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Abstract

This paper aims to investigate the possibil-
ity of exploiting original semantic features
of PLMs (pre-trained language models) dur-
ing contrastive learning in the context of SRL
(sentence representation learning). In the con-
text of feature modification, we identified a
method called IFM (implicit feature modifi-
cation), which reduces the tendency of con-
trastive models for VRL (visual representation
learning) to rely on feature-suppressing short-
cut solutions. We observed that IFM did not
work well for SRL, which may be due to differ-
ences between the nature of VRL and SRL. We
propose BYOP, which boosts well-represented
features, taking the opposite idea of IFM, un-
der the assumption that SimCSE’s dropout-
noise-based augmentation may be too simple to
modify high-level semantic features, and that
the features learned by PLMs are semantically
meaningful and should be boosted, rather than
removed. Extensive experiments lend credence
to the logic of BYOP, which considers the na-
ture of SRL. Our code is publicly available at
https://github.com/myngsooo/BYOP.

1 Introduction

Contrastive learning has been successfully adopted
in the field of VRL by constructing contrastive pairs
(drawing positive pairs and repelling negative pairs)
based on the sufficient background of augmenta-
tion strategies (He et al., 2020; Chen et al., 2020).
After that, SRL (sentence representation learning)
followed the literature established by the baseline
SimCSE (Gao et al., 2021), which proposed to
construct contrastive pairs based on dropout-noise.
Recent studies have generally confirmed the effec-
tiveness of this method (Zhou et al., 2022; Zhang
et al., 2022a,b; Wu et al., 2022; Liu et al., 2023).

One interesting point is that SimCSE signifi-
cantly improves the performance of PLMs (pre-
trained language models) on the sentence repre-
sentation benchmark, named STS benchmark (Cer

et al., 2017) where PLMs showed poor perfor-
mance before the introduction of SimCSE. At the
same time, vanilla PLMs have shown compara-
ble or even better performances on several trans-
fer tasks than PLMs trained by SimCSE. We also
observed these performance trends, each reported
in Table 1 and Table 10 in the Appendix (see the
performances of ‘Avg.embeddings’ and ‘[CLS] em-
beddings’ which indicate the vanilla PLMs, and
that of ‘SimCSE’).

Based on these empirical results, we hypothesize
that PLMs indeed learn several well-represented
features, considering their success in the trans-
fer tasks even without the contrastive framework
proposed by SimCSE. And such meaningful fea-
tures would be utilized in contrastive learning of
SimCSE, which may partly contribute to the per-
formance improvement in the STS benchmark.
Therefore, if there is a way to boost these well-
represented features, it would make SimCSE per-
form even better.

In this context, we identified a method, named
IFM (implicit feature modification) (Robinson
et al., 2021) from the VRL literature, which tries to
remove some well-represented features, for the pur-
pose of avoiding shortcut learning (Geirhos et al.,
2020) − a model tends to depend on a subset of fea-
tures that is easier to learn during training (Wang
and Isola, 2020). We interpret IFM to be the op-
posite of our idea, although IFM ultimately seeks
to improve performance as we do. Considering
that VRL models are initialized and trained from
scratch while PLMs already capture semantic fea-
tures before contrastive learning, taking a contrary
approach to IFM will work better for SRL, rather
than following IFM as is.

This study first conducts a pilot study applying
the vanilla IFM to SimCSE. Contrary to its success
in VRL, we observe a performance degradation, es-
pecially for a larger size of PLMs. We interpret that
these results come from the fact that PLMs already
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learn several meaningful features, which are indeed
helpful in SRL and are not the shortcut features that
harm the generalization performance. Then, we
propose BYOP (bootstrap1 your own PLM), which
boosts the well-represented features, contrary to
the intuition of IFM from the VRL perspective. Ex-
perimental results demonstrate the effectiveness,
robustness, and extensibility of our BYOP.

