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Abstract
In this paper, we re-examine the Markov prop-
erty in the context of neural machine trans-
lation. We design a Markov Autoregressive
Transformer (MAT) and undertake a compre-
hensive assessment of its performance across
four WMT benchmarks. Our findings indicate
that MAT with an order larger than 4 can gen-
erate translations with quality on par with that
of conventional autoregressive transformers. In
addition, counter-intuitively, we also find that
the advantages of utilizing a higher-order MAT
do not specifically contribute to the translation
of longer sentences.

1 Introduction

Markov models are classic probabilistic graphi-
cal models based on the Markov property. The
Markov property reduces computation complexity
and thus makes Markov models highly appealing.
Markov models have been extensively used in many
NLP tasks such as part-of-speech tagging (Ma and
Hovy, 2016; Shao et al., 2017) and dependency
parsing (Zhang et al., 2020a,b). Statistical machine
translation (SMT) has also employed Markov mod-
els, e.g., Lavergne et al. (2011).

However, with the rise of deep learning in ma-
chine translation, autoregressive models (Sutskever
et al., 2014; Bahdanau et al.; Gehring et al., 2017),
particularly autoregressive transformers (Vaswani
et al., 2017), have gradually become mainstream.
During decoding, autoregressive models rely on all
the previous tokens. As a result, they can model
long-range dependencies and are thus considered to
have superior abilities to express token dependency
than Markov models. The performance of recent
advanced Markov models (Wang et al., 2018; Sun
et al., 2019; Deng and Rush, 2020) in MT are also
significantly lower than those of the autoregressive
model.

The Markov property dictates that, during de-
coding, each token can only observe the previous k

tokens. This characteristic is a considerable draw-
back for generation tasks that require long contexts,
such as story generation. However, we believe that
in translation, since the source sentence is fully
visible, introducing the Markov property on the
decoder side might not greatly affect translation
performance.

To investigate this hypothesis, we introduce the
Markov Autoregressive Transformer (MAT) and
evaluate its performance on translation. MAT pos-
sesses two main features: 1) minimal modifications
to autoregressive transformers, and 2) support for
high-order Markov models. Specifically, the key
idea of the kth-order Markov property is that the
next output token by the model is only dependent
on the previous k tokens. In this paper, we point
out that this objective can be achieved with a sim-
ple modification to the causal mask in the decoder
part. In contrast to previous Markov models, this
simple modification ensures that our MAT has only
marginal alterations compared to the autoregressive
transformer. This allows us to effectively isolate
and examine the effects of the Markov property
in a manner akin to a controlled variable experi-
ment. In addition to the aforementioned benefit,
this straightforward modification also enables us to
train MAT in parallel, like the vanilla transformer.

We evaluate MAT on several WMT benchmarks
and make the following observations:

• The first-order Markov property significantly
impairs model performance. For instance, on
the WMT14 EN-DE task, there is a decline of
approximately 3.4 BLEU points (§4.3).

• For the kth-order Markov property, as k in-
creases, the performance of the model be-
comes increasingly comparable to that of an
autoregressive model (e.g., when k=5) (§4.4).

• The benefits of a larger k are not necessarily
specific to longer sentences (§4.4).
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In addition to the aforementioned findings, we
also discover that MAT also enjoys the following
advantages: 1) Linear complexity of attention. To
generate a sentence with the length of n, the com-
plexity of attention is only O(kn) compared with
O(n2) in vanilla autoregressive transformers. For
a sample length of 25, the computation for decoder
self-attention is reduced by approximately three-
fold. 2) Key-Value cache free inference. Because
MAT only attends to the embeddings of the previ-
ous k tokens, it does not require caching any keys
and values of the previous tokens during inference.
This reduces the memory bandwidth required by
the cache at the decoding stage. By limiting the
dependence on a fixed number of preceding to-
kens, the Markov property can potentially simplify
the translation model, thereby reducing complexity
and computational requirements. This might lead
to a balance where adequate performance can be
achieved more efficiently.

2 Preliminaries

Task Definition. Machine translation aims to
translate an input sentence X in a source language
into an output sentence Y in a target language. The
detailed definition is provided in the Appendix A.1.

