloaded an OSM data file con-
sisting of Japanese domestic location entries. (2)
We extracted 2.8M entries with “name” attributes
from the total of 2.6B entries. (3) We added 14
out of 16 entries without name attributes that were
assigned to domestic geo-entities in the Set-B data,
but were not contained in the extracted entries (the
remaining two entries had been deleted from OSM).
This resulted in DB coverage of 99.86% for the Set-
B entities annotated with OSM entry URLs. (4) We
then generated a group ID string from the original
name attribute for each entry by concatenating part
of the address and notable OSM tags, such as the
branch name and amenity type. (5) Finally, we
grouped entries with the same group ID into the

40https://nlp.cs.nyu.edu/ene/version7_1_0Beng.
html

same entry group. This series of processes resulted
in 1.8M entry groups.41

D.4 Settings of spaCy-MR

For building our custom MR model with spaCy,
namely, spaCy-MR, we used almost the same set-
tings as GiNZA,42 including model architecture
and hyperparameters, tokenizer, and training set-
tings except that we disabled unnecessary pipelines
other than “transformer” and “ner.” We reported
the result of a single run of spaCy-MR in §5.3 and
Appendix E.

D.5 Implementation and Settings of
mLUKE-MR/CR

We reported the results of single runs of mLUKE-
MR and mLUKE-CR in §5.3 and Appendix E.

Mention Recognition Following Yamada et al.
(2020), we tackle the task by enumerating and clas-
sifying all possible spans in each sentence. The rep-
resentation of each candidate span is a concatena-
tion of the word representations of the first and last
tokens of the span, and the entity representation cor-
responding to the span, all of which are computed
by the LUKE Transformer model. We employ a
linear classifier to classify spans into the target
entity types or non-entity type. We restrict candi-
date spans to the positions where their first and last
tokens correspond to word boundaries (obtained
using Sudachi Mode B), and exclude spans longer
than 16 tokens.43 Following Devlin et al. (2019)
and Yamada et al. (2020), we prepend/append the
surrounding tokens to a target sentence (up to 512
tokens in total) to give sufficient contextual infor-
mation to the model.

Coreference Resolution Following Lee et al.
(2017), we solve the task as antecedent identifica-
tion for each mention. We follow the architecture
proposed by Joshi et al. (2019) except that we do
not use a unary score for each mention or coarse-to-
fine inference because gold mentions are given in
our setting.44 The representation of each mention

41We will publish the preprocessed database at https:
//github.com/naist-nlp/atd-mcl-baselines.

42https://github.com/megagonlabs/ginza/blob/
develop/config/ja_ginza_electra.cfg

43We also enforce word boundaries on the mLUKE tok-
enizer because (word-level) mention annotation in the ATD-
MCL does not align with unigram segmentation used in the
tokenizer.

44We also omit discrete features based on the metadata
available only in some datasets.
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Task Name Value

MR
Learning rate 1e-5
Batch size 8
Training epochs 10

CR
Learning rate 5e-5
Batch size 4
Training epochs 20

Common

Learning rate decay linear
Warmup ratio 0.06
Dropout 0.1
Weight decay 0.01
Gradient clipping none
Adam β1 0.9
Adam β2 0.98
Adam ϵ 1e-6

Table 17: Hyperparameter values used in the mLUKE-
MR/CR experiments.

is computed in the same way as the MR model.
The model is trained by optimizing the marginal
log-likelihood of the possibly correct antecedents
including a dummy antecedent, which indicates no
antecedents associated with a target mention. Be-
cause CR in the ATD-MCL is a document-level
task and documents in the dataset are too long to be
processed by a Transformer-based model for com-
putational reasons, we independently feed each
sentence in a document to the LUKE model, but
optimization/prediction is made in each document.

Hyperparameters The hyperparameter values
used in the experiments using mLUKE-MR/CR
are listed in Table 17. Because our computational
resources were limited, we did not conduct hyper-
parameter tuning except learning rate. We chose
the best setting of learning rate and the number of
training epochs from the search space of {1e-5, 2e-
5, 3e-5, 4e-5, 5e-5} and {5, 10, 20}, respectively.
We specifically selected batch size for each task,
but we followed Yamada et al. (2020) for the other
hyperparameters.

D.6 Size of Used Models

Table 18 shows the numbers of model parameters
in the systems that we used in the experiments. For
KWJA, we report the number of parameters (112M)
in the pretrained model45 used in the KWJA base
model (while the actual number of parameters in
the whole model would be larger).

45https://huggingface.co/ku-nlp/
deberta-v2-base-japanese

Tasks System #Params

MR mLUKE-MR 561M
MR spaCy-MR 109M
MR GiNZA (ja_ginza_electra) 110M
MR, CR KWJA (base) 112M+
CR mLUKE-CR 877M
ED BERT-ED 111M

Table 18: Numbers of model parameters in evaluated
systems.

D.7 Computational Budget for Finetuning
In our experiments, mLUKE-MR was finetuned
for 130 minutes (10 epochs) using four NVIDIA
Tesla V100 GPUs with 16GB memory. mLUKE-
CR was finetuned for 15 minutes (20 epochs) using
four NVIDIA A100 Tensor Core GPUs with 40GB
memory. spaCy-MR was finetuned for 17.4 hours
(20000 steps) using a four-core Intel Xeon Gold
6150 CPU (32 cores total).

E Detailed Experimental Results on
Mention Recognition

Table 19 shows detailed performance of mention
recognition systems. The finetuned systems spaCy-
MR and mLUKE-MR achieved F1 scores higher
than 0.6 and 0.7, respectively, for all tags except
for TRANS_NAME and FAC_ORG.
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Tag # KWJA GiNZA spaCy-MR◦ mLUKE-MR◦

P R F1 P R F1 P R F1 P R F1

Overall 4,958 .279 .352 .311 .574 .277 .374 .752 .732 .742 .813 .817 .815
NAME 2,509 .279 .695 .398 .574 .548 .560 .733 .719 .726 .828 .813 .821
NOM 2,203 0 0 0 0 0 0 .790 .753 .771 .826 .818 .822
ORG 24 0 0 0 0 0 0 .353 .250 .293 .833 .417 .556

LOC_NAME 881 .378 .857 .525 .617 .717 .664 .727 .822 .771 .830 .863 .846
FAC_NAME 1,285 .409 .635 .497 .589 .504 .543 .770 .689 .727 .843 .807 .825
LINE_NAME 195 .061 .621 .110 .425 .405 .415 .673 .677 .675 .804 .800 .802
TRANS_NAME 148 .193 .358 .251 .176 .101 .129 .525 .432 .474 .707 .588 .642
LOC_NOM 349 0 0 0 0 0 0 .739 .691 .714 .748 .808 .777
FAC_NOM 1,135 0 0 0 0 0 0 .816 .757 .785 .855 .819 .837
LINE_NOM 236 0 0 0 0 0 0 .749 .822 .784 .865 .818 .841
TRANS_NOM 334 0 0 0 0 0 0 .840 .817 .829 .830 .877 .853
LOC_OR_FAC_NOM 149 0 0 0 0 0 0 .676 .617 .646 .731 .711 .721
DEICTIC 222 0 0 0 0 0 0 .645 .721 .681 .616 .896 .730
LOC_ORG 11 0 0 0 0 0 0 .750 .545 .632 .900 .818 .857
FAC_ORG 13 0 0 0 0 0 0 0 0 0 .500 .077 .133

Table 19: System performance for mention recognition. “◦” indicates the models finetuned on the ATD-MCL
training set. “#” indicates the number of mentions for each tag in the test set.
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