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Abstract

This research explores strategies for steering
the output of large language models (LLMs)
towards specific styles, such as sentiment, emo-
tion, or writing style, by adding style vectors
to the activations of hidden layers during text
generation. We show that style vectors can
be simply computed from recorded layer ac-
tivations for input texts in a specific style in
contrast to more complex training-based ap-
proaches. Through a series of experiments,
we demonstrate the effectiveness of activation
engineering using such style vectors to influ-
ence the style of generated text in a nuanced
and parameterisable way, distinguishing it from
prompt engineering. The presented research
constitutes a significant step towards develop-
ing more adaptive and effective AI-empowered
interactive systems.

1 Introduction

Large language models (LLMs) pre-trained on vast
corpora have marked a significant milestone in nat-
ural language processing, presenting remarkable
language understanding and generation capabilities.
Models like GPT-2 (Radford et al., 2019) and more
recent variants such as GPT-3 (Brown et al., 2020)
and GPT-4 (OpenAI, 2023) have become influen-
tial in transforming the landscape of text generation.
LLMs have the potential to encode extensive pub-
lic knowledge and can respond to a wide array of
text prompts in a manner that often closely resem-
bles human communication. OpenAI’s ChatGPT,
in particular, has garnered substantial attention,
propelling discussions about generative AI from
the scientific community into the broader public
sphere (Brown et al., 2020; OpenAI, 2023). In this
era of ever-advancing AI, it is becoming increas-
ingly apparent that LLM-based artificial assistants
will play a prominent role in both professional and
personal contexts (Bender et al., 2021; Zhao et al.,
2023). Examples of these are conversational in-
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Figure 1: The LLM output is steered by adding style
vectors to selected layers (e.g., layers 18-20) during a
forward pass. For example, the answer of the LLM
to the input prompt “How is the weather?” is steered
towards a positive style, with a sample answer of “The
weather is great!”, a positive answer.

formation search (Alessio et al., 2023; Shah et al.,
2023), human-AI co-creation (Yuan et al., 2022;
Chung et al., 2022), or complex goal-oriented dia-
logues (Snell et al., 2022).

In these complex settings, text generation on a
lexical level alone is not sufficient for effective
human-AI interaction. Over and above that, a cog-
nitive AI assistant should also be able to adapt
to the human user on an affective and emotional
level regarding engagement, regulation, decision-
making, and discovery (Zhao et al., 2022). There
is evidence that LLMs perform well on affective
computing tasks, such as sentiment classification
and personality prediction, and can have emotional
dialogue capabilities to some extent. However, the
resulting capabilities do not go far beyond simpler
specialized models, presumably due to the LLMs’
generality (Zhao et al., 2023; Amin et al., 2023).
This limitation calls for mechanisms to better con-
trol implicit information and the style of an LLM’s
output.

Prompt engineering has been a promising ap-
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proach in human-AI collaborative tasks, improving
task efficiency and user collaboration (Wu et al.,
2022). However, it is often highly task-specific and
entails manually crafting prompts.

In this paper, we build upon and extend the
works of Subramani et al. (2022) and Turner et al.
(2023), which focus on steering the output of LLMs
by modifying their internal states. In a series of
experiments, using datasets of text samples labeled
with sentiments and emotion categories, we show
that one can derive a vector representation of a
desired style class (e.g., positive sentiment) that,
when added to the activation of certain layers of an
LLM (in this work LLaMa (Touvron et al., 2023)),
its output shows characteristics of this style class
(see Fig. 1). Our experiments show that the ef-
fect of the changed models is more salient when
prompted with subjective input (e.g.,“How do you
define art?”) rather than with factual input that
allows little degrees of freedom (e.g., “What is
the world’s longest river?”). Our research aims
to bridge the gap between the LLM’s capabilities
and the nuanced requirements of human-AI inter-
actions, thus extending this novel dimension to the
realm of controlling LLM outputs.

An open-source implementation of the algo-
rithms used in this paper is available1.