Markov Property The Markov prop-
erty (Markov, 1954) is a stochastic property
that states that the probability of a future state
depends only on the current state and not on
the sequence of states that preceded it. For
MT, mathematically, given a source sentence X
and a sequence of previously generated target
tokens y1, y2, . . . , yn−1, and the k-order Markov
properties allow for longer-distance dependencies,
as described by the following:

P (yn|X, y1, y2, ·, yn−1) = P (yn|X, yn−k, ·, yn−1).

3 Markov Autoregressive Transformer
(MAT)

3.1 Overview
Our MAT consists of two parts: 1) an Encoder, and
2) a Markov Decoder. We keep the Encoder the
same as in the vanilla transformer. For the Markov
Decoder, the only difference lies in the attention
mechanism, which is elaborated as follows.

3.2 Markov Attention Mechanism
To keep the Markov property in the decoder, we use
a mechanism called transparent Markov attention.

key

query

key

query

Figure 1: The illustration of the original casual attention
mask (left) and second-Order Attention Mask (right).

To be specific, Markov attention has two character-
istics:

• k-Order Attention Mask. To prevent the cur-
rent token from accessing the information be-
yond what the Markov property allows, we
may use a lower triangular matrix to only keep
the attention weights within the window size
k. However, it is worth noting that using this
kind of mask alone does not guarantee that
information will not leak (Chelba et al., 2020).
This is because as the number of layers L
increases, the current token will encompass
information from the former tokens than k, vi-
olating the Markov property of only observing
the previous k tokens. A clearer example is
provided in the Appendix A.2.

• Transparent Attention. Inspired by the two-
stream attention (Yang et al., 2019), we pro-
pose a simple method called Transparent At-
tention to fix the information leakage in the
k-Order Attention Mask. With such attention,
the keys and values of previous tokens are
not updated, i.e., they are always set to be the
static word embeddings of the corresponding
tokens.

4 Experiments

4.1 Data

We conduct experiments on major benchmark MT
datasets at different scales that are widely used
in previous studies: WMT14 English⇔German
(En⇔De, 4.5M pairs), and large-scale WMT17
English⇔Chinese (En⇔Zh, 20M pairs). For fair
comparison, we report BLEU scores (Papineni
et al., 2002) on En⇔De and Zh⇒En, and Sacre
BLEU scores (Post, 2018) on En⇒Zh. The other
details can be found in Appendix A.3.
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Model WMT14 WMT17

En-De De-En En-Zh Zh-En

Autoregressive Transformer (Vaswani et al., 2017) 27.8 31.3 34.4 24.0
Autoregressive Transparent Transformer 27.3 31.2 33.9 23.3

Markov Models
Bigram CRF (Sun et al., 2019) 23.4 27.2 - -
Non-autoregressive Markov Transformer (Deng and Rush, 2020) 24.4 29.4 - -
Autoregressive Markov Transformer (Ours, k=5) 27.5 31.0 33.9 23.3

Table 1: BLEU scores on two benchmarks.

WMT 14

B
LE

U

24
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28
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32

MAT with different order

1 2 3 4 5 all

30.931.030.9
30.129.8

27.6
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24.4
En-De
De-En

Figure 2: In the WMT14 EN-DE dataset, experimental
results for MAT with varying values of k. It indicates
that as k increases, the BLEU score for MAT exhibits
an upward trend. However, the improvements plateau
when k exceeds 3.

4.2 Baselines
To investigate the impact of the Markov property
on model performance, we consider the following
models as our baselines: 1) Standard Autoregres-
sive Transformer, which attends to all previous
tokens, 2) Transparent Attention Transformer, i.e.,
the transformer with transparent attention, which
attends to the contextualized embeddings of the
previous k tokens, and 3) two other Markov Trans-
lation Models as reference points. The details of
these two models can be found at Appendix A.4.

4.3 Results
Comparison between our MAT model and the base-
lines is shown in Table 1. From the table, we ob-
serve the following:

• Transparent Attention slightly decreases the
BLEU score of the model. Comparing Au-
toregressive Transformer and Autoregressive
Transparent Transformer, it is evident that
employing transparent attention leads to an

average performance drop of approximately
0.3 on the WMT14 En⇔De benchmark and
about 0.6 on the WMT17 En⇔Zh benchmark,
which is not substantial.

