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Abstract

Deriving meaningful sentence embeddings is
crucial in capturing the semantic relationship
between texts. Recent advances in building
sentence embedding models have centered
on replacing traditional human-generated text
datasets with those generated by LLMs. How-
ever, the properties of these widely used LLM-
generated texts remain largely unexplored.
Here, we evaluate the quality of the LLM-
generated texts from four perspectives (Posi-
tive Text Repetition, Length Difference Penalty,
Positive Score Compactness, and Negative Text
Implausibility) and find the limitation of only
using LLM to build high-quality NLI datasets.
Then, we attempt to improve each of these
models either fine-tuned with human, LLM,
or human+LLM-generated sentence triplets
data with our proposed loss function that in-
corporates Positive-Negative sample Augmen-
tation (PNA) within the contrastive learning
objective. Our results demonstrate the ef-
fectiveness of PNA, especially in RoBERTa-
large, by showing decreased cosine similar-
ity for sentence triplets, mitigating the sen-
tence anisotropy problem in Wikipedia corpus
(-7% compared to CLHAIF), and improving the
Spearman’s correlation in standard Semantic
Textual Similarity (STS) tasks (+1.47% com-
pared to CLHAIF). Our code is available at
https://github.com/xfactlab/eacl2024-pna.

1 Introduction

Sentence embeddings with contextual represen-
tations are more informative than static text em-
beddings for various natural language processing
(NLP) tasks (Ethayarajh, 2019). Semantic simi-
larity scoring has been an important fundamental
testbed for understanding the quality of sentence
embeddings (Dolan and Brockett, 2005; Wang
et al., 2018). Unsupervised sentence embedding

1CLHAIF refers to SimCSE w/ CLAIF from the original
paper, and it is a human+LLM-supervised model since it uses
human-generated NLI texts and GPT-3 similarity scores.
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Figure 1: LLM-supervised models comparable to un-
supervised models than the state-of-the-art human-
supervised models. SBERT: Reimers and Gurevych,
2019; DINO: Schick and Schütze, 2021; SimCSE: Gao
et al., 2021; miCSE: Klein and Nabi, 2023; Whitened-
CSE: Zhuo et al., 2023; Prompt: Jiang et al., 2022;
CLAIF/CLHAIF1: Cheng et al., 2023.

model employs data augmentation strategies such
as dropout to create positive pairs (Gao et al., 2021;
Yan et al., 2021; Zhuo et al., 2023; Klein and Nabi,
2023), but there is a limitation of creating diverse
samples of semantically similar positives by modi-
fying the embedding parameters in the latent space.
Thus, supervised models which are fine-tuned with
human-generated data (Gao et al., 2021; Jiang et al.,
2022; Cheng et al., 2023) often surpass these un-
supervised models. However, human subject ex-
periments often take tremendous time and effort
to manually create large-scale, high-quality data
samples with few annotation artifacts (Gururangan
et al., 2018).

The emergence of billion-scale generative large
language models (LLMs), such as GPT-3 (Brown
et al., 2020) and InstructGPT (Ouyang et al., 2022),
has allowed many researchers to explore their ca-
pability in diverse settings, such as generating
datasets in natural language inference (NLI) (Liu
et al., 2022), reasoning (Ho et al., 2023), and
text annotation (Huang et al., 2023; Gilardi et al.,
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2023). Specifically in the context of semantic tex-
tual similarity (STS) (Agirre et al., 2012, 2013,
2014; Marelli et al., 2014; Agirre et al., 2015; Cer
et al., 2017; Agirre et al., 2016), LLMs have been
useful for generating positive and negative samples
(defined in Section 2.1) (Schick and Schütze, 2021;
Liu et al., 2022; Cheng et al., 2023) and obtain-
ing LLM feedback score to assess the similarity of
reference and positives (Cheng et al., 2023).

Despite the increasing utility of LLMs for data
generation and model evaluation, numerous studies
still use comparably smaller sized sentence em-
bedding backbone models (Gao et al., 2021; Jiang
et al., 2022; Zhong et al., 2022; Cheng et al., 2023;
Klein and Nabi, 2023), such as BERT-base (110M)
(Devlin et al., 2019), RoBERTa-large (355M) (Liu
et al., 2019), and T5-large (800M) (Raffel et al.,
2020) to build neural evaluators for STS tasks. It
is necessary to fine-tune these million-scale pre-
trained language models with human or LLM-
generated positives and negatives to achieve a high
correlation with human evaluations (Jiang et al.,
2022) and to better understand how sentence em-
beddings are represented in a latent space (Etha-
yarajh, 2019; Gao et al., 2021), which cannot be
done merely by prompting LLMs.

Based on the observation that LLM-supervised
models consistently underperform when compared
to models trained on human-annotated data, they
are often compared with less challenging, unsuper-
vised models (Schick and Schütze, 2021; Cheng
et al., 2023) (Figure 1), we seek to study the fol-
lowing research questions: 1. What kinds of prop-
erties exist in LLM-generated positives/negatives
that differ from human-generated texts for build-
ing sentence embedding models? 2. Are the stan-
dard contrastive training objective losses (e.g., Sim-
CSE (Gao et al., 2021) and CLHAIF (Cheng et al.,
2023)) sufficient to learn the relationship between
sentence triplets? Our main contributions are as
follows:

• We compare embedded properties between
human and LLM-generated texts used for fine-
tuning sentence embedding models.

• We propose a new loss applicable to any sen-
tence embedding models that are to be fine-
tuned with sentence triplets to learn a more
intuitive relationship.

• We conduct experiments on the effectiveness
of our loss in terms of Spearman correlation

and sentence anisotropy, showing more dis-
tinctive performances in larger models.