2 Background and Related Work

The introduction of transformer architectures in
neural networks (Vaswani et al., 2017) has led to a
massive leap in the development of contextualized
language models, such as GPT (Brown et al., 2020).
These novel large language models (LLMs) capture
relations in the natural data and implicitly encode
an unlimited number of more abstract concepts,
such as sentiment or style. This quality has been
exploited in several recent investigations and can
be both a risk (Wagner and Zarrieß, 2022) and a
chance (Schramowski et al., 2022).

Many approaches have been developed with the
aim of controlling or affecting the output of LLMs,
also referred to as steering LLMs (Brown et al.,
2020; Zhang et al., 2022; Jin et al., 2022).

Traditionally, methods for producing text in a
specific style fall under the domain of stylized re-
sponse generation (Sun et al., 2022; Yang et al.,
2020; Gao et al., 2019; Jin et al., 2020). Nonethe-
less, as common approaches of this class ne-

1Find all resources at https://github.com/DLR-SC/
style-vectors-for-steering-llms

cessitate training and fine-tuning whole models,
these methods are not applicable to state-of-the-art
LLMs, given the immense parameter count and
training costs of LLMs (Hu et al., 2021).

Another line of research worth mentioning that
aims to employ alternative approaches to the tra-
ditional fine-tuning approach is the parameter-
efficient transfer learning approach (Houlsby et al.,
2019) using adapter modules, which seek to mini-
mize trainable parameters. In contrast, in our work,
we focus on a different efficiency aspect, not only
on the minimal computational resources but also
on the minimal data resources used.

A related but conceptually different approach
to affect the output of LLMs is text style transfer
(TST) (Jin et al., 2022; Reif et al., 2022). TST aims
to transfer the style of a given text into a desired,
different style. In contrast, steering LLMs deals
with the task of generating a response in a desired
style. We refer to Jin et al. (2022) for a detailed
overview of TST.

Prompt engineering (Keskar et al., 2019; Rad-
ford et al., 2019; Shin et al., 2020; Brown et al.,
2020; Lester et al., 2021; Li and Liang, 2021; Wei
et al., 2022; Wu et al., 2022) focuses on controlling
and directing the output of a language model by de-
signing input prompts or instructions. By tailoring
the natural language prompts, the model’s output
can be steered towards producing responses in the
desired style.

Some recent approaches move in a new direc-
tion by modifying the layer activations of an LLM
during the forward pass (Subramani et al., 2022;
Turner et al., 2023; Hernandez et al., 2023). These
approaches can be grouped under the term of ac-
tivation engineering. Subramani et al. (2022) pre-
sented so-called steering vectors that, when added
to the activations at certain layers of an LLM, steer
the model to generate a desired target sentence x
from an empty input. The rationale behind this
is that the information needed to produce the tar-
get sentence is already encoded in the underlying
neural network. Thus, the approach works without
re-training or fine-tuning the model itself.

Starting with an empty prompt, i.e., beginning
of sentence token <bos>, the vector zsteer ∈ Rd

is added to the activations of a defined layer of the
model, where d is the dimension of the layer to gen-
erate the next of the T tokens of x. The objective is
to find a steering vector ẑsteer that maximizes the
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log probability:

ẑsteer = argmax
zsteer

T∑

t=1

log p(xt|x<t, zsteer) (1)

It was demonstrated on a subset of sentences of
the Yelp Sentiment dataset (Shen et al., 2017) that
steering vectors can be used for shifting the style of
a sentence x towards a dedicated target style using
the vector arithmetic:

ẑtarget = zsource + λ z∆ (2)

zsource is the steering vector that produces sentence
xsource. z∆ = z̄target − z̄source is the difference
between the average of all steering vectors learned
for sentences from the target and source domain.
The steering vector ẑtarget can then be used to steer
the model to generate a sentence x′ that is similar
to x but in the target style.

Moreover, layer activations have demonstrated
utility in steering LLMs. Turner et al. (2023) ex-
emplify that steering vectors, derived from con-
trasting activations for semantically opposed inputs
like “love” and “hate” can guide LLM outputs dur-
ing sentence completion. The difference in acti-
vations from such contrasting prompts at layer i
can straightforwardly be added to another input’s
activations to steer outputs.