• MAT demonstrates significant improvement
over previous Markov models. Compared
to previous Markov models for MT, i.e., Bi-
gram CRF and Non-autoregressive Markov
Transformer, we observe that on the WMT14
En⇔De dataset, MAT, with the same model
size, achieves an improvement of 2-3 BLEU
points. Notably, the order choice of MAT
is 5, consistent with the Non-autoregressive
Markov Transformer. This, in fact, suggests
that the Markov property is not the primary
reason for the relatively low performance of
earlier Markov models. For the Bigram CRF
model, we postulate that one primary limita-
tion is its sole reliance on first-order Markov
properties. Furthermore, modeling the rela-
tionship between tokens (i.e., the transition
matrix) using a low-rank matrix might also
contribute to its performance degradation. Re-
garding the Non-autoregressive (Gu et al.,
2018; Du et al., 2021) Markov Transformer,
we hypothesize that the main reason for its
performance decline might be the pruning dur-
ing inference through a lower-order Markov
model, resulting in the absence of suitable
candidates within the candidate set.

• MAT achieves performance comparable to the
standard Autoregressive Transformer, albeit
slightly worse. We observe that the perfor-
mance of MAT slightly decreases compared
to the standard Autoregressive Transformer.
However, compared with the transparent au-
toregressive Transformer, MAT’s performance
remains almost the same. This suggests that
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Figure 3: Performance of the generated translations with respect to the lengths of the reference sentences.

within the current MAT architecture, employ-
ing the 5-order Markov property does not com-
promise its translation capabilities.

4.4 Analysis
MAT with Different Order Recall that in our
MAT model with kth-order Markov property, k in-
dicates MAT’s ability to process previous tokens.
An intuitive hypothesis is that a larger k might yield
better performance because it captures a longer con-
text. However, we find that empirical results do not
fully align with it. In Figure 2, we plot the perfor-
mance with respect to different values of k. We
find the following three observations: 1) At k=1,
the model’s performance sees a significant drop
compared to a non-Markov model. One potential
reason is that the complexity of the translation data
far exceeds what a first-order Markov model can en-
capsulate, and another reason is the self-attention in
the transformer decoder is no longer useful. There-
fore, the decline may also be related to the architec-
ture of the transformer. 2) When k is in the range
of 2-4, increasing k provides noticeable gains. This
phenomenon is evident across datasets from both
directions. 3) For k values greater than 4, further
increasing k does not result in significant perfor-
mance improvements.

MAT for References of Different Lengths We
further examine the impact of different reference
lengths on MAT’s performance in Figure 3.

For k=1, there is a noticeable degradation in
performance across all sentence lengths. This ob-
servation is consistent with previous experiments.

Interestingly, the advantages of a higher-order
MAT do not always become more pronounced in
longer sentences. For instance, in the WMT14 en-
de results, the 3rd-order MAT consistently outper-
forms the 5th-order MAT for sample buckets with
sentence lengths over 40. This is counter-intuitive
because as a sentence gets longer, a higher-order
Markov model, with its ability to access a broader
previous context, supposedly would be able to uti-
lize more information and give better results.

This unexpected phenomenon might be at-
tributed to particular linguistic characteristics of the
target language. This theory gains traction when
looking at the WMT14 de-en results, where the
3rd-order MAT is only better than the 5th-order
MAT in buckets with sentence lengths beyond 60.

5 Conclusions

In this paper, we re-examine the Markov property
in machine translation. We design an experimental
Markov model based on the transformer architec-
ture. We verify that higher-order Markov properties
have a very slight impact on the model’s translation
quality. Moreover, we find that longer sentences do
not necessarily require higher-order Markov mod-
els. In the future, we aim to design faster and more
lightweight models to leverage the advantages of
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the Markov property. And also extend this idea to
large language model and other tasks needs real-
time decoding like rumor detection (Zhang and
Gao, 2023) and infodemic surveillance (Zhang and
Gao, 2024).