2 Related Works

2.1 Sentence Embeddings

To improve the sentence embedding representa-
tions, contrastive learning has been widely em-
ployed by minimizing the distance between a se-
mantically similar pair (alignment) and maximiz-
ing the distance between a random pair (uniformity)
(Gao et al., 2021). The former refers to a pair of ref-
erence text and positive sample (i.e., positive), and
the latter contains a reference text and negative sam-
ple (i.e., hard-negative2). These pairs could be ei-
ther generated with an unsupervised or supervised
approach. In the unsupervised setting, a sentence
embedding model (e.g., BERT-base) is fine-tuned
with positives constructed by data augmentation
strategies such as dropout (Gao et al., 2021; Yan
et al., 2021), adversarial attacks, token shuffling,
cut-off (Yan et al., 2021), different prompt-based
templates (Jiang et al., 2022). A more recent study,
Deng et al., 2023 detects hard-negatives in in-batch
negatives, and Zhuo et al., 2023 enhances the di-
versity of positives by performing whitening for
embedding features in different subgroups. Finally,
Klein and Nabi, 2023 enforces alignment of the
attention tensors of positives. However, these unsu-
pervised models still show lower performances on
STS tasks than supervised models.

Supervised models leverage human-generated
texts, especially natural language inference (NLI)
datasets (SNLI: Bowman et al., 2015 and MNLI:
Williams et al., 2018) since they are known to
be most effective for training a sentence embed-
ding model (Conneau et al., 2017; Reimers and
Gurevych, 2019; Gao et al., 2021). Specifically,
SBERT is BERT cast with a 3-way (entailment,
neutral, and contradiction) classification task using
siamese and triplet network structures (Reimers
and Gurevych, 2019). On the other hand, Gao et al.,
2021 regards only entailed and contradicted sen-
tences with respect to reference texts from NLI
datasets as positives and hard-negatives. Jiang
et al., 2022 reformulates sentence embedding task
to masked language task using the same human-
generated NLI dataset as Gao et al., 2021 to im-
prove the quality of predicted tokens. However,

2We use the term "negative" and "hard-negatives" inter-
changeably throughout this paper.
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Figure 2: Comparison of log softmax of cosine similarity and labels between (a) Gao et al., 2021, (b) Cheng et al.,
2023, and (c) ours. For simplicity, the batch size is two, and a warmer color indicates a higher value. hi, h+i , and h−i
(i = 1,2) are encoded reference, positive, and negative, respectively, and ⊙ denotes element-wise multiplication.
Unlike (a) SimCSE and (b) CLHAIF, (c) PNA incorporates the cosine similarity of encoded positives and negatives.

these prior works do not focus on the relationship
between positives and negatives.

2.2 Large Language Model

Shifting a data creation paradigm from relying
only on human workers to combining both hu-
mans and LLMs improves the quality and diver-
sity of the datasets (Liu et al., 2022) and reduces
per-annotation cost (Gilardi et al., 2023). How-
ever, whether LLMs are truly helpful in making
well-represented sentence embeddings has yet to
be investigated. Although several sentence em-
bedding models fine-tuned with datasets produced
by pre-trained LLMs, such as DINO (Schick and
Schütze, 2021) and CLAIF (Cheng et al., 2023) ex-
hibit better performances than unsupervised mod-
els, they are still below sentence embedding models
fine-tuned with human-generated NLI datasets like
SimCSE (Gao et al., 2021).

3 Methods

Here we first present how we conduct a heuristic
evaluation on human/LLM-generated datasets (3.1).
Next, we propose a novel loss objective called
Positive-Negative Augmentation (PNA) that can
be applied to sentence embedding models that are
to be fine-tuned with any type of sentence triplet
datasets either generated with human, LLM, or
both (3.2). The explanation of proposing PNA loss
after the heuristic evaluation is stated in Section 6.

3.1 Heuristic evaluation on texts/scores
generated by humans/LLM

We capture different aspects of properties in human
or LLM-generated texts that are used for build-
ing sentence embedding models by examining four
perspectives: 1. Positive Text Repetition (PTR),
2. Positive Score Compactness (PSC), 3. Length
Difference Penalty (LDP), and 4. Negative Text
Implausibility (NTI). We normalize each of these

four perspectives of scores across datasets to be
summed as one to make a distribution.

PTR measures the overlapping n-grams between
reference and positive excluding the subject3 with
BLEU-1 (Papineni et al., 2002). This score assesses
how many diverse wordings humans or LLM use
to make positives, not relying on the superficial
clues of words or phrases that already appeared in
reference texts (Kavumba et al., 2019).

PSC score is a reciprocal of the variance of sim-
ilarity scores for positive pair (i.e., reference and
positive). This metric captures a wide range of sim-
ilarity scores since even within positive pairs, some
pairs might have a higher similarity (score: 0.9),
while others might have less semantically similar
meaning (score: 0.7). A lower PSC score indicates
more various levels of scores between references
and positives. It should be noted that datasets with
similarity scores can be evaluated with PSC scores.

LDP score is penalized if there is a large differ-
ence between the length of reference and the posi-
tive. Hence, a lower LDP suggests that humans or
LLM produce positive with a length very close to
the reference length.

NTI scores the implausibility of hard-negatives
by prompting GPT-3.5-turbo to answer in a binary
mode whether each human or LLM-generated pos-
itive can happen in real life (Appendix A). We
calculate the ratio of negative answers out of valid
generated outputs to define NTI. Note that this mea-
sure can be applied to datasets containing hard neg-
atives.