In this work, we add to this line of research
a method that efficiently steers LLM outputs to-
wards desired styles with notable control and trans-
parency. In contrast to the aforementioned steering
vector and TST techniques, it requires no additional
optimization or prior knowledge about original
styles. Unlike prompt engineering, our approach
offers quantifiable adjustments in style, providing
nuanced differences in responses without relying
on vague intensity indicators in prompts, such as
“extremely negative” versus “negative.”

3 Methodology

We aim to modify the LLM activations for an input
x to generate an output that is steered towards a spe-
cific style category s ∈ S. As shown in Eq. 3, this
is achieved by finding style vectors v(i)

s associated
to s such that when added to the activations a(i)(x)
at layer i the output becomes steered towards s.

â(i)(x) = a(i)(x) + λv(i)
s (3)

Style categories can be, for example, positive
and negative for sentiment styles or different emo-
tion classes such as joy and anger. The weight-
ing parameter λ (Eq. 3) determines the influence
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Figure 2: Extraction of an activation vector (left): The
LLMs’ values at layer i for a prompt in the target style
are saved for later computation of style vectors. Trained
steering vectors (right): The values of the vectors are
optimized over j = 400 epochs such that the model
produces a specified sentence in the target style from a
simple beginning of a sentence (BOS) token.

strength of the style vector on the model’s output
and, thus, allows for more nuanced and controllable
model steering compared to prompt engineering.

In this study, we compare two main approaches
to calculate style vectors, namely Training-based
Style Vectors (Sec. 3.1) and Activation-based Style
Vectors (Sec. 3.2). Training-based style vectors are
found from the generative steering vectors (Sub-
ramani et al., 2022). In contrast to this generative
approach, activation-based style vectors are found
by aggregating layer activations for input sentences
from the target style (Turner et al., 2023). The ba-
sic assumption behind this is that LLMs internally
adapt to the style of the input prompt when produc-
ing output, and thus, style vectors can be derived
from its hidden states. These two methods are con-
trasted in Fig. 2 and introduced in more detail in
this section.

3.1 Training-based Style Vectors
In the approach of Subramani et al. (2022) (see
Sec. 2), an individual steering vector is learned for
each target sentence. Thus, shifting the source
style of an unsteered model output x towards a
modified output x′ (generated by steering vector
ẑx′) in the desired target style requires to com-
pute a steering vector zx that leads the uncondi-
tioned model to produce x (Eq. 2). This, however,
leads to high computational costs and is impracti-
cal for online adaptation of an LLM prompted with
arbitrary inputs. Furthermore, this vector arith-
metic only works for style shifts when the source
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style is known. Many styles, such as emotions,
have multiple categories. For n style classes, one
would need to build n×(n−1) contrasting vectors
z̄target − z̄source. Consequently, style-shifting is
limited and does not generalize to more complex
style concepts.

Our adaptation In contrast to the approach of
Subramani et al. (2022), we do not shift output
styles on sentence level from source to target. In-
stead, the steering vectors zx learned to steer the
model to generate a sample x from style category s

are mean-aggregated into a vector z̄(i)s and all other
steering vectors are mean-aggregated into a vector
z̄
(i)
S\s. Style vectors v

(i)
s for different layers i can

then be calculated as in Eq. 4.

v(i)
s = z̄(i)s − z̄

(i)
S\s (4)

Using the average steering vector z̄S\s as an
offset has the advantage that no knowledge about
the source style is required to steer the produced
output towards a target style.

The training of an individual steering vector zx
is presented in the right part of Fig. 2. The pro-
cess begins with the frozen model receiving an
empty input token and a steering vector initialized
randomly to initiate sentence generation. The re-
sulting output is then evaluated against the target
sentence to calculate a cross-entropy loss, which is
back-propagated to learn the steering vector. The
training for an output x terminates when a steer-
ing vector zx that produces the target sentence x
is found or after a maximum number of j = 400
epochs. We use the Adam optimizer (Kingma and
Ba, 2014) with a learning rate of 0.01.