2 Preliminary

Unsupervised Contrastive Learning for SRL
SimCSE followed the literature of the NT-Xent
(normalized temperature cross entropy) loss (Chen
et al., 2020) with in-batch negatives:

li = −log
esim(zi,z′i)/τ

∑N
j=1 e

sim(zi,z′j)/τ
, (1)

where sim(), zi, z′i, and z′j(i ̸= j) denotes a sim-
ilarity function, representation of an anchor in-
stance, a positive pair, and a negative pair. On
top of SimCSE, a substantial body of literature has
been published that shows promising performance.
Implicit Feature Modification Unlike straight-
forward supervised learning, the construction of a
discriminative instance is an important component
in contrastive learning. Contrary to the general
belief that lower contrastive loss avoids shortcut
solutions (Wang and Isola, 2020), a strong focus on
harder instance discrimination can lead to suppres-
sion of well-established original features (Robin-
son et al., 2021). This finding is in line with the
reported simplicity bias in supervised learning (Her-
mann et al., 2020; Huh et al., 2022).

To solve this problem, Robinson et al., 2021 pro-
posed a simple method, called IFM, which accel-
erates instances to avoid well-represented features
by applying adversarial perturbations toward the
gradient ascent of the contrastive loss. Consid-
ering the similarity function of Equation 1 as a
simple ℓ2-normalized dot product2, each gradient
with respect to the positive (∇z′i li) and the negative
instance (∇z′j li) can be defined as:

∇z′i li = (
esim(zi,z′i)/τ

∑N
j=1 e

sim(zi,z′j)/τ
− 1) · zi

τ
,

∇z′j li =
esim(zi,z′j)/τ

∑N
j=1 e

sim(zi,z′j)/τ
· zi
τ
.

(2)

1Same with the popular BYOL (Grill et al., 2020) paper,
the term ‘bootstrap’ is used in its idiomatic sense rather than
the statistical sense throughout the paper.

2It is an analogous of cosine similarity used in SimCSE.

2D manifold representation space after applying IFM
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Figure 1: PCA visualization of the 2D representation
space using hidden perturbation.

IFM (li,IFM ) applies perturbations with a mar-
gin (m) toward the direction of gradient ascent
(∇z′i li ∝ −zi, ∇z′j li ∝ zi) and complements the
feature by adopting the multi-task loss li,total. The
perturbation loss (li,IFM ) and the multi-task loss
are computed by:

li,IFM = −log
e(sim(zi,z′i)−m)/τ

e(sim(zi,z′
i
)−m)/τ +

∑N
j ̸=i e

(sim(zi,z′
j
)+m)/τ

),

li,total =
1

2
(li + li,IFM ).

(3)

3 Pilot Study

Despite the effectiveness of IFM in VRL, we as-
sume that boosting the well-represented features,
contrary to IFM, will fit in SRL, due to the dif-
ferences between VRL and SRL; e.g., the use of
PLMs that may learn several well-represented fea-
tures. In this pilot study, we empirically show the
failure of the vanilla IFM applied to SimCSE, and
provide further analyses to point out differences in
the two fields.
Experimental Setups We followed the settings
of SimCSE to tune the basic hyperparameters. For
the margin term, we performed a grid search; m ∈
[0.01, 0.10] with step 0.01. We trained all models
for 1 epoch and evaluated them every 250 steps on
the STS-B development set to save the best check-
point. For evaluation, we downloaded the sampled
English Wikipedia (106) from huggingface (Wolf
et al., 2019) same with SimCSE (Gao et al., 2021).
We evaluated the following 7 datasets: STS 2012-
2016 (Agirre et al., 2012, 2013, 2014, 2015, 2016),
STS Benchmark (STS-B) (Cer et al., 2017) and
SICK Relatedness (SICK-R) (Marelli et al., 2014).
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PLMs Method Avg.Score
BERTbase [CLS] embedding 31.40

Avg. embeddings 52.57
SimCSE 76.95
+IFM 77.39
+BYOPC 77.32
+BYOPD 77.45
+BYOPC-M 77.32
+BYOPD-M 77.35