3.2 PNA objective definition

We present a training loss, namely PNA, that can be
integrated with other sentence embedding models
such as SimCSE (Gao et al., 2021) and CLHAIF

3We use the Python package, spacy (Explosion, 2017) to
identify the subject in a sentence.
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Figure 3: Different cases of the relationship among
reference, positive, and negative. Aligning positives
to references and distancing negatives from references
either leads to positives and negatives (a) far apart or (b,
c) become close together.

(Cheng et al., 2023) by incorporating the cosine
similarity between positives and negatives (Fig-
ure 2). Whereas previous models only learn the
relationship between a reference and a positive or
reference and a negative, our PNA loss also allows
the model to learn the relationship between em-
bedded positives and negatives. In other words,
the objectives of SimCSE and CLHAIF are to pull
the reference-positive pair together and push the
reference-negative pair apart, which does not guar-
antee the ideal “far” distance between the positive
and negative (Figure 3). Also, whereas the human-
generated positives are weighted equally with one-
hot labels in SimCSE, we use label smoothing us-
ing GPT-3 scores, inspired by CLHAIF (smooth-all
version) (Cheng et al., 2023). Here is a proposed
Positive Negative Augmentation (PNA) loss that
includes the relationship between positives and neg-
atives:

Li = y+i log ecos(hi,h+i )/τ
S

+ y−i [ N∑
j=1,j≠i log

ecos(hi,h+j )/τ
S

+
N∑
j=1(log

ecos(hi,h−j )/τ
S

+ log ecos(h+i ,h−j )/τ
S

)]

S = N∑
j=1(ecos(hi,h+j )/τ + ecos(hi,h−j )/τ + ecos(h+i ,h−j )/τ)

y+i = SimScore(xi,x+i )
y−i = 1 − y+i

3N − 1
In the above equations, Li is the proposed PNA

loss function for each sample from a batch con-
taining N positives and N negatives, and hi, h+i ,
and h−i are sentence encodings of reference (xi),
positive (x+i ), and negative (x−i ). y+i is a similarity
score between reference and positive. This can be
computed by the GPT-3 score for CLHAIF (Cheng

et al., 2023) or randomly generated from the uni-
form distribution ranging from 0 to 1 for SimCSE
(Gao et al., 2021). y−i is a uniformly divided score
from the rest of the probability minus the target
label score (y+i ). τ indicates a temperature, which
we set to a fixed value of 0.05.

4 Experiments

4.1 LLM-generated dataset analysis
Datasets We conduct an analysis to investigate
what properties make LLM-supervised models per-
form lower than human-supervised models by com-
paring four sets of datasets: DINO (Schick and
Schütze, 2021), CLAIF (Cheng et al., 2023), NLI
(Gao et al., 2021), and DINOGPT-3.5, which include
positives/negatives generated by prompting GPT-
3.5-turbo for a randomly sampled 100k references
from the NLI dataset (Appendix A).

DINO dataset contains pairs of GPT2-XL (Rad-
ford et al., 2019)-generated sentences with three
levels of similarity4 (Schick and Schütze, 2021).
We manually assign positives for the datasets with
a similarity score close to 1 (n =20,013).

CLAIF dataset consists of sentence pairs and
similarity scores that are generated by prompting
GPT-3 to fill out the masked sentences and to label
a similarity score ranging from 0 to 1, respectively
(Cheng et al., 2023). We select positives as samples
that have GPT-3 similarity scores higher than 0.5
(n = 53,041).

NLI dataset is the only human-generated dataset
consisting of sentence triplets (Bowman et al.,
2015; Williams et al., 2018). We use the GPT-3
similarity scores for each triplet provided by Cheng
et al., 2023 to select positives as the samples with
GPT-3 score higher than 0.5 (n =198,479).

DINOGPT-3.5 is a relabeled DINO (Schick and
Schütze, 2021) dataset using GPT-3.5-turbo to ex-
amine the effect of stronger LLM baseline (Ap-
pendix B). Since it does not contain a correspond-
ing similarity score, we select instances from the
datasets with the same indices as the selected NLI
dataset (n =198,479).

4.2 PNA implementation
PNA-applicable models We implement PNA
loss, which can be applied to any sentence em-
bedding model fine-tuned using triplet data, such

40: completely different, 0.5: somewhat similar, 1: same
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as SimCSE (Gao et al., 2021), CLHAIF (Cheng
et al., 2023), and DINOGPT-3.5. To ensure fairness,
we reproduce these models with and without PNA
and always extract the average ("avg") of the hid-
den state in the last layer for each token for making
sentence embeddings5. The fine-tuning/evaluation
details are stated in Appendix B.

Model categorization The models mentioned in
this paper fall into one of the following categories:
1. Static token embeddings (BERT static avg. from
Jiang et al., 2022), 2. Pre-trained-only (BERT last
avg. from Jiang et al., 2022), 3. Human-supervised
(SBERT/SRoBERTa from Reimers and Gurevych,
2019; supervised SimCSE from Gao et al., 2021), 4.
LLM-supervised6 (DINO from Schick and Schütze,
2021; DINOGPT-3 and CLAIF from Cheng et al.,
2023), and 5. Human+LLM-supervised (SimCSE
w/ CLHAIF from Cheng et al., 2023). Our back-
bone models are BERT-base (Devlin et al., 2019)
and RoBERTa-base/large (Liu et al., 2019).

False negative elimination strategy We ad-
ditionally implement false negative elimination
method inspired by Huynh et al., 2022 for three
PNA-applicable models: DINOGPT−3.5, SimCSE,
and CLHAIF) and SimCLHAIF. This approach dis-
cards one in-batch negative sample with the highest
cosine similarity. In-batch negatives for each sam-
ple refer to one hard-negative pair and all the other
implicit negatives, such as positives and negatives
of other samples within the same batch. For in-
stance, in-batch negatives for h1 in Figure 2 are h−1
(hard-negative), h+2 (positive of the other sample,
h2), and h−2 (negative of the other sample, h2).