3.2 Activation-based Style Vectors

An alternative to relying on trained steering vectors
is to work solely in the space of layer activations
when the model is prompted with samples from a
style category s as suggested by Turner et al. (2023)
(see left-hand side of Fig. 2). However, the effect
of this approach on the model output has only been
shown to be able to steer the output of an LLM for
pairs of natural-language prompts by contrasting
the activations of those (e.g., “love” and “hate”).
In this work, we take up this idea and extend it to
calculating general style vectors associated with
style categories instead of single pairs.

Our adaptation The vector of activations of
layer i of an LLM for input x is given as a(i)(x).

The mean-aggregated activations of layer i for all
sentences from style category s ∈ S is denoted
as ā

(i)
s . Analogous to the procedure of Sec. 3.1,

activation-based style vectors for style category s
are calculated as:

v(i)
s = ā(i)s − ā

(i)
S\s (5)

The advantage of this approach is that style vec-
tors are solely based on aggregated activations of
chosen layers that are recorded during the forward
pass of a sentence of class s, and no costly training
of steering vectors is required.

4 Experiments

We compare both introduced approaches, i.e.,
training-based style vectors (Sec. 3.1) and
activation-based style vectors (Sec. 3.2) in terms
of how well they encode information about style
(Sec. 4.3) and the ability to steer the model’s output
(Sec. 4.4).

4.1 Datasets for Style Definitions

Experiments are performed along different style
categories: sentiment, emotion, and writing style
(modern vs. Shakespearean). Each style category
is defined through datasets with labeled samples.
All datasets used contain English text only. For
the training-based style vectors, we filter out sam-
ples containing more than 50 characters from each
dataset to keep the time for computing steering
vectors feasible. For details, see Sec. 4.2. This
limitation does not apply to the activation-based
style vectors.

For our experiments, we use the following popu-
lar datasets:

Yelp Review Dataset The dataset (Shen et al.,
2017) contains unpaired data about restaurant re-
views on the Yelp platform labeled as positive or
negative. After dropping duplicates, the dataset
contains 542k samples.

GoEmotions As a multi-class style dataset, the
GoEmotions dataset (Demszky et al., 2020) com-
prises 58k manually curated user comments from
the internet platform Reddit2 labeled with 27 emo-
tional categories. We use 5k samples that can be
unambiguously mapped to the established six basic
emotion categories (Ekman, 1992): sadness, joy,
fear, anger, surprise, and disgust.

2Reddit forum: https://www.reddit.com/
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Shakespeare The Shakespeare dataset (Jhamtani
et al., 2017) contains paired short text samples of
Shakespearean texts and their modern translations.
We use the training set containing 18,395 sentences
for each style: modern and Shakespearean.

4.2 Experimental Setup
The aim is to investigate the ability to influence
the style of an LLM in a setting where an answer
to a question or instruction prompt is expected.
Our experiments utilize the open-source Alpaca-
7B (Taori et al., 2023) ChatGPT alternative, which
is based on Meta’s LLaMA-7B (Touvron et al.,
2023) architecture. Choosing this model resulted
in d = 4096-dimensional style vectors for each
of its 33 layers. We used a single NVIDIA A100-
SXM4-80GB for our experiments.

For the evaluation of the training-based style
vectors, we only incorporate steering vectors that
reproduce the target sentence with loss < 5, as
vectors with higher loss tend to yield grammati-
cally incorrect output sentences. This resulted in
470 vectors per layer for the Yelp review dataset,
89 for GoEmotions, and 491 for the Shakespeare
dataset. In a pre-study on a smaller subset of the
data, we found that the steering vectors for the
layers i ∈ {18, 19, 20} are most effective, which
is supported by the findings of our probing study
(Sec. 4.3). We only train steering vectors for these
layers to keep the computational effort feasible.
Nevertheless, we had to run the experiment on the
Yelp and Shakespeare datasets for 150 hours each
and for GoEmotions for around 100 hours. In com-
parison, the extraction of the activations only took
at most 8 hours per dataset and resulted in recorded
activation vectors for all dataset samples.