BERTlarge [CLS] embedding 32.00
Avg. embeddings 48.91
SimCSE 78.46
+IFM 77.99
+BYOPC 78.89
+BYOPD 79.23
+BYOPC-M 79.08
+BYOPD-M 78.21

RoBERTabase [CLS] embedding 43.62
Avg. embeddings 53.49
SimCSE 76.64
+IFM 76.97
+BYOPC 77.62
+BYOPD 77.43
+BYOPC-M 77.61
+BYOPD-M 77.69

RoBERTalarge [CLS] embedding 26.64
Avg. embeddings 52.81
SimCSE 78.53
+IFM 77.78
+BYOPC 78.56
+BYOPD 78.38
+BYOPC-M 78.95
+BYOPD-M 78.65

Table 1: Evaluation results of different methods on STS
evaluation tasks. Each bold number means the best
performance within the PLMs, respectively. ♡ : Results
from Gao et al., 2021

Results and Analyses We report the averaged
score of the 7 evaluation tasks performed by Sim-
CSE with the vanilla IFM in Table 1. We observe
that IFM improves the performance of SimCSE
only in the case of two base models (BERT-base
and RoBERTa-base), but shows degraded perfor-
mance in the two large models. Since the larger
size of PLMs have much capacity for establishing
useful features during their pre-training, the idea of
IFM especially degrades their performances.

Beyond the STS evaluation results, we also inves-
tigate the uniformity and alignment metrics (Wang
and Isola, 2020) of the STS-B development sets
during training, where the former leads to all in-
stances being uniformly distributed and the latter
increases the similarity between the anchor and the
positive instance. As shown in Figure 3, we can see
that the larger margin (m) of IFM leads to larger
uniformity and alignment, which generally means
degradation. This result is unexpected as there is no
meaningful change in uniformity and even there is
an improvement in alignment in the training dataset,
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Figure 2: Uniformity and alignment (training) of BERT-
base depending on IFM with different margin (m).
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Figure 3: Uniformity and alignment (STS-B) of BERT-
base depending on IFM with different margin (m).

which we also visualize in Figure 2.
Based on the results, we suggest the following

intuitions. First, we assume that the dropout-noise-
based augmentation is too simple to modify high-
level semantic features by IFM. This is a funda-
mental limitation that makes it difficult to intu-
itively construct multiple predictive sets of inputs
in NLP. In this regard, IFM has difficulty remov-
ing frequently used features. Second, as shown in
Figure 1, PLMs’ semantic spaces are anisotropic
− a narrow cone-shaped space (Ethayarajh, 2019;
Wang et al., 2019; Li et al., 2020) − before be-
ing trained by contrastive learning. We think that
IFM’s perturbations, positive perturbation (w.r.t.
negative instance) and negative perturbation (w.r.t.
positive instance) in the direction of the anchor,
may be ineffective because PLMs already have
some meaningful semantic structures. In other
words, PLMs learn some semantic features that
are harder to alter by contrastive learning, but still
useful for sentence representation.

4 Proposed Method

4.1 BYOP

Motivated by the analyses of the previous section,
we propose BYOP (bootstrap your own PLM),
which boosts semantic features contrary to the con-
cept of IFM. In BYOP, we apply the perturbation in
the direction of the gradient descent; i.e., additive
margin to the positive logits and subtractive margin
to the negative logits, opposite to Equation 3.
Perturbation Variants BYOP has two different
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PLMs Method Avg.Score
BERTbase SimCSE 75.83 ± 0.71

+BYOPD 76.81 ± 0.62
+BYOPD-M 76.43 ± 0.81

BERTlarge SimCSE 77.14 ± 1.45
+BYOPD 78.98 ± 0.34
+BYOPC-M 78.78 ± 0.30

RoBERTabase SimCSE 76.77 ± 0.06
+BYOPC 77.51 ± 0.21
+BYOPD-M 77.44 ± 0.40

RoBERTalarge SimCSE 78.04 ± 0.64
+BYOPC-M 78.27 ± 0.65
+BYOPD-M 78.06 ± 0.52

Table 2: Averaged results of 3 different random seeds
experiments on STS evaluation tasks.

