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Abstract

Many online content portals allow users to ask
questions to supplement their understanding
(e.g., of lectures). While information retrieval
(IR) systems may provide answers for such
user queries, they do not directly assist con-
tent creators—such as lecturers who want to
improve their content—identify segments that
caused a user to ask those questions. We in-
troduce the task of backtracing, in which sys-
tems retrieve the text segment that most likely
caused a user query. We formalize three real-
world domains for which backtracing is impor-
tant in improving content delivery and commu-
nication: understanding the cause of (a) stu-
dent confusion in the LECTURE domain, (b)
reader curiosity in the NEWS ARTICLE do-
main, and (c) user emotion in the CONVER-
SATION domain. We evaluate the zero-shot
performance of popular information retrieval
methods and language modeling methods, in-
cluding bi-encoder, re-ranking and likelihood-
based methods and ChatGPT. While traditional
IR systems retrieve semantically relevant infor-
mation (e.g., details on “projection matrices”
for a query “does projecting multiple times
still lead to the same point?”), they often miss
the causally relevant context (e.g., the lecturer
states “projecting twice gets me the same an-
swer as one projection”). Our results show that
there is room for improvement on backtracing
and it requires new retrieval approaches. We
hope our benchmark serves to improve future
retrieval systems for backtracing, spawning sys-
tems that refine content generation and identify
linguistic triggers influencing user queries.1

1 Introduction

Content creators and communicators, such as lec-
turers, greatly value feedback on their content to
address confusion and enhance its quality (Evans
and Guymon, 1978; Hativa, 1998). For example,

1Our code is opensourced: https://github.com/
rosewang2008/backtracing.

OK, guys, we're almost ready to make this lecture immortal. OK. Are we on? All right. This is an important lecture. It's about projection. And I'll, let me start 
by just projecting a vector b down on a vector a. So just to, so you see what the geometry looks like in, when I'm in, in just two dimensions. I'd like to find 
the point along this line. So that, that line through a is a one-dimensional subspace, so I'm starting with one dimension. I'd like to find the point on that line 
closest to b. Can I just take that problem first and then I'll explain why I want to do it and why I want to project on other subspaces. So where, where's the 
point closest to b that's on that line? It's somewhere there. And let me connect that. And, and what's the whole point of my picture now? What, what's the, 
where does orthogonality come into this picture? The whole point is that this, this best point, that's the projection, p, of b onto the line, where's 
orthogonality? It's the fact that that's a right angle. That this, the error, this is like how much I'm wrong by. This is the difference between b and p. The whole 
point is that that, that that's perpendicular to a. That's got to give us the equation. That's got to tell us, that's the one fact we know, that's got to tell us 
where that projection is. Let me also say, look, I, I've drawn a triangle there. So if we were doing trigonometry, we would do like, we would have angles theta 
and distances that would involve sine theta and cos theta. That leads to lousy formulas compared to linear algebra. The, the, the formula that we want 
comes out nicely. And what's the, what do we know? We know that p, this projection, is some multiple of a, right? It's on that line. So we know it's, it's in 
that one-dimensional subspace. It's some multiple, let me call that multiple x, of a. So really it's that number x I'd like to find. So this is going to be simple in 
1D, so let's just carry it through and then see how it goes in high dimension. OK. The key fact is, so the, the key, the key to everything is that perpendicular, 
the fact that, that A is perpendicular to, A is perpendicular to E, which is B minus A x, xA. I don't care if I, xA. That that equals zero. You see that as the 
central equation? That's saying that this A is perpendicular to this correction. That's going to tell us what x is. Let me just raise the board and simplify that 
and out will come x. OK. So if I simplify that, let's see, I'll move one to, one term to one side, the other term will be on the other side. It looks to me like x 
times A transpose A is equal to A transpose B. Right? I have A transpose B is one term, A transpose A is the other, so right away, here's my A transpose A, 
but it's just a number now, and I divide by it, and I get the answer. x is A transpose B over A transpose A. And P, the projection I wanted, is that's the right 
multiple. That's got a cosine theta built in, but we don't need to look at angles. We've just got vectors here. And the projection is P is A times that x. Or x 
times that A, but I'm really going to, eventually, I'm going to want that x coming on the right-hand side. So you see that I've got two of the three formulas 
already, right here. I've got the, the equation, that's the equation that, that, that leads me to the answer. Here's the answer for x, and here's the projection. 
OK. Can I do, add just one more thing to this one-dimensional problem? One more, like, lift it up into linear algebra, into matrices. Here's the last thing I want 
to do with those, but don't forget those formulas. A transpose B over A transpose A. Actually, let's look at that for a moment first. Suppose, and A, well, then 
I'll, I'll let me, I'll, I'll, let me take this next step. So P is A times x. So can I write that, then? P is A times this neat number, A transpose B over A transpose A. 
That's our projection. Can I ask a couple of questions about it, just while we look, get that, digest that formula? Suppose B is doubled. Suppose I change B 
to 2B. What happens to the projection? So suppose I, instead of that vector B that I drew on the board, make it 2B, twice as long. What's, what's the 
projection now? It's double two, right? It's going to be twice as far. If B goes twice as far, the projection will go twice as far, and you see it there. If I put in an 
extra factor two, then, then P's got that factor two. Now what about if I double A? What if I doublthe projection? What's the projection matrix? Those are my 
three questions. That we answered in the 1-D case and nowht to work then, too. If A is a nice square invertible matrix, what's its column space? So it's a 
nice n by n invertible everything great matrix. What's its column space? The whole of Rn. So what's the projection matrix if I'm projecting under the whole 
space? It's the identity, right? If I'm projecting B under the whole space, not just onto a plane but onto all of 3D, then B is already in the column space, the 
projection is the identity, and this is gives me the correct formula, P is up. But if I'm projecting onto a subspace, then I can't split those apart and I have to 
stay with that formula. OK. And what can I say, so I remember this formula for 1D and that's what it looks like in n dimensions. And what are the properties 
that I expected for any projection matrix and I still expect for this one? That matrix should be symmetric and it is, P transpose of P, because if I transpose 
this, this guy's symmetric, and its inverse is symmetric, and if I transpose this one, when I transpos it, if I multiply by another P, so there's another A, another 
A transpose A inverse A transpose, can you, god, eight As in a row is, like, obscene, but, do you see that it works? So I'm squaring that, so what do I do? 
How do I see that multiplication? Well, yeah, I just want to put parentheses in good places so I see what's happening. Yeah, here's an A transpose A sitting 
together, so when that A transpose A multiplies its inverse, all that stuff goes, right? And leaves just the A transpose at the end, which is just what we want. 
So P squared equals P. So sure enough, those two propen this same lecture. So that'll give me a chance to recap the formulas and there they are, and recap 
the ideas. So let me start the problem today. I'm given a bunch of data points. And they lie close to a line but not on a line. Let me take that. Say at t equal 
to one, two, and three, I have one and two and two again. So my data points are, this is the, like, the time direction, and this is like, well, let me call that b or 
y or something. I'm given these three points and I want to fit them by a line, by the best straight line. So the problem is fit the points, one, one is the first 