Tasks We assess the alignment between the
sentence embedding model and human-annotated
ranking scores by computing Spearman’s correla-
tion on STS tasks, consisting of STS 2012-2016
(Agirre et al., 2012, 2013, 2014, 2015, 2016)
STS-Benchmark (Cer et al., 2017), and SICK-
Relatedness (Marelli et al., 2014). Furthermore,
we evaluate how much random sentence embed-
dings are uniformly distributed in the latent space.
We compute a sentence anisotropy defined as co-
sine similarity between two embeddings from all
combinations of 100k sentence pairs sampled from

5The pooler type for the original CLHAIF is "cls" ([CLS]
representation with MLP pooler) for BERT-b and "avg" for
RoBERTa-b., and SimCSE reports "cls."

6We exclude CLAIFscaled (Cheng et al., 2023) because it is
intentionally built to use four times larger fine-tuning dataset
size than the other models using STS-B and NLI datasets.

PTR PSC
LDP NTI

Figure 4: Comparison of PTR, PSC, LDP, and NTI
scores across datasets (lower the better). NLI achieves
the lowest scores in terms of four perspectives: 1.
Positive Text Repetition (PTR), 2. Length Difference
Penalty (LDP), 3. Positive Score Compactness (PSC),
and 4. Negative Text Implausibility (NTI).

Model Layer Spearman
correlation ↑

Sentence
anisotropy ↓

Static token embeddings
BERT-b♢ First 56.02 0.8250
RoBERTa-b♢ First 55.88 0.5693
RoBERTa-l∗ First 55.47 0.9100

Pre-trained-only
BERT-b∗ Last 52.58↓ 0.4859↓
RoBERTa-b♢ Last 53.49↓ 0.9554↑
RoBERTa-l∗ Last 52.80↓ 0.9911↑

Human-supervised (SimCSE+PNA)
BERT-b Last 80.48↑ 0.3770↓
RoBERTa-b Last 79.01↑ 0.7911↑
RoBERTa-l Last 81.63↑ 0.4051↓

Human+LLM-supervised (CLHAIF+PNA)
BERT-b Last 81.01↑ 0.3936↓
RoBERTa-b Last 80.71↑ 0.7964↑
RoBERTa-l Last 82.91↑ 0.3959↓

Table 1: Average Spearman’s correlation on STS tasks
and sentence anisotropy on Wikipedia corpus. Fine-
tuning a sentence embedding model with human/LLM-
generated texts is needed to improve Spearman’s cor-
relation and allay sentence anisotropy issues. ♢: Jiang
et al., 2022; ∗: reproduced results (Appendix B).

Wikipedia corpus (Jiang et al., 2022). It is crucial
to reduce the sentence anisotropy or to maximize
the distance of random sentence pairs in the latent
space to avoid representation collapse (Gao et al.,
2021; Ethayarajh, 2019).

5 Results

Inherent differences between human and
LLM-generated texts In Figure 4, the human-
generated NLI dataset scores the lowest PTR, PSC,
LDP, and NTI scores compared to the other LLM-
generated datasets such as DINO (Schick and
Schütze, 2021), DINOGPT-3.5, and CLAIF (Cheng
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Figure 5: The distribution of cosine similarity between references, positives, and negatives from the training NLI
dataset. CLHAIF+PNA (backbone: BERT-b) assigns (a) different levels of similarity score (≤ 1.0) between reference
and positive pairs and (b, c) lower similarity scores for reference/positives and negative pairs than CLHAIF.

et al., 2023), showing the inherent, irreducible
differences between LLM and human-generated
datasets. Specifically, we observe the lowest
amount of positive text repetitions (PTR) in the
NLI dataset, suggesting that humans use more di-
verse wordings to write positive samples. The
NLI dataset also shows the lowest positive score
compactness (PSC), implying that it has a wide
scale of scores between a reference and a posi-
tive pair (0.094 for CLAIF and 0.073 for NLI).
Whereas CLAIF produces positives with a length
different from that of references (LDP ↑), NLI and
DINOGPT-3.5 have more similar lengths for refer-
ences and positives. Lastly, DINOGPT-3.5 contains
more non-realistic samples (NTI ↑) compared to
the NLI dataset. Overall, the resulting heuristic
scores suggest that it is challenging to generate
high-quality positive and hard-negative pairs for
NLI dataset instances with LLM to be on par with
human-generated positives and hard negatives.

Necessity of fine-tuning Although the Spear-
man’s correlation performance of pre-trained lan-
guage models degrades using the averaged embed-
dings from the last layer compared to the static
input embeddings (Jiang et al., 2022), as can be
seen in Table 1, we observe that Spearman’s cor-
relation increases significantly (at least more than
23%) than static token embeddings for fine-tuned
models - SimCSE+PNA and CLHAIF+PNA. At
the same time, fine-tuning alleviates the sentence
anisotropy problem since our models overall show
lower sentence anisotropy than static token em-
beddings7. Hence, fine-tuning overall helps the
baseline models attain a high Spearman correlation
and prevents arbitrary sentence embeddings from

7The sentence anisotropy of RoBERTa-b is already very
low in static token embeddings compared to the other models.

being clustered together.