types of margin values and 5 candidates for pertur-
bation methods. For the margin value, we use (1) a
constant value (BYOPC), which is the same as IFM,
and (2) a dynamically changing value (BYOPD),
which is determined by the similarity between an
anchor and a positive instance. We simply com-
pute the dynamic margin as sim(zi,z′i)

N−1 (we set the
denominator to N − 1 to account for the number
of in-batch negative samples). For the perturbation
method, we explore several combinations of pertur-
bations, which we briefly express as additive ‘+’,
subtractive ‘-’, perturbation for positive instance
‘p’, and perturbation for negative instance ‘n’. For
example, the additive perturbation for a positive
instance and the subtractive perturbation for a neg-
ative instance is denoted as ‘p+n-’ (see Appendix E
for their results).
Multi-task Loss VS. Single Loss Following
IFM (Robinson et al., 2021), we adopt the multi-
task loss (e.g., BYOPD-M) to complement the fea-
ture semantics that might be ignored by perturba-
tions. Since BYOP aims to boost the semantic
features of contrastive learning, we also conduct
experiments for the single loss (i.e., using only
the perturbation loss li,IFM ). Equation for the
two losses is similar to Equation 3 with a subtle
change in the margin term. For example, BYOP
with ‘p+n-’ alters each margin term (+m and −m)
to sim(zi, z′i) +m and sim(zi, z′j)−m.

4.2 Empirical Validation

Implementation Details We followed the hy-
perparameter settings of SimCSE, including batch
size, learning rate, and temperature. For BYOP,
we performed a grid search to find optimal values
such as margin (m) and perturbation types. More
detailed settings can be found in Appendix B.
Unsupervised STS Tasks BYOP improves the

PLMs Method Avg.STS
BERTbase RankCSE-ListMLE 80.11

+BYOPC 80.53
+BYOPD 80.51

BERTlarge RankCSE-ListMLE 80.24
+BYOPC 80.64
+BYOPD 80.67

RoBERTabase RankCSE-ListMLE 79.05
+BYOPC 79.51
+BYOPD 79.50

RoBERTalarge RankCSE-ListMLE 79.70
+BYOPC 79.53
+BYOPD 79.84

Table 3: Averaged STS results of RankCSE applying
BYOP.

performance of SimCSE in 4 different PLMs. As
shown in Table 1, variants of BYOP lead to better
results in most cases: about 0.6% on BERT-base,
1.0% on BERT-large, 1.4% on RoBERTa-base, and
0.5% on RoBERTa-large.
Robustness to Different Seeds Previous work
has demonstrated the vulnerability of the unsu-
pervised manner of SimCSE on different random
seeds (Jiang et al., 2022). We therefore investigate
the robustness of BYOP using multiple random
seeds. We first select the best two methods within
PLMs based on the results of Table 1, and report the
averaged STS results. As shown in Table 2, Sim-
CSE with BYOP shows better performance and
also lower standard deviation in most cases.
Applying BYOP to SOTA To assess the ex-
tensibility of BYOP, we incorporate BYOP into
RankCSE-ListMLE (Liu et al., 2023), a recent
state-of-the-art approach in SRL, by using the sin-
gle loss. As shown in Table 3, it is evident that
BYOP plays a significant role in improving perfor-
mance in all models. These results highlight the
potential for BYOP to function as a viable plugin
within the contrastive learning schemes.

5 Conclusion

We have proposed BYOP based on the intuition that
PLMs’ semantic features are useful for sentence
representation. Our pilot study, which observes
unexpected experimental artifacts in terms of uni-
formity, also motivates re-examining the logic of
the original IFM by boosting the gradient of loss.
We have conducted the STS benchmark of which
the results back up the assumption of BYOP by
testing several variants. We hope that these ap-
proaches shed new light on the deeper analysis of
the contrastive learning of SRL.
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Limitation

Despite its performance, there is a lack of under-
standing on how the perturbations lead to feature
modification in the representation space. The au-
thors of IFM (Robinson et al., 2021) visualized the
examples of instances that are the nearest neigh-
bors of modified feature vectors in terms of both
positive and negative pairs. In contrast, we do not
find any intuitive results in SRL. It seems likely that
these results are in fact due to the dropout-based
augmentation of SRL, which is much more prone
to ignore semantic information when constructing
negative pairs.