Corpus  (e.g., lecture transcript)X

I have a question, if I project 
the projection again that's the 
same point that is P^2=P. But if 
I keep doing such it should tell 
P^3=P^4=P^n=P, and this 
property holds for Identity 
matrix. Is my logic correct? 

Backtracing: Given the corpus  and query , retrieve the sentence 
that most likely caused the query. 

X q

Query  (e.g., student question)q👩🏫 👱

👩🏫
[…] The projection is the same point. So that means that if I 
project twice, I get the same answer as I did in the first project. 
So those are the two properties that tell me I'm looking at a 
projection matrix. […]

What did I say that triggered this student’s question?

Figure 1: The task of backtracing takes a query and identifies
the context that triggers this query. Identifying the cause
of a query can be challenging because of the lack of explicit
labeling, large corpus size, and domain expertise to understand
both the query and corpus.

when a student is confused by a lecture content,
they post questions on the course forum seeking
clarification. Lecturers want to determine where
in the lecture the misunderstanding stems from in
order to improve their teaching materials (McK-
one, 1999; Harvey, 2003; Gormally et al., 2014).
The needs of these content creators are different
than the needs of information seekers like students,
who may directly rely on information retrieval (IR)
systems such as Q&A methods to satisfy their in-
formation needs (Schütze et al., 2008; Yang et al.,
2015; Rajpurkar et al., 2016; Joshi et al., 2017;
Yang et al., 2018).

Identifying the cause of a query can be challeng-
ing because of the lack of explicit labeling, implicit
nature of additional information need, large size
of corpus, and required domain expertise to un-
derstand both the query and corpus. Consider the
example shown in Figure 1. First, the student does
not explicitly flag what part of the lecture causes
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What caused Speaker A to be angry?

User Emotion in ConversationsStudent Confusion in Lectures Reader Curiosity in News Articles

Student: Can someone explain why A=LU 
is better than EA=U?

What caused the student’s confusion?

Reader: Was it necessary to rename 
the subsidiary?

Journalist: In a last-ditch effort 
to keep its sales force and 
customer base, Integrated Resources 
Inc. said it agreed in principle to 
transfer ownership of its broker-
dealer subsidiary to two of its top 
executives. The financial-services 
firm, struggling since summer to 
avoid a bankruptcy-law filing after 
missing interest payments on about 
$1 billion of debt, will retain the 
right to regain the subsidiary. It 
said it will exercise that right 
only if it sells substantially all 
of its other core businesses. It 
also can sell the right to regain 
the subsidiary to another party. 
Also, the broker-dealer subsidiary, 
Integrated Resources Equity Corp., 
was renamed Royal Alliance 
Associates Inc. Because of 
Integrated's widely reported […]

Lecturer: What matrix do I multiply 
by to get the identity if I have A 
here? OK, that'll be simple but so 
basic. […] This product turns out to 
be better than this one. Let me take 
a typical case here. […] Maybe rather 
than saying left of A, left of U, let 
me write down again what I mean. EA 
is U, whereas A is LU. OK. Let me 
make the point now in words. The 
order that the matrices come for L is 
the right order. The two and the five 
don't sort of interfere to produce 
this ten. In the right order, the 
multipliers just sit in the matrix L. 
That's the point. That the, so that 
if I want to know L, I've no work to 
do. I just keep a record of what 
those multipliers were. And that 
gives me L. So I'll draw the, so 
what's the order? So let me state it. 
So this is the A equal LU. So if no 
row exchanges, the multipliers, […]

A: Hi, I made a reservation for a 
mid-size vehicle. The name is Jimmy 
Fox.

B: I’m sorry, we have no mid-size 
available at the moment.

A: I don’t understand, I made a 
reservation, do you have my 
reservation?

B: Yes, we do, unfortunately we ran 
out of cars. 

A: But the reservation keeps the car 
here. That’s why you have the 
reservation.

B: I know why we have reservations.

A (emotion=anger): I don’t think you 
do. If you did, I’d have a car.

What caused the reader’s curiosity?