Reduced cosine similarity among references,
positives, and negatives Pushing positives and
negatives apart in the fine-tuning process allows
the sentence embedding model to capture differ-
ent levels of similarity score between the embed-
ded references and positives (Figure 5). It is cru-
cial to note that CLHAIF without PNA also uses
GPT-3 feedback scores with a smooth-all setting,
but it shows a similarity score of 1.0 for almost
all the samples. That means, without PNA, the
model only learns to locate embedded references
and positives as close to each other, not consid-
ering the relationship between positives and neg-
atives. In addition, the overall cosine similar-
ity between references/positives and negatives de-
creases using CLHAIF/SimCSE+PNA compared
to CLHAIF/SimCSE, showing better fine-tuning
results (Figures 5 and 10).

Spearman correlation improvement Imple-
menting PNA on the representative human-
supervised model, SimCSE, and human+LLM-
supervised model, CLHAIF helps to improve the
Spearman’s correlations for most STS tasks, es-
pecially for RoBERTa-l, achieving 3.14% and
1.47% higher results for SimCSE+PNA and
CLHAIF+PNA compared to SimCSE and CLHAIF,
respectively (Table 2). Even though using PNA
may not always lead to significantly higher Spear-
man’s correlation for STS tasks, it should be em-
phasized that PNA better captures different levels
of similarity for references, positives, and nega-
tives (Figure 5) and alleviates sentence anisotropy
problem (Figure 7).

Comparison with false negative elimination
strategy In figures 6 and 7, we use RoBERTa-
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Model STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.

B
E

R
T-

b
SBERT♡ 70.97 76.53 73.19 79.09 74.30 77.03 72.91 74.89
DINOGPT-3

§ 72.61 81.92 75.09 80.42 76.26 77.10 70.43 76.26
DINOGPT-3.5 70.66 82.14 74.06 80.00 78.05 78.73 72.99 76.66
CLAIF§ 70.62 81.51 76.29 85.05 81.36 84.34 78.22 79.63
SimCSE∗ 75.47 82.39 76.78 85.36 80.72 82.68 80.24 80.52+PNA 72.40 83.91 78.86 85.49 80.63 82.69 79.37 80.48
CLHAIF∗ 75.19 82.89 78.05 85.93 80.79 83.01 81.21 81.01+PNA 73.54 84.83 79.96 86.26 81.37 83.24 79.25 81.21↑

R
oB

E
R

Ta
-b

SRoBERTa♡ 71.54 72.49 70.80 78.74 73.69 77.77 74.46 74.21
DINO♣ 70.27 81.26 71.25 80.49 77.18 77.82 68.09 75.20
DINOGPT-3

§ 71.24 81.55 75.67 81.42 78.77 80.10 71.31 77.15
DINOGPT-3.5 72.58 82.65 75.01 78.80 80.60 80.22 72.25 77.44
CLAIF§ 68.33 82.26 77.00 85.18 83.43 85.05 78.02 79.90
SimCSE∗ 77.26 73.80 75.14 83.44 81.10 81.59 78.06 78.63+PNA 74.65 78.27 78.24 84.12 81.26 80.95 75.56 79.01↑
CLHAIF∗ 78.48 81.74 79.05 84.99 81.42 82.66 78.72 81.01+PNA 76.34 82.78 80.60 84.85 81.91 82.47 75.99 80.71

R
oB

E
R

Ta
-l

SRoBERTa♡ 74.53 77.00 73.18 81.85 76.82 79.10 74.29 76.68
DINOGPT-3.5 71.36 81.40 75.55 80.82 80.93 81.15 74.60 77.97
CLAIF∗ 71.86 83.69 78.81 86.04 83.92 85.44 80.66 81.49
SimCSE∗ 77.45 75.48 77.10 82.64 81.75 82.61 72.43 78.49+PNA 76.07 84.43 81.62 86.28 82.39 84.09 76.52 81.63↑
CLHAIF∗ 77.81 84.43 81.26 85.41 82.79 84.70 73.67 81.44+PNA 77.13 87.08 83.27 87.13 83.14 85.39 77.20 82.91↑

Table 2: Spearman’s correlation performances of human (red), LLM (blue), and human+LLM (purple)-supervised
sentence embedding models across STS tasks. Using PNA for fine-tuning SimCSE and CLHAIF enhances the
correlation performances for most STS tasks, especially for RoBERTa-l. ♡: Reimers and Gurevych, 2019; §: Cheng
et al., 2023; ♣: Schick and Schütze, 2021; ∗: reproduced results (Appendix B). Bold and underlined texts indicate
the first and the second best value for each backbone model and STS task.

l as the backbone model to observe the effect
of PNA on both Spearman’s correlation and sen-
tence anisotropy. Although dropping false neg-
ative improves the averaged Spearman’s correla-
tion performances for DINOGPT−3.5, SimCSE, and
CLHAIF, adding PNA shows higher and more ro-
bust improvement for all four models in terms of
Spearman’s correlation (Figure 6) and sentence
anisotropy (Figure 7). Between these two figures,
in most cases, there exists a trade-off between
Spearman’s correlation and sentence anisotropy.

Scalability of sentence embedding models
Varying the fine-tuning data size from 0 (cor-
responding to the pre-trained-only model from
Table 1) to the full NLI dataset (n =275,601),
CLHAIF+PNA shows the second highest perfor-
mance starting from 10k data size among the mod-
els after SimCLHAIF+PNA (Figure 8)8. How-

8SimCLHAIF+PNA shows the highest correlation even
from the start since it is already fine-tuned on full NLI dataset,

ever, with insufficient training data (e.g., < 10k),
CLHAIF+PNA has the lowest performance. Al-
though most models reach a similar rate of conver-
gence for Spearman’s correlation, PNA-based mod-
els exhibit later convergence of sentence anisotropy
(Figure 9). The sentence anisotropy values also
seem to be noisier than Spearman’s correlations,
and the best model in terms of Spearman’s corre-
lation, CLHAIF+PNA, is not the best in terms of
sentence anisotropy.