At present, several research questions remain un-
clear; which shortcut features of PLMs are harder
to remove or can be useful to boost downstream
tasks. One of the candidates may be a frequency
bias in the representation space (Jiang et al., 2022);
i.e., feature vectors align in the space depending
on their frequencies. We think that there is ample
room for further progress in analyzing these prop-
erties, which may lead to the construction of an
effective negative pair for SRL.

Due to space limitations, we report results from
ablation experiments in the Appendix E. These re-
sults include various combinations of perturbations
used in BYOP in terms of BYOPD. Similar to Sim-
CSE, we evaluate each method on typical transfer
tasks (see Appendix F).

Ethical Consideration

We download all datasets and PLMs used in ex-
periments from huggingface (scholar purpose) to
keep intellectual property. Still, ethical issues can
be raised such as negative biases which are funda-
mentally originated from the nature of web-scraped
training data (Wiki) (Bender et al., 2021). Further-
more, there are not any other problems which can
be critical for the society.
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Train Dev Test
STS12 - - 3108
STS13 - - 1500
STS14 - - 3750
STS15 - - 3000
STS16 - - 1186
STS-B 5749 1500 1379

SICK-R 4500 500 4927

Table 4: Statistics of 7 STS benchmarks from the Sen-
tEval toolkit.

A Datasets

Following the literature, we used English
Wikipedia, which can be downloaded at Hugging-
face, and employed the SentEval (Conneau and
Kiela, 2018) toolkit for evaluation, where we use 7
STS datasets, which are typical sentence represen-
tation benchmarks widely adopted in the SRL field.
In addition, we evaluated transfer tasks: MR (Pang
and Lee, 2005), CR (Hu and Liu, 2004), SUBJ

Train Dev Test
MR 10662 - -
CR 3775 - -

SUBJ 10000 - -
MPQA 10606 - -
SST-2 67349 872 1821
TREC 5452 - 500
MPRC 4076 - 1725

Table 5: Statistics of 7 transfer task datasets.

(Pang and Lee, 2004), MPQA (Wiebe et al., 2005),
SST-2 (Socher et al., 2013), TREC (Voorhees and
Tice, 2000) and MRPC (Dolan and Brockett, 2005),
whose results are reported in Appendix F. Table 4
and Table 5 show the statistics of the datasets.

B Detailed Implementation

For all cases of BYOP, we perform a grid search
to determine the hyperparameters. Specifically, we
first define the interval with an extensive search,
and then do a grid search within the following
range:

• Margin (m) for BYOPC ∈ [0.01, 0.1], the step
size is 0.01.

• Perturbation method ∈ {p-n-, p+n-, p+, p-,
n-}.

Among combinations of these hyperparameters,
we report the settings that show the best perfor-
mance in STS benchmarks in Table 6. As seen in
the table, perturbing the direction of the gradient
descent (p+, n-, p-n-, p+n-) shows performance
improvement in several cases. Also, applying the
perturbations only to positive instances shows per-
formance improvement. We believe this indicates
the importance of removing features in positive
instances rather than negative instances since in-
batch negative samples in unsupervised contrastive
learning can lead to the false-negative problem.