Figure 2: Retrieving the correct triggering context can provide insight into how to better satisfy the user’s needs and improve
content delivery. We formalize three real-world domains for which backtracing is important in providing context on a user’s
query: (a) The LECTURE domain where the objective is to retrieve the cause of student confusion; (b) The NEWS ARTICLE
domain where the objective is to retrieve the cause of reader curiosity; (c) The CONVERSATION domain where the objective
is to retrieve the cause of user emotion (e.g., anger). The user’s query is shown in the gray box and the triggering context is
the green -highlighted sentence. Popular retrieval systems such as dense retriever-based and re-ranker based systems retrieve

incorrect contexts shown in red .

their question, yet they express a latent need for
additional information outside of the lecture con-
tent. Second, texts like lecture transcripts are long
documents; a lecturer would have a difficult time
pinpointing the precise source of confusion for ev-
ery student question they receive. Finally, some
queries require domain expertise for understanding
the topic and reason behind the student’s confu-
sion; not every student question reflects the lecture
content verbatim, which is what makes backtracing
interesting and challenging.

To formalize this task, we introduce a novel re-
trieval task called backtracing. Given a query (e.g.,
a student question) and a corpus (e.g., a lecture tran-
script), the system must identify the sentence that
most likely provoked the query. We formalize three
real-world domains for which backtracing is im-
portant for improving content delivery and commu-
nication. First is the LECTURE domain where the
goal is to retrieve the cause of student confusion;
the query is a student’s question and the corpus is
the lecturer’s transcript. Second is the NEWS ARTI-
CLE domain where the goal is to retrieve the cause
of a user’s curiosity in the news article domain;
the query is a user’s question and the corpus is the

news article. Third is the CONVERSATION domain
where the goal is to retrieve the cause of a user’s
emotion (e.g., anger); the query is the user’s conver-
sation turn expressing that emotion and the corpus
is the complete conversation. Figure 2 illustrates an
example for each of these domains. These diverse
domains showcase the applicability and common
challenges of backtracing for improving content
generation, similar to heterogeneous IR datasets
like BEIR (Thakur et al., 2021).

We evaluate a suite of popular retrieval systems,
like dense retriever-based (Reimers and Gurevych,
2019a; Guo et al., 2020; Karpukhin et al., 2020) or
re-ranker-based systems (Nogueira and Cho, 2019;
Craswell et al., 2020; Ren et al., 2021). Addition-
ally, we evaluate likelihood-based retrieval meth-
ods which use pre-trained language models (PLMs)
to estimate the probability of the query conditioned
on variations of the corpus (Sachan et al., 2022),
such as measuring the query likelihood conditioned
on the corpus with and without the candidate seg-
ment. Finally, we also evaluate the long context
window gpt-3.5-turbo-16k ChatGPT model be-
cause of its ability to process long texts and perform
instruction following. We find that there is room
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for improvement on backtracing across all meth-
ods. For example, the bi-encoder systems (Reimers
and Gurevych, 2019a) struggle when the query is
not semantically similar to the text segment that
causes it; this often happens in the CONVERSA-
TION and LECTURE domain, where the query may
be phrased differently than the original content.
Overall, our results indicate that backtracing is a
challenging task which requires new retrieval ap-
proaches to take in causal relevance into account; t
for instance, the top-3 accuracy of the best model
is only 44% on the LECTURE domain.

In summary, we make the following contribu-
tions in this paper:

• We propose a new task called backtracing
where the goal is to retrieve the cause of the
query from a corpus. This task targets the in-
formation need of content creators who wish
to improve their content in light of questions
from information seekers.

• We formalize a benchmark consisting of three
domains for which backtracing plays an im-
portant role in identifying the context trigger-
ing a user’s query: retrieving the cause of stu-
dent confusion in the LECTURE setting, reader
curiosity in the NEWS ARTICLE setting, and
user emotion in the CONVERSATION setting.

• We evaluate a suite of popular retrieval sys-
tems, including bi-encoder and re-ranking ar-
chitectures, as well as likelihood-based meth-
ods that use pretrained language models to
estimate the probability of the query condi-
tioned on variations of the corpus.

• We show that there is room for improvement
and limitations in current retrieval methods for
performing backtracing, suggesting that the
task is not only challenging but also requires
new retrieval approaches.

2 Related works

The task of information retrieval (IR) aims to re-
trieve relevant documents or passages that satisfy
the information need of a user (Schütze et al., 2008;
Thakur et al., 2021). Prior IR techniques involve
neural retrieval methods like ranking models (Guo
et al., 2016; Xiong et al., 2017; Khattab and Za-
haria, 2020) and representation-focused language
models (Peters et al., 2018; Devlin et al., 2018;

Reimers and Gurevych, 2019a). Recent works also
use PLMs for ranking texts in performing retrieval
(Zhuang and Zuccon, 2021; Zhuang et al., 2021;
Sachan et al., 2022); an advantage of using PLMs
is not requiring any domain- or task-specific train-
ing, which is useful for settings where there is not
enough data for training new models. These ap-
proaches have made significant advancements in
assisting information seekers in accessing informa-
tion on a range of tasks. Examples of these tasks
include recommending news articles to read for
a user in the context of the current article they’re
reading (Voorhees, 2005; Soboroff et al., 2018),
retrieving relevant bio-medical articles to satisfy
health-related concerns (Tsatsaronis et al., 2015;
Boteva et al., 2016; Roberts et al., 2021; Soboroff,
2021), finding relevant academic articles to acceler-
ate a researcher’s literature search (Voorhees et al.,
2021), or extracting answers from texts to address
questions (Yang et al., 2015; Rajpurkar et al., 2016;
Joshi et al., 2017; Yang et al., 2018).