6 Discussion

What is the motivation for proposing PNA loss
after the heuristic evaluation? In this paper,
we first explore why the LLM-generated dataset,
while widely used and cost-efficient, is less bene-
ficial than the human-generated dataset for fine-
tuning a sentence embedding model and evalu-
ate the existing human-generated dataset (NLI)

whereas other models are only pre-trained not fine-tuned.
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Figure 6: Effect of PNA on Spearman’s correlation.
The correlation increases for all four types of models
(backbone: RoBERTa-l) with PNA compared to the
baselines more than the models fine-tuned without false
negatives. The error bar indicates standard error across
seven STS tasks.

and LLM-generated datasets (DINO and CLAIF)
and a newly introduced LLM-generated dataset
(DINO-GPT-3.5) in four perspectives. The reason
for this heuristic evaluation is that we originally
wanted to show that it might be possible to out-
perform human-supervised SimCSE, which is the
standard SOTA sentence embedding model without
any prompt variations with the model fine-tuned
with DINO-GPT-3.5. However, similarly to Schick
and Schütze, 2021; Cheng et al., 2023, we find it
difficult to generate high-quality texts to be on par
with human-generated texts.

Hence, we instead delve into why a difference
exists between LLM and human-generated datasets.
After analyzing the difference with our heuristic
evaluation approach, we acknowledge the limita-
tion of only using LLM to build higher-quality
datasets like NLI. Thus, rather than focusing on
creating an LLM-generated dataset more like a
human-generated dataset, which is possibly due
to the limitation of the current LLM, we attempt to
devise a way to improve any model, including the
current SOTA sentence embedding model, which
is human+LLM-supervised CLHAIF that uses sen-
tence triplets as the fine-tuning dataset.

Why is it important to consider the relation-
ship between sentence triplets? Although the
CLHAIF model is fine-tuned to learn different lev-
els of similarity between references and positives
(Cheng et al., 2023), we unexpectedly observe
most of the cosine similarity scores are skewed
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Figure 7: Effect of PNA on sentence anisotropy. The co-
sine similarity for arbitrary sentence pairs decreases for
three out of four types of models (backbone: RoBERTa-
l) with PNA compared to the baselines.

to the overconfident or maximum value, 1.0 in
Figure 5. We hypothesize that as the training
proceeds, the model mostly focuses on learning
the relations across the data instances by pushing
different instances apart from each other. Hence,
the model seemingly forgets to learn the relations
within each data instance, keeping reference and
positive close together (Figure 5a) and the same for
reference/positive and negative (Figure 5b-c).

However, humans can differentiate the subtle dif-
ferent levels of closeness for each sentence triplet
(Gulordava and Baroni, 2011). For example, the
sentence pairs “I love to explore NLP.” and “I like
to explore NLP.” should show a slightly higher
similarity score than the sentence pairs “I love to
explore NLP in AI.” and “I love to explore arts.”
if we are to regard “love” and “like” more similar
than “NLP and “arts.” For the reference/positive-
negative pair, it is intuitively better to separate them,
which adding the PNA loss helps to achieve.

Why do LLM-supervised models show lower
performances than human-supervised models?
Though LLMs show remarkable abilities in gen-
erating and evaluating text data (Liu et al., 2022,
2023), we find that it is still very challenging to
produce human-like positives and hard-negatives
for each NLI dataset instance. Thus, the perfor-
mances of LLM-supervised sentence embedding
models (e.g., CLAIF) remain much lower than
human-supervised models (e.g., SimCSE). Here,
we also attempt to make a newer version of DINO
(Schick et al., 2021) called DINOGPT-3.5, but it
shows lower Spearman correlation performance
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Figure 8: Effect of fine-tuning data size and PNA on
Spearman’s correlation. The performances of PNA-
based models (backbone: RoBERTa-l) are lower than
the other models when fine-tuned with less than 10k
data, but they converge with much higher values. The er-
ror bar indicates standard error across seven STS tasks.

than human-supervised models (Table 2). One pos-
sible reason may be because LLM often constructs
unhelpful hard negatives, which are quantified by
NTI score (Figure 4; Appendix F). To reduce the
biases from LLM-generated texts, we could im-
plement an auxiliary supervised model that helps
to revise LLM-generated sentences using human-
generated texts as labels.

Is it fair to compare LLM-supervised models
with unsupervised models? Throughout this pa-
per, we make a comparison of LLM-supervised
models with human-supervised models, whereas
these models are generally compared with less chal-
lenging, unsupervised models (Schick and Schütze,
2021; Zhang et al., 2023; Cheng et al., 2023). How-
ever, this comparison may not be entirely fair since
models fine-tuned on LLM-generated data can be
viewed as weakly supervised rather than truly un-
supervised since LLMs are pre-trained with a large-
scale dataset generated by humans or human feed-
back (Ouyang et al., 2022). Hence, LLM-generated
texts could be viewed as the product of weakly-
supervised human-generated texts, justifying our
stricter comparison criterion. Nevertheless, we
leave for future work to discuss this open research
question further.