4.3 Probing Study
The receiver operating characteristic (ROC) curves
for two class predictions (positive and negative sen-
timent) in the Yelp review dataset are presented in
Fig. 3. It can be seen that, in general, activations
from layer three onwards lead to remarkably high
classification accuracy (AUC ≥ 0.97, see Fig. 3c)
and are almost perfect for layers i ∈ {18, 19, 20}.
As expected, activations encode style more ex-
plicitly than trained steering vectors, which still
achieve considerable accuracy. The results are sim-
ilar for the other two datasets, discussed in Sec. C.

We can, therefore, determine that the layers i ∈
{18, 19, 20} are candidates for effective steering,
and we only use style vectors v(i)

s computed from

these layers for the generation of prompts in the
next section.

4.4 Evaluation of Generated Texts

As shown in Sec. 4.3, both trained steering and
activation vectors capture relevant style informa-
tion. However, this does not show that style vectors
v(i)

s that are computed from them can be used to
actually steer the style of the model’s output. For
this reason, we assembled a list of 99 exemplary
prompts as input for the Alpaca-7B model. Since
the style of an LLM’s output cannot be consid-
ered independently of the type of input prompt, we
created two different sets of prompts: The factual
list comprises 50 prompts that ask about a hard
fact with a clear, correct answer, such as ”Who
painted the Mona Lisa?“. The subjective list in-
cludes 49 different prompts, allowing more indi-
vidual responses to express sentiments and emo-
tions. They either inquire about a personal opinion,
e.g., ”What do German bread rolls taste like?“,
or general information and allow for a variety of
responses, for instance, ”Describe a piece of art-
work.“ Steering towards a sentiment or emotion
category is expected to affect the LLM’s outcome
significantly more for such subjective prompts than
for factual prompts. The full list of prompts is
given in Sec. A.

As described in Section 3, the parameter λ of
Eq. 3 influences how strongly the model is steered
towards the target style. We found that if this pa-
rameter is chosen too large, the model sometimes
produces nonsense texts, as shown in Ex. E2 in
Sec. 4.4.2 and in Appendix in Sec. B. This effect
seems to be dependent on the input prompt and
style domain.

4.4.1 Classification-based Evaluation
We use standard classification models to evaluate
the steered output of training and activation-based
style vectors. The dashed lines in all steering plots,
e.g., in Fig. 4 and Fig. 5, indicate the mean classifi-
cation score achieved for a prompting baseline. In
these instances, no steering vector was applied to
the model. Instead, we appended “Write the answer
in a [. . . ] manner.” to the input prompt, where the
dots are replaced with the respective target steering
style, e.g., positive, or angry. Thus, the model is
informed in a neutral way to direct the output as
required.

For the Yelp dataset-based style vectors, the
positivity and negativity values of produced out-
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Figure 3: Classification results on the Yelp review dataset: Using (a) only the 470 trained steering vectors, (b) the
corresponding activation vectors, and (c) selected layers of activation vectors of 10k sentences. The activation
vectors show superior performance in their ability to predict the sentiment of an input sentence.

puts were inferred by the VADER sentiment ana-
lyzer (Hutto and Gilbert, 2014) as a state-of-the-art
model. Fig. 4 shows the average sentiment classi-
fication scores on the model’s steered outputs for
different values of λ and the 49 subjective input
prompts. It appears that steering into the positive
direction works better in general, while the steering
effect is stronger for activation-based style vectors.
As one could expect, for the 50 factual prompts,
there are no notable differences since the factual
answers are mostly neutral. Thus, corresponding
plots are omitted. The prompt baseline, on average,
demonstrates only a minimal effect compared to
the model’s default output.