However, the converse needs of content creators
have received less exploration. For instance, under-
standing what aspects of a lecture cause students to
be confused remains under-explored and marks ar-
eas for improvement for content creators. Backtrac-
ing is related to work on predicting search intents
from previous user browsing behavior for under-
standing why users issue queries in the first place
and what trigger their information needs (Cheng
et al., 2010; Kong et al., 2015; Koskela et al., 2018).
The key difference between our approach and prior
works is the nature of the input data and prediction
task. While previous methods rely on observable
user browsing patterns (e.g., visited URLs and click
behaviors) for ranking future search results, our
backtracing framework leverages the language in
the content itself as the context for the user query
and the output space for prediction. This shift in
perspective allows content creators to get granular
insights into specific contextual, linguistic triggers
that influence user queries, as opposed to behav-
ioral patterns.

Another related task is question generation,
which also has applications to education (Heilman
and Smith, 2010; Duan et al., 2017; Pan et al.,
2019). While question generation settings assume
the answer can be identified in the source docu-
ment, backtracing is interested in the triggers for
the questions rather than the answers themselves.
In many cases, including our domains, the answer
to the question may exist outside of the provided
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Backtracing 
Given a corpus and a query, identify the sentence(s) that most likely caused the query. 

arg max
t∈[1,T]

p(t |x1, …, xT, q)

Corpus  X

Query  q

x1 x2 x3 x4

q
Example
Corpus  (lecture transcript)X

First of all, is the matrix symmetric? That's a natural question for matrices. And the answer is yes. If I take the transpose of this, there's a number 
down there, the transpose of A A transpose is A A transpose. […] The projection for a point on this line, the projection is right where it is. The 
project is the same point. So that means that if I project twice, I get the same answer as I did in the first project. So those are the two properties 
that tell me I'm looking at a projection matrix. […]

Query   (student question)q

I have a question, if I project the projection again that's the same point that is P^2=P. But if I keep doing such it should tell P^3=P^4=P^n=P, and 
this property holds for Identity matrix. Is my logic correct? 

Figure 3: Illustration of backtracing. The goal of backtracing is to identify the most likely sentence from the ordered corpus X
that caused the query q. One example is the LECTURE domain where the corpus is a lecture transcript and the query is a student
question. The lecturer only discusses about projecting twice and the student further extends that idea to something not raised in
the lecture, namely into projecting a matrix an arbitrary n times.

source document.

3 Backtracing

Formally, we define backtracing as: Given corpus
of N sentences X = {x1, . . . , xN} and query q,
backtracing selects

t̂ = arg max
t∈1...N

p(t|x1, . . . , xN , q) (1)

where xt is the tth sentence in corpus X and p is
a probability distribution over the corpus indices,
given the corpus and the query. Figure 3 illus-
trates this definition and grounds it in our previ-
ous lecture domain example. This task intuitively
translates to: Given a lecture transcript and student
question, retrieve the lecture sentence(s) that most
likely caused the student to ask that question.

Ideal methods for backtracing are ones that can
provide a continuous scoring metric over the corpus
and can handle long texts. This allows for distin-
guishable contributions from multiple sentences in
the corpus, as there can be more than one sentence
that could cause the query. In the case where there
is more than one target sentence, our acceptance
criterion is whether there’s overlap between the
target sentences and the predicted sentence. Ad-
ditionally, some text domains such as lectures are
longer than the context window lengths of existing
language models. Effective methods must be able
to circumvent this constraint algorithmically (e.g.,
by repeated invocation of a language model).

Our work explores the backtracing task in a
“zero-shot” manner across a variety of domains,
similar to Thakur et al. (2021). We focus on a re-
stricted definition of zero-shot in which validation
on a small development set is permitted, but not
updating model weights. This mirrors many emerg-
ing real-world scenarios in which some data-driven
interventions can be applied but not enough data is
present for training new models. Completely blind
zero-shot testing is notoriously hard to conduct
within a reusable benchmark (Fuhr, 2018; Perez
et al., 2021) and is much less conducive to devel-
oping different methods, and thus lies outside our
scope.

4 Backtracing Benchmark Domains

We use a diverse set of domains to establish a
benchmark for backtracing, highlighting both its
broad applicability and the shared challenges inher-
ent to the task. This section first describes the do-
main datasets and then describes the dataset statis-
tics with respect to the backtracing task.

4.1 Domains

Figure 2 illustrates examples of the corpus and
query in each domain. Table 1 contains statistics
on the dataset. The datasets are protected under the
CC-BY license.

LECTURE We use real-world university lecture
transcripts and student comments to construct the
LECTURE domain. Lectures are a natural setting
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LEC NEWS CONV

Query Total 210 1382 671
Avg. words 30.9 7.1 11.6
Max words 233 27 62
Min words 4 1 1

Corpus Total 11042 2125 8263
Avg. size 525.8 19.0 12.3
Max size 948 45 6110
Min size 273 7 6

Table 1: Dataset statistics on the query and corpus sizes
for backtracing. LEC is the LECTURE domain, NEWS is the
NEWS ARTICLE domain, and CONV is the CONVERSATION
domain. The corpus size is measured on the level of sentences
for LECTURE and NEWS ARTICLE, and of conversation turns
for CONVERSATION.