C Uniformity and Alignment

Unlike IFM, BYOP aims to boost the gradient of
the contrastive loss. In this regard, we first think
that the application of BYOP leads to an improve-
ment in uniformity and alignment. However, as
shown in Figure 4, where we plot the change of
two losses during the training of BERT-base, only
BYOPC improves the uniformity and all methods
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BYOPC batch_size learning_rate temp (τ ) margin (m) perturbation
BERTbase 64 3e-5 0.05 0.01 n-
BERTlarge 64 1e-5 0.05 0.04 p-n-
RoBERTabase 128 1e-5 0.05 0.03 p-
RoBERTalarge 256 3e-5 0.05 0.03 p-n-
BYOPD batch_size learning_rate temp (τ ) margin (m) perturbation
BERTbase 64 3e-5 0.05 − n-
BERTlarge 64 1e-5 0.05 − p-
RoBERTabase 128 1e-5 0.05 − p-
RoBERTalarge 256 3e-5 0.05 − p-
BYOPC-M batch_size learning_rate temp (τ ) margin (m) perturbation
BERTbase 64 3e-5 0.05 0.07 n-
BERTlarge 64 1e-5 0.05 0.03 p-n-
RoBERTabase 128 1e-5 0.05 0.005 n-
RoBERTalarge 256 3e-5 0.05 0.02 p+n-
BYOPD-M batch_size learning_rate temp (τ ) margin (m) perturbation
BERTbase 64 3e-5 0.05 − p+n-
BERTlarge 64 1e-5 0.05 − p-n-
RoBERTabase 128 1e-5 0.05 − p+
RoBERTalarge 256 3e-5 0.05 − n-

Table 6: Hyperparameters used in the main results (Table 1) of the STS evaluation.
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Figure 4: STS-B development set’s uniformity and align-
ment of BERT-base trained by 4 different BYOP meth-
ods.

marginally improve the alignment. This may verify
our motivation that the learned shortcut features
of PLMs are difficult to remove by the contrastive
loss, even in the case of accelerating its gradient.

D Results of STS Benchmark

In this section, we report detailed results of BYOP
on the STS benchmark. As shown in Table 7, we
can observe that BYOP outperforms the original
best result on STS tasks compared to the compet-
ing baseline methods based on BERT or RoBERTa.
Although BYOP achieves a more visible perfor-
mance improvement on the base models than on
the large models, it still outperforms almost all
tasks in both the base and large models. These
results suggest that BYOP is effective across dif-

ferent PLMs regardless of their size and different
contrastive learning methods.

E Ablational Experiments

We perform additional experiments on the STS
evaluation when using different combinations of
BYOP. Especially, we report the ablation results
of BYOPD, since this method does not require the
margin value m. As shown in Table 8 and Table 9,
other different methods can also improve the per-
formance of base models, while large models need
consideration in the choice of perturbation method
since their performance is mostly degraded.

F Results of Transfer Tasks

Following the literature, we also report the per-
formance of 7 transfer tasks as mentioned in Sec-
tion A. We report these results in Table 10. In
general, PLMs show an outstanding performance
on downstream tasks despite of their poor capabil-
ity on STS tasks. In contrast, both SimCSE and
BYOP variants show promising performance on
STS tasks and also show comparable performance
to PLMs. They even outperform in some cases.
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PLMs Method STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.
BERTbase [CLS] embedding 21.54 32.11 21.28 37.89 44.24 20.29 42.42 31.40

Avg. embeddings 30.87 59.89 47.73 60.29 63.73 47.29 58.22 52.57
SimCSE 71.64 82.68 75.81 82.25 78.60 78.93 68.76 76.95
+BYOPC 71.84 82.86 76.16 82.61 79.07 79.11 69.61 77.32
+BYOPD 72.04 82.86 76.36 82.78 79.12 79.24 69.72 77.45
+BYOPC-M 71.67 82.88 76.02 82.45 79.09 79.14 69.98 77.32
+BYOPD-M 71.86 82.85 76.23 82.64 79.07 79.13 69.66 77.35
RankCSE-listMLE 74.53 85.77 78.12 84.71 81.48 81.76 74.37 80.11
+BYOPC 76.16 85.97 78.92 84.90 81.23 82.60 73.91 80.53
+BYOPD 76.35 85.98 78.82 84.85 81.23 82.61 73.71 80.51