7 Conclusion

We study why LLM-generated texts hinder a sen-
tence embedding model from producing less se-
mantically meaningful sentence representations
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Figure 9: Effect of fine-tuning data size and PNA on
sentence anisotropy. The performances of PNA-based
models (backbone: RoBERTa-l) converge slower than
the other models. SimCLHAIF+PNA, which attains
the highest Spearman’s correlation (Figure 8) does not
produce the lowest sentence anisotropy using more than
10k fine-tuning data.

compared to human-generated texts by analyzing
their embedded properties. Then, for the models
fine-tuned with human-generated sentence triplets
and feedback similarity scores for positive pairs,
we enhance the sentence representations with our
PNA loss. Not only does PNA help the model to
achieve high Spearman’s correlation and low sen-
tence anisotropy, but it also captures a wide range
of similarity scores between references and posi-
tives and returns lower cosine similarity between
references/positives and negatives. We hope our
work will catalyze efforts in exploring different
aspects of LLM-generated texts for various down-
stream tasks.

Limitations

Although our method effectively reduces sentence
anisotropy while maintaining or enhancing SOTA
performance on STS tasks, it is important to note
that the PNA loss is designed for use with sentence
triplets and may not be directly applicable to meth-
ods that solely rely on positive sample augmenta-
tions during fine-tuning. Furthermore, our evalu-
ation primarily focuses on STS tasks, leaving the
performance of PNA loss in other text-embedding
tasks largely unexplored. Further research is re-
quired to establish its versatility in such cases.
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A Prompt templates

DINOGPT-3.5 We prompt GPT-3.5-turbo to gen-
erate positives and negatives for fine-tuning
DINOGPT-3.5 with the temperature set to 1.0 us-
ing the templates in Table 3. DINOGPT-3.5 is fine-
tuned using the same model architecture as su-
pervised SimCSE with hard-negatives (Gao et al.,
2021). We randomly sample 100k references
from the NLI datasets to fine-tune the model.
For BERT-b, we report the evaluation results of
princeton-nlp/sup-simcse-bert-base-uncased (Gao
et al., 2021) with the pooler type of "avg," and for
RoBERTa-b and RoBERTa-l, we fine-tune the pre-
trained roberta-base and roberta-large (Liu et al.,
2019). DINOGPT-3.5 attains higher averaged Spear-
man correlation performances than DINOGPT-3
(Cheng et al., 2023) for BERT-b and RoBERTa-
b in STS tasks (Table 2) and transfer learning tasks
(Table 6).

NTI We instruct GPT-3.5-turbo with the tempera-
ture set to 0.0 to answer whether the given sentence
that is either human-generated or LLM-generated
is plausible or not (Table 4). We consider the gener-
ated outputs as valid answers if the output contains
either "1," "2," or "3."

B Implementation details

Below, we lay out how we fine-tune and evalu-
ate reproduced models used in Tables 2 and 6 and
Figures 5, 6, 7, 8, 9, and 10 using one NVIDIA
RTX A6000 for BERT-b and RoBERTa-b and two
NVIDIA RTX A6000s for RoBERTa-l:

SimCSE
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• BERT-b is evaluated on fine-tuned princeton-
nlp/sup-simcse-bert-base-uncased with the
pooler type of "avg."

• RoBERTa-b and RoBERTa-l are fine-tuned on
roberta-base and roberta-large using 276,501
NLI datasets for three epochs with a batch size
of 128 per GPU and a learning rate of 5e-5
(Gao et al., 2021). The models are validated
every 125 training steps using Spearman’s cor-
relation on the STS-B task.

CLAIF

• The evaluation results of BERT-b and
RoBERTa-b are from Cheng et al., 2023.

• RoBERTa-l is fine-tuned on roberta-large us-
ing 276,501 NLI datasets with a smooth-all
option (Cheng et al., 2023) and the same train-
ing implementation as SimCSE (above).

CLHAIF

• BERT-b is evaluated on fnlp/clhaif-simcse-
bert-base with the pooler type of "avg."

• RoBERTa-b and RoBERTa-l are fine-tuned on
roberta-base and roberta-large using 276,501
NLI datasets and GPT-3 similarity scores with
a smooth-all option (Cheng et al., 2023) and
the same training implementation as SimCSE.

SimCLHAIF

• BERT-b, RoBERTa-b, and RoBERTa-l are
fine-tuned on princeton-nlp/sup-simcse-
[model] using the same training process as
CLHAIF (above).

C The distribution of cosine similarity

The histograms of cosine similarity for references,
positives, and negatives embedded using SimCSE
and SimCSE+PNA are visualized in Figure 10.
Similar to CLHAIF+PNA from Figure 5, Sim-
CSE+PNA shows reduced cosine similarity than
SimCSE for all three cases (Figure 10a-c).

D Full Spearman’s correlation
performances

We lay out the Spearman’s correlations across all
STS tasks for static token embeddings and the pre-
trained-only model from Table 1 (Table 5). Full per-
formances of human-supervised and human+LLM-
supervised models are listed in Table 2.

E Transfer learning task results

PNA-based models do not always show higher
Spearman correlation performances than non-PNA-
based models on seven transfer learning tasks (Con-
neau and Kiela, 2018): MR (Pang and Lee, 2005),
CR (Hu and Liu, 2004), SUBJ (Pang and Lee,
2004), MPQA (Wiebe et al., 2004), SST-2 (Socher
et al., 2013), TREC (ELLEN, 2000), and MRPC
(Dolan and Brockett, 2005) (Table 6).

F Hard-negative examples in NLI and
DINOGPT-3.5 datasets

Reference: Three people are on a white sur-
face in front of a fenced in area.

Hard-negative (NLI): Two men work on
cars.
Hard-negative (DINOGPT-3.5): The three
people are swimming in a pool of choco-
late syrup.

Reference: A man in a gray suit is talking
to another man in a black suit.

Hard-negative (NLI): A man stares at the
girls.
Hard-negative (DINOGPT-3.5): The man in
the gray suit is actually a robot disguised
as a human, having a conversation with an
alien in a black suit.