for students to ask questions to express confusion
about novel concepts. Lecturers can benefit from
knowing what parts of their lecture cause confusion.
We adapt the paired comment-lecture dataset from
SIGHT (Wang et al., 2023), which contains lec-
ture transcripts from MIT OpenCourseWare math
videos and real user comments from YouTube ex-
pressing confusion. While these comments natu-
rally act as queries in the backtracing framework,
the comments do not have ground-truth target an-
notations on what caused the comment in the first
place. Our work contributes these annotations. Two
annotators (co-authors of this paper) familiar with
the task of backtracing and fluent in the math topics
at a university-level annotate the queries2. They
select up to 5 sentences and are allowed to use
the corresponding video to perform the task. 20
queries are annotated by both annotators and these
annotations share high agreement: the annotators
identified the same target sentences for 70% of
the queries, and picked target sentences close to
each other. These annotation results indicate that
performing backtracing with consensus is possible.
Appendix B includes more detail on the annota-
tion interface and agreement. The final dataset
contains 210 annotated examples, comparable to
other IR datasets (Craswell et al., 2020, 2021; Sobo-
roff, 2021).3 In the case where a query has more
than one target sentence, the accuracy criterion
is whether there’s overlap between the target sen-
tences and predicted sentence (see task definition

2The annotators must be fluent in the math topics to under-
stand both the lecture and query, and backtrace accordingly.

3After conducting 2-means 2-sided equality power anal-
ysis, we additionally concluded that the dataset size is suf-
ficiently large—the analysis indicated a need for 120 sam-
ples to establish statistically significant results, with power
1− β = 0.8 and α = 0.05.

in Section 3).

NEWS ARTICLE We use real-world news arti-
cles and questions written by crowdworkers as they
read through the articles to construct the NEWS AR-
TICLE domain. News articles are a natural setting
for readers to ask curiosity questions, expressing a
need for more information. We adapt the dataset
from Ko et al. (2020) which contains news arti-
cles and questions indexed by the article sentences
that provoked curiosity in the reader. We modify
the dataset by filtering out articles that cannot fit
within the smallest context window of models used
in the likelihood-based retrieval methods (i.e., 1024
tokens). This adapted dataset allows us to assess
the ability of methods to incorporate more con-
textual information and handling more distractor
sentences, while maintaining a manageable length
of text. The final dataset contains 1382 examples.

CONVERSATION We use two-person conversa-
tions which have been annotated with emotions,
such as anger and fear, and cause of emotion on the
level of conversation turns. Conversations are natu-
ral settings for human interaction where a speaker
may accidentally say something that evokes strong
emotions like anger. These emotions may arise
from cumulative or non-adjacent interactions, such
as the example in Figure 2. While identifying con-
tent that evokes the emotion expressed via a query
differs from content that causes confusion, the abil-
ity to handle both is key to general and effective
backtracing systems that retrieve information based
on causal relevance. Identifying utterances that
elicit certain emotions can pave the way for better
emotional intelligence in systems and refined con-
flict resolution tools. We adapt the conversation
dataset from Poria et al. (2021) which contain turn-
level annotations for the emotion and its cause, and
is designed for recognizing the cause of emotions.
The query is one of the speaker’s conversation turn
annotated with an emotion and the corpus is all of
the conversation turns. To ensure there are enough
distractor sentences, we use conversations with at
least 5 sentences and use the last annotated utter-
ance in the conversation. The final dataset contains
671 examples.

4.2 Domain Analysis

To contextualize the experimental findings in Sec-
tion 6, we first analyze the structural attributes of
our datasets in relation to backtracing.
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Figure 4: Each dataset plot shows the query similarity to
the ground truth cause sentence (GT), to the corpus sentence
with maximal similarity (Max), and the difference between
the maximal and ground-truth similarity sentences (Diff).

How similar is the query to the cause? To an-
swer this question, we plot the semantic similarity
of the query to the ground-truth cause sentence
(GT) in Figure 4. We additionally plot the max-
imal similarity of the query to any corpus sen-
tence (Max) and the difference between the ground-
truth and maximal similarity (Diff). This compares
the distractor sentences to the ground-truth sen-
tences; the larger the difference is, the less likely
semantic relevance can be used as a proxy for
causal relevance needed to perform backtracing.
This would also indicate that poor performance
of similarity-based methods because the distrac-
tor sentences exhibit higher similarity. We use
the all-MiniLM-L12-v2 S-BERT model to mea-
sure semantic similarity (Reimers and Gurevych,
2019a).

Notably, the queries and their ground-truth cause
sentences exhibit low semantic similarity across
domains, indicated by the low blue bars. Addition-
ally, indicated by the green bars, CONVERSATION

and LECTURE have the largest differences between
the ground-truth and maximal similarity sentences,
whereas NEWS ARTICLE has the smallest. This
suggests that there may be multiple passages in a
given document that share a surface-level resem-
blance with the query, but a majority do not cause
the query in the CONVERSATION and LECTURE

domains. In the NEWS ARTICLE domain, the query
and cause sentence exhibit higher semantic simi-
larity because the queries are typically short and
mention the event or noun of interest. Altogether,
this analysis brings forth a key insight: Semantic
relevance doesn’t always equate causal relevance.

Where are the causes located in the corpus?
Understanding the location of the cause provides
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Figure 5: Each row plot is a per-domain histogram of where
the ground-truth cause sentence lies in the corpus document.
The x-axis reports the location of the cause sentence; 0 means
the cause sentence is the first sentence and 1 the last sentence.
The y-axis reports the count of cause sentences at that location.

insight into how much context is needed in iden-
tifying the cause to the query. Figure 5 visualizes
the distribution of cause sentence locations within
the corpus documents. These plots show that while
some domains have causes concentrated in specific
sections, others exhibit a more spread-out pattern.
For the NEWS ARTICLE domain, there is a no-
ticeable peak at the beginning of the documents
which suggests little context is needed to identify
the cause. This aligns with the typical structure
of news articles where crucial information is in-
troduced early to capture the reader’s interest. As
a result, readers may have immediate questions
from the onset. Conversely, in the CONVERSA-
TION domain, the distribution peaks at the end,
suggesting that more context from the conversation
is needed to identify the cause. Finally, in the LEC-
TURE domain, the distribution is relatively uniform
which suggests a broader contextual dependence.
The causes of confusion arise from any section,
emphasizing the importance of consistent clarity
throughout an educational delivery.