BERTlarge [CLS] embedding 27.67 30.76 22.59 29.98 42.74 26.75 43.44 32.00
Avg. embeddings 27.67 55.79 44.49 51.67 61.88 47.01 53.85 48.91
SimCSE 70.80 85.58 77.34 84.27 79.31 79.07 72.82 78.46
+BYOPC 72.45 85.15 76.42 84.00 79.56 80.19 74.43 78.89
+BYOPD 71.72 85.55 77.86 85.06 79.08 80.11 75.20 79.23
+BYOPC-M 71.52 84.88 77.37 84.42 79.47 80.39 75.50 79.08
+BYOPD-M 69.80 83.52 76.52 83.61 78.38 79.46 76.16 78.21
RankCSE-listMLE 74.33 86.18 78.75 85.30 81.07 81.27 74.75 80.24
+BYOPC 75.59 86.58 79.50 85.74 80.73 81.86 74.45 80.64
+BYOPD 75.61 86.55 79.59 85.71 80.62 81.99 74.65 80.67

RoBERTabase [CLS] embedding 16.67 45.56 30.36 55.08 56.98 38.82 61.90 43.62
Avg. embeddings 32.11 56.33 45.22 61.34 61.98 55.40 62.03 53.49
SimCSE 68.65 81.70 73.44 82.30 81.09 80.51 68.76 76.64
+BYOPC 70.57 82.69 74.88 82.76 81.66 82.04 68.71 77.62
+BYOPD 69.92 82.31 74.34 82.29 81.28 81.88 69.99 77.43
+BYOPC-M 70.44 82.53 74.36 83.09 81.65 81.51 69.69 77.61
+BYOPD-M 70.51 82.49 74.56 82.59 81.61 81.65 70.44 77.69
RankCSE-listMLE 73.45 84.56 76.00 83.96 82.67 82.80 69.89 79.05
+BYOPC 73.24 84.97 76.79 84.18 82.52 83.52 71.33 79.51
+BYOPD 73.15 84.98 76.85 84.19 82.49 83.51 71.32 79.50

RoBERTalarge [CLS] embedding 19.25 22.97 14.93 33.41 38.01 17.30 40.63 26.64
Avg. embeddings 33.63 57.22 45.67 63.00 61.18 50.59 58.38 52.81
SimCSE 70.85 83.67 75.83 84.24 80.27 82.42 72.41 78.53
+BYOPC 70.89 84.06 76.39 84.52 79.94 82.33 71.77 78.56
+BYOPD 70.34 83.92 75.50 84.34 80.46 82.17 71.90 78.38
+BYOPC-M 72.31 83.91 76.03 84.83 80.12 81.99 73.43 78.95
+BYOPD-M 71.79 83.82 76.15 84.36 80.68 82.57 71.16 78.65
RankCSE-listMLE 73.69 84.38 76.75 85.54 82.18 83.38 72.01 79.70
+BYOPC 72.84 84.95 77.43 85.21 80.85 83.56 71.84 79.53
+BYOPD 74.69 84.46 76.52 85.36 82.21 83.36 72.31 79.84

Table 7: Results for each method on the STS benchmark. Each bold and underlined number represents the best and
second best performance within the PLMs and methods, respectively.

PLMs Method Avg.STS PLMs Method Avg.STS
BERTbase BYOPD 77.45 BERTlarge BYOPD 79.23

p-n- 77.15 p-n- 77.79
p+n- 77.11 p+n- 77.36
p+ 77.25 p+ 77.80
p- 75.46 n- 77.76

RoBERTabase BYOPD 77.43 RoBERTalarge BYOPD 78.38
p-n- 77.10 p-n- 78.20
p+n- 77.20 p+n- 77.54
p+ 77.24 p+ 77.67
n- 76.56 n- 77.78