6 Limitations

In this article, we primarily explore the impact of
the Markov property on model translation qual-
ity. We acknowledge that there are still several
limitations of our study: 1) Compared to other
Markov models, e.g., bigram CRF, our model can-
not generate translations in parallel (i.e., in a non-
autoregressive manner). Although our model can
achieve acceleration compared to the standard au-
toregressive transformer, we have not fully ex-
plored the potential of Markov models in paral-
lel generation. 2) Our current experiments are
based on the transformer, neglecting other architec-
tures, such as CNNs (Wu et al., 2019) or advanced
RNNs (Sun et al., 2023). Markov models might
perform better on RNN translation models. 3) Re-
garding the scaling laws (Ghorbani et al., 2021) for
Markov models, due to our limited GPU resources,
we are unable to further explore Markov models of
different sizes. If more resources become available
in the future, it might be meaningful to investigate
the performance of scaling laws within Markov
models.
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A Appendix

A.1 Task Definition
Given a sentence X in a source language, machine
translation aims to produce a sentence Y in a target
language that has the same semantic meaning as
X . Formally, an MT system attempts to output the
best translation Y ∗:

Y ∗ = argmaxY Pθ(Y |X),

where Pθ(Y |X) is the probability of translation Y
given source X .

Autoregressive neural machine transla-
tion (NMT) decomposes P (Y |X) by predicting
one token (e.g., a subword) of the target sequence
at one time, conditioned on the entire source
sequence and all previously predicted tokens in the
target sequence.

Formally, given a source sequence X =
[x1, x2, ..., xm] and a target sequence Y =
[y1, y2, ..., yn], the model is trained to maximize
the conditional probability:

P (Y |X) =

n∏

i=1

P (yi|X, y1, ..., yi−1).

A.2 Information Leakage in k-Order
Attention Mask

A second-order Markov property requires that only
the two previous tokens, i.e., all & you, be visible
when predicting need. However, as the number of
layers progresses, tokens like Attention are visible
to need, breaking the Markov property.

Attention is you

need

all

4th layer

3rd layer

2nd layer

1st layer

Input:

Figure 4: A second-order attention mask, where the or-
ange lines indicate attention. The input token sequence
is [Attention, is, all, you], and the token to be predicted
is need.

A.3 Training Details

Loss Function The conventional Markov mod-
els require global normalization to tackle the label
bias problem. However, here we cannot perform
such normalization because the transition matrix
is modeled by a parametric deep neural network
which needs traversal of all the possible previous
k tokens combination. After considering the trade-
off, we decide to use local normalization as what
the vanilla autoregressive transformer does Thus
the loss function is as follows:

L = − logP (y1, y2, . . . , yn|X)

= −
n∑

i=1

logP (yi|X, yi−k, · · · , yi−1). (1)

Here k is the order of the Markov decoder.

Data Processing We learned a BPE model with
32K merge operations for the dataset. We prepro-
cessed the datasets with a joint BPE (Sennrich et al.,
2016) with 32K merge operations for En⇔De, and
32K bpe for En⇔Zh.

Hyperparameters For our model and the base-
lines in our paper, we adopt the Transformer BASE
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architecture, consisting of 6 encoder layers, 6 de-
coder layers, 8 attention heads, 512 model dimen-
sions, and 2048 hidden dimensions. We use the
AdamW optimizer for optimization. To prevent
over-fitting, we adopt dropout equals to 0.2. All ex-
periments are conducted on 8 NVIDIA 3090 GPU
cards.

A.4 Previous Markov Models
Bigram CRF (Sun et al., 2019). The Bigram
CRF employs the Linear-CRF as its decoder while
leveraging the standard Transformer Encoder as
the encoder part. More specifically, Bigram CRF
utilizes a non-autoregressive Transformer decoder
to model P (yi|x, posi). Subsequently, it deploys a
low-rank matrix M ∈ |V |2 to represent the transi-
tion probabilities between adjacent tokens, thereby
achieving first-order Markov property.

Non-Autoregressive Markov Transformer
(Deng et al., 2021). This paper utilizes the
idea of cascade decoding, beginning with a
non-autoregressive model (i.e., zero-order Markov
model), and progressively incorporates higher-
order Markov dependencies. To accelerate the
generation process, it prunes the candidates of
the lower-order Markov and also adopts parallel
decoding at different positions.
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