An interesting qualitative observation is that
there are shared cause locations for different
queries. An example from the LECTURE domain
is shown in Figure 6 where different student ques-
tions are mapped to the same cause sentence. This
shows the potential for models to effectively per-
form backtracing and automatically identify com-
mon locations of confusion for lecturers to revise
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Lecture: [...] So it’s 1 by 2x0 times 2y0, which is 2x0y0,
which is, lo and behold, 2. [...]
Student A’s question: why is 2xo(yo) = 2?
Student B’s question: When he solves for the area of the
triangle, why does he say it doesn’t matter what X0 and Y0
are? Does he just mean that all values of f(x) = 1/x will result
in the area of the triangle of the tangent line to be 2?
Student C’s question: Why always 2?? is there a prove?

Figure 6: An example of a common confusion point
where several students posed questions concerning a
particular part of the lecture.
for future course offerings.

5 Methods

We evaluate a suite of existing, state-of-the-art re-
trieval methods and report their top-1 and top-3
accuracies (i.e., whether the top 1 and 3 candidate
sentences include the ground-truth sentences). Re-
porting top-k accuracy is a standard metric in the
retrieval setting. The methods can be broadly cate-
gorized into similarity-based (i.e., using sentence
similarity) and likelihood-based retrieval methods.
Similar to Sachan et al. (2022), the likelihood-
based retrieval methods use PLMs to measure
the probability of the query conditioned on vari-
ations of the corpus and can be more expressive
than the similarity-based retrieval methods; we de-
scribe these variations in detail below. We use
GPT-2 (Radford et al., 2019), GPT-J (Wang and
Komatsuzaki, 2021), and OPT-6.7B (Zhang et al.,
2022) as the PLMs. We additionally evaluate with
gpt-3.5-turbo-16k, a new model that has a long
context window ideal for long text settings like
SIGHT. However, because this model does not out-
put probability scores, we cast only report its top 1
accuracy.

Random. This method randomly retrieves a sen-
tence from the corpus.

Edit distance. This method retrieves the sen-
tence with the smallest edit distance from the query.

Bi-encoders. This method retrieves the sen-
tence with the highest semantic similarity
using the best performing S-BERT mod-
els (Reimers and Gurevych, 2019b). We
use multi-qa-MiniLM-L6-cos-v1 trained
on a large set of question-answer pairs and
all-MiniLM-L12-v2 trained on a diversity of text
pairs from sentence-transformers as the encoders.

Cross-encoder. This method picks the sentence
with the highest predicted similarity score by the

cross-encoder. We use ms-marco-MiniLM-L-6-v2
(Thakur et al., 2021).

Re-ranker. This method uses a bi-encoder to
retrieve the top k candidate sentences from the
corpus, then uses a cross-encoder to re-rank the
k sentences. We use all-MiniLM-L12-v2 as the
bi-encoder and ms-marco-MiniLM-L-6-v2 as the
cross-encoder. Since the smallest dataset—Daily
Dialog—has a minimum of 5 sentences, we use
k = 5 for all datasets.

gpt-3.5-turbo-16k. This method is provided
a line-numbered corpus and the query, and gener-
ates the line number that most likely caused the
query. The prompt used for gpt-3.5-turbo-16k
is in Appendix C.

Single-sentence likelihood-based retrieval
p(q|xt). This method retrieves the sentence
xt ∈ X that maximizes p(q|xt). To contextualize
the corpus and query, we add domain-specific
prefixes to the corpus and query. For example, in
SIGHT, we prepend “Teacher says: ” to the corpus
sentence and “Student asks: ” to the query. Due
to space constraints, Appendix C contains all the
prefixes used.

Auto-regressive likelihood-based retrieval
p(q|x≤t). This method retrieves the sentence
xt which maximizes p(q|x≤t). This method
evaluates the importance of preceding context in
performing backtracing. LECTURE is the only
domain where the entire corpus cannot fit into the
context window. This means that we cannot always
evaluate p(q|x≤t) for xt when |x≤t| is longer than
the context window limit. For this reason, we
split the corpus X into chunks of k sentences,
(i.e., X0:k−1, Xk:2k−1, . . . ) and evaluate each xt
within their respective chunk. For example, if
xt ∈ Xk:2k−1, the auto-regressive likelihood score
for xt is p(q|Xk:t). We evaluate with k = 20
because it is the maximum number of sentences
(in addition to the query) that can fit in the smallest
model context window.