Table 8: Ablation results of BYOP equipped with the single loss, using different combinations of perturbations on
the STS evaluation tasks. The top row within each PLM is the method with the best STS performance, as specified
in Table 6.
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PLMs Method Avg.STS PLMs Method Avg.STS
BERTbase BYOPD-M 77.35 BERTlarge BYOPD-M 78.21

p-n- 77.12 p+n- 78.09
p+ 77.03 p+ 77.18
p- 76.80 p- 77.40
n- 77.29 n- 78.05

RoBERTabase BYOPD-M 77.69 RoBERTalarge BYOPD-M 78.65
p-n- 77.46 p-n- 77.16
p+n- 77.09 p+n- 77.36
p- 77.48 p+ 77.85
n- 76.91 p- 77.49

Table 9: Ablation results of BYOP equipped with the multi-task loss, using different combinations of perturbations
on the STS evaluation tasks. The top row within each PLM is the method with the best STS performance, as
specified in Table 6.

PLMs Method MR CR SUBJ MPQA SST TREC MPRC Avg.
BERTbase Avg. embeddings 81.50 86.73 95.22 88.02 85.94 90.60 73.68 85.96

[CLS] embedding 81.83 87.39 95.48 88.21 86.49 91.00 72.29 86.10
SimCSE 81.37 86.49 94.46 88.66 84.95 87.60 74.32 85.41
+BYOPC 81.18 86.25 94.49 88.86 84.73 86.80 74.84 85.31
+BYOPD 81.37 85.94 94.57 88.66 85.01 87.00 75.01 85.37
+BYOPC-M 81.34 86.49 94.63 89.01 84.90 86.80 72.75 85.13
+BYOPD-M 81.17 86.39 94.44 88.79 85.01 86.80 73.16 85.11

BERTlarge Avg. embeddings 84.30 89.22 95.60 86.94 89.29 91.40 71.65 86.91
[CLS] embedding 85.89 90.15 95.83 86.04 89.95 93.60 69.86 87.33
SimCSE 84.30 87.98 94.86 88.78 89.51 93.00 74.61 87.58
+BYOPC 84.98 88.08 95.17 89.08 89.73 90.40 75.36 87.54
+BYOPD 84.53 88.77 95.31 89.26 90.72 92.20 75.01 87.97
+BYOPC-M 84.80 88.50 95.27 90.02 90.99 91.40 76.41 88.20
+BYOPD-M 85.37 88.69 95.13 89.54 90.99 92.20 76.75 88.38

RoBERTabase Avg. embeddings 84.35 88.34 95.28 86.13 89.46 93.20 74.20 87.28
[CLS] embedding 81.27 84.77 94.15 84.18 86.71 81.20 72.17 83.49
SimCSE 81.75 86.97 93.43 87.28 86.99 84.40 75.01 85.12
+BYOPC 81.44 86.20 93.03 87.02 86.11 86.20 75.65 85.09
+BYOPD 82.33 88.08 92.99 87.26 85.89 85.80 76.12 85.50
+BYOPC-M 81.49 87.34 93.25 87.40 87.42 84.60 75.01 85.22
+BYOPD-M 82.23 87.39 93.41 87.87 87.64 85.00 75.42 85.57

RoBERTalarge Avg. embeddings 85.46 88.85 96.04 88.32 91.27 93.80 73.74 88.21
[CLS] embedding 83.04 84.58 95.48 86.90 88.47 87.80 69.80 85.15
SimCSE 83.17 88.40 94.08 88.57 87.53 91.20 72.23 86.45
+BYOPC 81.80 87.42 93.33 88.42 87.20 93.00 75.77 86.71
+BYOPD 82.40 87.18 93.77 88.16 87.10 90.60 74.90 86.30
+BYOPC-M 80.93 87.47 93.29 88.41 86.00 90.40 75.25 85.96
+BYOPD-M 82.26 87.26 93.56 88.14 86.44 91.40 74.61 86.24

Table 10: Results of 4 models trained with different methods on transfer tasks. Each bold number and underlined
number indicates the best and the second best performance, respectively, within the PLMs. The method named ‘Avg.
embeddings’ uses the average of the last layer’s hidden states of PLMs as a sentence representation; the method
‘[CLS] embedding’ uses the last layer [CLS] token’s hidden state of PLMs as a sentence representation.
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