Reference: Four children hold hands and
jump into a pool.

Hard-negative (NLI): The children are rid-
ing horses.
Hard-negative (DINOGPT-3.5): The children
hold hands and jump into a pool filled with
sharks.

Reference: A dirt biker is riding through
deep sand and dirt.

Hard-negative (NLI): the man is in a coma
Hard-negative (DINOGPT-3.5): A dirt biker
is riding through deep sand and dirt, while
juggling chainsaws.
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Write one sentence that is definitely correct about the situation or event in the following sentence:
[reference]

Write one sentence that is definitely incorrect about the situation or event in the following sentence:
[reference]

Table 3: Prompt templates for generating positives (top) and negatives (bottom) for DINOGPT-3.5. We adopt the last
sentence of prompts presented to the human annotators when making the MNLI dataset (Williams et al., 2018).

Question: Is the following sentence likely to happen in real life? If you answer ’yes,’ please
provide a reference.
Sentence: [human or LLM-generated negative]
1. Yes.
2. No.
3. I don’t know.
Answer:

Table 4: A prompt template for labeling the plausibility of a given text generated by humans or LLM. GPT-3.5-turbo
needs to also provide the reference if it answers "yes" to make sure it gives answers based on some evidence.

cba

Figure 10: The distribution of cosine similarity between references, positives, and negatives from the training NLI
dataset. SimCSE+PNA (backbone: RoBERTa-b) assigns (a) different levels of similarity score (≤ 1.0) between
reference and positive pairs and (b, c) slightly lower similarity scores for reference/positives and negative pairs than
SimCSE.
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Model STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.
Static token embeddings

BERT-b♢ 42.37 56.74 50.60 65.08 62.39 56.82 58.15 56.02
RoBERTa-b♢ 44.80 57.96 51.24 7.41 59.40 52.17 58.16 55.88
RoBERTa-l∗ 43.33 58.83 52.09 64.51 58.28 54.14 57.08 55.47

pre-trained-only
BERT-b∗ 30.87 59.90 47.73 60.29 63.74 47.29 58.22 52.58↓
RoBERTa-b♢ 32.11 56.33 45.22 61.35 61.98 55.39 62.03 53.49↓
RoBERTa-l∗ 33.61 57.23 45.66 62.99 61.17 50.56 58.39 52.80↓

Table 5: Full Spearman’s correlation of the static token embeddings and unsupervised models from Table 1. There
is not much of a difference between the input and the last embeddings (Jiang et al., 2022). ♢: Jiang et al., 2022; ∗:
reproduced results (Appendix B).

Model MR CR SUBJ MPQA SST-2 TREC MRPC Avg.

B
E

R
T-

b

SBERT♡ 83.64 89.43 94.39 89.86 88.96 89.60 76.00 87.41
DINOGPT-3

§ 79.96 85.27 93.67 88.87 84.29 88.60 69.62 84.33
DINOGPT-3.5

∗ 82.25 88.40 94.36 90.11 87.75 87.40 75.42 86.53
CLAIF§ 81.64 87.98 94.24 89.34 86.16 89.80 77.16 86.62
SimCSE∗ 82.51 88.85 94.90 90.24 88.03 88.40 76.29 87.03+PNA 82.24 88.69 94.95 90.10 87.42 88.60 75.88 86.84
CLHAIF∗ 82.15 88.95 94.79 90.41 85.94 90.40 76.17 86.97+PNA 82.30 88.59 94.50 90.00 87.59 90.20 76.00 87.03↑

R
oB

E
R

Ta
-b

SRoBERTa♢ 84.91 90.83 92.56 88.75 90.50 88.60 78.14 87.76
DINOGPT-3

§ 82.31 88.66 93.95 88.72 87.53 88.20 73.74 86.16
DINOGPT-3.5

∗ 84.91 90.92 93.62 89.34 91.43 86.40 75.54 87.45
CLAIF§ 84.11 90.62 94.29 89.13 89.57 91.00 77.22 87.99
SimCSE∗ 84.62 91.29 94.86 89.89 90.99 92.00 76.70 88.62+PNA 84.86 91.23 94.54 89.76 92.09 91.60 76.64 88.67↑
CLHAIF∗ 84.65 91.23 94.53 90.02 90.66 94.20 77.80 89.01+PNA 84.94 91.34 94.63 89.97 91.76 91.60 77.45 88.80

R
oB

E
R

Ta
-l

SRoBERTa♡ 84.88 90.07 94.52 90.33 90.66 87.40 75.94 87.69
DINOGPT-3.5

∗ 87.53 92.08 94.72 90.61 92.37 88.20 73.91 88.49
CLAIF∗ 85.18 90.28 94.56 89.89 90.50 93.80 76.00 88.60
SimCSE∗ 87.50 92.27 94.67 90.62 92.20 91.40 74.55 89.03+PNA 86.60 91.44 94.86 91.06 92.09 88.60 71.13 87.97
CLHAIF∗ 87.74 92.18 95.26 90.84 91.87 93.20 75.59 89.53+PNA 87.00 91.55 94.19 91.16 92.26 91.40 75.88 89.06

Table 6: Spearman’s correlation performances of human (red), LLM (blue), and human+LLM (purple)-supervised
sentence embedding models across transfer learning tasks. PNA shows an improvement in some of the transfer
learning tasks. ♡: Reimers and Gurevych, 2019; §: Cheng et al., 2023; ♢: Jiang et al., 2022; ∗: reproduced results
(Appendix B). Bold and underlined texts indicate the first and the second best value for each backbone model and
STS task.
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