Average Treatment Effect (ATE) likelihood-
based retrieval p(q|X) − p(q|X \ xt). This
method takes inspiration from treatment effects
in causal inference (Holland, 1986). We describe
how ATE can be used as a retrieval criterion. In
our setting, the treatment is whether the sentence
xt is included in the corpus. We’re interested in the
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LECTURE NEWS ARTICLE CONVERSATION
@1 @3 @1 @3 @1 @3

Random 0 0 7 21 12 36
Edit 4 8 7 18 1 16
Bi-Encoder (Q&A) 23 37 48 71 1 15
Bi-Encoder (all-MiniLM) 26 40 49 75 1 37
Cross-Encoder 22 39 66 85 1 15
Re-ranker 29 44 66 85 1 21
gpt-3.5-turbo-16k 15 N/A 67 N/A 47 N/A

Single-sentence GPT2 20 34 43 64 3 46
p(q|st) GPTJ 23 42 67 85 5 65

OPT 6B 30 43 66 82 2 56

Autoregressive GPT2 11 16 9 18 5 54
p(q|s≤t) GPTJ 14 24 55 76 8 60

OPT 6B 16 26 52 73 18 65

ATE GPT2 13 21 51 68 2 24
p(q|S)− p(q|S/ {st} ) GPTJ 8 18 67 79 3 18

OPT 6B 9 20 64 76 3 22

Table 2: Accuracy in percentage (%). The best models in each column are bolded. For each dataset, we report the
top-1 and 3 accuracies. gpt-3.5-turbo-16k reports N/A for top-3 accuracy because it does not output deterministic
continuous scores for ranking sentences.

effect the treatment has on the query likelihood:

ATE(xt) = pθ(q|X)− pθ(q|X \ {xt}). (2)

ATE likelihood methods retrieve the sentence
that maximizes ATE(xt). These are the sentences
that have the largest effect on the query’s likelihood.
We directly select the sentences that maximize
Equation 2 for NEWS ARTICLE and CONVERSA-
TION. We perform the same text chunking for LEC-
TURE as in the auto-regressive retrieval method: If
xt ∈ Xk:2k−1, the ATE likelihood score for xt is
measured as p(q|Xk:2k−1)− p(q|Xk:2k−1 \ {xt}).

6 Results

The model results are summarized in Table 2.

The best-performing models achieve modest
accuracies. For example, on the LECTURE do-
main with many distractor sentences, the best-
performing model only achieves top-3 43% accu-
racy. On the CONVERSATION domain with few dis-
tractor sentences, the best-performing model only
achieves top-3 65% accuracy. This underscores
that measuring causal relevance is challenging and
markedly different from existing retrieval tasks.

No model performs consistently across domains.
For instance, while a similarity-based method like
the Bi-Encoder (all-MiniLM) performs well on
the NEWS ARTICLE domain with top-3 75% accu-
racy, it only manages top-3 37% accuracy on the

CONVERSATION domain. These results comple-
ment the takeaway from the domain analysis in
Section 4 that semantic relevance is not a reliable
proxy for causal relevance. Interestingly, on the
long document domain LECTURE, the long-context
model gpt-3.5-turbo-16k performs worse than
non-contextual methods like single-sentence like-
lihood methods. This suggests that accounting for
context is challenging for current models.

Single-sentence methods generally outperform
their autoregressive counterparts except on
CONVERSATION. This result complements the
observations made in Section 4’s domain analysis
where the location of the causes concentrates at
the start for NEWS ARTICLE and uniformly for
LECTURE, suggesting that little context is needed
to identify the cause. Conversely, conversations
require more context to distinguish the triggering
contexts, which suggests why the autoregressive
methods perform generally better than the single-
sentence methods.

ATE likelihood methods does not signicantly im-
prove upon other methods. Even though the
ATE likelihood method is designed the calculate
the effect of the cause sentence, it competes with
noncontextual methods such as the single-sentence
likelihood methods. This suggest challenges in
using likelihood methods to measure the counter-
factual effect of a sentence on a query.
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7 Conclusion

In this paper, we introduce the novel task of back-
tracing, which aims to retrieve the text segment that
most likely provokes a query. This task addresses
the information need of content creators who want
to improve their content, in light of queries from
information seekers. We introduce a benchmark
that covers a variety of domains, such as the news
article and lecture setting. We evaluate a series of
methods including popular IR methods, likelihood-
based retrieval methods and gpt-3.5-turbo-16k.
Our results indicate that there is room for improve-
ment across existing retrieval methods. These re-
sults suggest that backtracing is a challenging task
that requires new retrieval approaches with bet-
ter contextual understanding and reasoning about
causal relevance. We hope our benchmark serves as
a foundation for improving future retrieval systems
for backtracing, and ultimately, spawns systems
that empower content creators to understand user
queries, refine their content and provide users with
better experiences.

Limitations

Single-sentence focus. Our approach primarily
focuses on identifying the most likely single sen-
tence that caused a given query. However, in cer-
tain scenarios, the query might depend on groups
or combinations of sentences. Ignoring such depen-
dencies can limit the accuracy of the methods.

Content creators in other domains. Our evalu-
ation primarily focuses on the dialog, new article
and lecture settings. While these domains offer
valuable insights, the performance of backtracing
methods may vary in other contexts, such as sci-
entific articles and queries from reviewers. Future
work should explore the generalizability of back-
tracing methods across a broader range of domains
and data sources.

Long text settings. Due to the length of the lec-
ture transcripts, the transcripts had to be divided
and passed into the likelihood-based retrieval meth-
ods. This approach may result in the omission of
crucial context present in the full transcript, po-
tentially affecting the accuracy of the likelihood-
based retrieval methods. Exploring techniques to
effectively handle larger texts and overcome model
capacity constraints would be beneficial for improv-
ing backtracing performance in long text settings,

where we would imagine backtracing to be useful
in providing feedback for.

Multimodal sources. Our approach identifies the
most likely text segment in a corpus that caused
a given query. However, in multimodal settings,
a query may also be caused by other data types,
e.g., visual cues that are not captured in the tran-
scripts. Ignoring such non-textual data can limit
the accuracy of the methods.

Ethics Statement

Empowering content creators to refine their content
based on user feedback contributes to the produc-
tion of more informative materials. Therefore, our
research has the potential to enhance the educa-
tional experiences of a user, by assisting content
creators through backtracing. Nonetheless, we are
mindful of potential biases or unintended conse-
quences that may arise through our work and fu-
ture work. For example, the current benchmark
analyzes the accuracy of backtracing on English
datasets and uses PLMs trained predominantly on
English texts. As a result, the inferences drawn
from the current backtracing results or benchmark
may not accurately capture the causes of multilin-
gual queries, and should be interpreted with caution.
Another example is that finding the cause for a user
emotion can be exploited by content creators. We
consider this as an unacceptable use case of our
work, in addition to attempt to identify users in the
dataset or the use the data for commercial gain.
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A Computational Setup

We ran our experiments on a Slurm-based univer-
sity compute cluster, consisting of interconnected
nodes optimized for intensive computation tasks
and shared among multiple users for research pur-
poses. The experiments varied in length in time—
some took less than an hour to run (e.g., the random
baselines), while others took a few days to run (e.g.,
the ATE likelihood-based methods on LECTURE).

B LECTURE annotation interface

Figure 7 shows the interface used for annotating
the LECTURE dataset.

C Contextualized prefixes for scoring

This section describes the prompts used for
the likelihood-based retrieval methods and
gpt-3.5-turbo-16k.

The prompts used for gpt-3.5-turbo-16k fol-
low the practices in works from NLP, education and
social sciences (McKenzie, 2023; Library, 2023;
Ziems et al., 2023; Wang et al., 2023). Specifi-
cally, we enumerate the sentences in the corpus as
multiple-choice options and each option is sepa-
rated by a newline. We add context for the task
at the start of the prompt, and the constraints of
outputting a JSON-formatted text for the task at
the end of the prompt. We found the model to
be reliable in outputting the text in the desirable
format.

C.1 LECTURE

For the likelihood-based retrieval methods, the
sentences are concatenated by spaces and “A
teacher is teaching a class, and a student asks a
question.\nTeacher: ” is prepended to the cor-
pus. Because the text comes from transcribed audio
which is not used in training dataset of the PLMs
we use in our work, we found it important for addi-
tional context to be added in order for the probabil-
ities to be slightly better calibrated. For the query,
“Student: ” is prepended to the text. For example,
X = “A teacher is teaching a class, and a student
asks a question.\n Teacher: [sentence 1] [sentence
2] ...”, and q = “Student: [query]”.

The prompt used for gpt-3.5-turbo-16k is in
Figure 8.

C.2 NEWS ARTICLE

For the likelihood-based retrieval methods, the sen-
tences are concatenated by spaces and “Text: ” is

prepended to the corpus. For the query, “Question:
” is prepended to the text. For example, X = “Text:
[sentence 1] [sentence 2] ...”, and q = “Question:
[question]”.

The prompt used for gpt-3.5-turbo-16k is in
Figure 9.

C.3 CONVERSATION

For the likelihood-based retrieval methods, the
speaker identity is added to the text, and the turns
are separated by line breaks. For the query, the
same format is used. For example, X = “Speaker
A: [utterance]\nSpeaker B: [utterance]”, and q =
“Speaker A: [query]”.

The prompt used for gpt-3.5-turbo-16k is in
Figure 10.
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Figure 7: Annotation interface

gpt-3.5-turbo-16k prompt for LECTURE

Consider the following lecture transcript:
{line-numbered transcript}

Now consider the following question:
{query}

Which of the transcript lines most likely provoked this question? If there are multiple possible answers, list them out.
Format your answer as: ["line number": integer, "reason": "reason for why this line most likely caused this query",
...]

Figure 8: gpt-3.5-turbo-16k prompt for LECTURE. For the line-numbered transcript, “Teacher: ” is prepended
to each sentence, the sentences are separated by line breaks, and each line begins with its line number. For the query,
“Student: ” is prepended to the text. For example, a line-numbered article looks like “0. Teacher: [sentence 1]\n1.
Teacher: [sentence 2]\n2. Teacher: [sentence 3] ...”, and the query looks like “Student: [query]”.

gpt-3.5-turbo-16k prompt for NEWS ARTICLE

Consider the following article:
{line-numbered article}

Now consider the following question:
{query}

Which of the article lines most likely provoked this question? If there are multiple possible answers, list them out.
Format your answer as: ["line number": integer, "reason": "reason for why this line most likely caused this query",
...]

Figure 9: gpt-3.5-turbo-16k prompt for NEWS ARTICLE. For the line-numbered article, “Text: ” is prepended to
each sentence, the sentences are separated by line breaks, and each line begins with its line number. For the query,
“Question: ” is prepended to the text. For example, a line-numbered article looks like “0. Text: [sentence 1]\n1.
Text: [sentence 2]\n2. Text: [sentence 3] ...”, and the query looks like “Question: [question]”.
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gpt-3.5-turbo-16k prompt for CONVERSATION

Consider the following conversation:
{line-numbered conversation}

Now consider the following line:
{query}

The speaker felt {emotion} in this line. Which of the conversation turns (lines) most likely caused this emotion?
If there are multiple possible answers, list them out. Format your answer as: ["line number": integer, "reason":
"reason for why this line most likely caused this emotion", ...]

Figure 10: gpt-3.5-turbo-16k prompt for CONVERSATION. For the line-numbered conversation, the speaker is
added to each turn, the turns are separated by line breaks, and each line begins with its line number. For the query,
the speaker is also added. For example, a line-numbered conversation may look like “0. Speaker A: [utterance]\n1.
Speaker B: [utterance]\n2. Speaker A: [utterance] ...”, and the query may look like “Speaker A: [query]”.
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