In order to evaluate the ability of the style
vectors derived from the GoEmotions dataset to
steer the model ’s output towards multiple emo-
tional categories, a multi-class model based on
RoBERTa (Hartmann, 2022) was used. Fig. 5 de-
picts the shift in the classified emotion class score
when the style space is built from activation-based
style vectors on the GoEmotions dataset. The
notable increase in the respective emotion class
score indicates a strong model performance when
steering towards a specific emotion. As expected,
styling the output on factual prompts shows almost
no changes in the emotion class scores, similar
to the results for the Yelp style vectors described
above. Prompt baselines created with the GoEmo
labels exhibit a substantially stronger impact on
the generated outcomes compared to the prompt
baseline in the case of the Yelp dataset.

4.4.2 Steering Output Examples
In the following, selected examples of model out-
puts modified by style vectors are presented to pro-
vide an impression of the obtained results under
different settings. In each case, P is the prompt,
followed by different model outputs.

E1 - Opposite sentiment directions. Examples
of how the output changes when shifted in oppo-
site directions using activation-based style vectors
derived from the Yelp dataset at λ = 1. The target
style is positive for O1 and negative for O2.

P: Share a personal anecdote about a vacation
you had

O1: My favorite vacation was a trip I took to the
beach with my family. We had a great time ex-
ploring the beach, going on walks, and tasting
all the delicious food. The best part was the
relaxing atmosphere and the great memories
we made.

O2: I had a terrible experience with a vacation I
had. I went to a beach in a different country
and I was expecting to have a great time. In-
stead, I was met with a huge amount of racism.
People were openly saying that I was a “strike-
o-bog” (a term that is used to refer to a black
person) and that I was “not allowed” to be
there. I was then physically attacked. [...]

E2 - Too large λs. The parameter λ in Eq. 3
plays a central role for the outputs. Yet, there is
no general threshold for λ, but it depends on the
input prompt and the target style definition. Too
large λ values sometimes result in nonsense outputs
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Figure 4: Steering of the Yelp Review samples towards positive (upper plots) and negative (lower plots) sentiment.

with repetitions. This behavior could be observed
especially for training-based style vectors. R was
the result of steering towards sadness with λ = 1.

P: Describe a fictional character.

R: Ms. Grey is an elderly woman with a sadly
sadly sadly sadly sadly [...].

E3 - Target Bias. In reality, datasets do not only
encode desired target styles but also other domain-
specific characteristics. Style vectors from Yelp
restaurant reviews often seem to carry a bias to-
wards food topics in addition to sentiment. R re-
sults from activation-based steering towards posi-
tive style with λ = 1.2.

P: What did a day in a typical family in the year
1980 look like?

R: A day in a typical family in the year 1980 was
filled with great food, fun and memorable mo-
ments. The morning started with a delicious
breakfast and great conversations. The lunch
was always a great home-made meals and the
dinner was always a great variety of flavours.

E4 - Steering Emotion. Also, the underlying
emotion in the LLM’s response can steer, as demon-
strated in this example. J and A were steered
activation-based towards joy and anger, respec-
tively, with λ = 0.8.

P: How would you respond to a rude customer
in a customer service role?

J: I apologize for the inconvenience. I under-
stand your frustration and thank you for bring-
ing this to my attention. I’d like to help you
resolve the issue as quickly as possible. [...]

A: I understand you are frustrated, but I cannot
allow you to speak to me in this manner. I am
here to help you, but you must treat me with
respect. [...]

E5 - Steering style beyond sentiment and emo-
tions. These outputs were shifted with activation-
based style vectors calculated upon the Shake-
speare dataset. While M was steered towards mod-
ern with λ = 0.8, S was steered towards Shake-
spearean with λ = 1.6.

S is formulated in a more flowery and antiquated
language. Presumably, the maximal λ for shifting
towards modern is smaller because this style is per
se more similar to the LLM’s style and, therefore,
also lies closer in the latent vector space.

P: How do you define happiness?

M: Happiness is a state of contentment, joy, and
satisfaction in life. It is the feeling of being
satisfied with who you are and having a sense
of purpose and fulfillment in life.
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Figure 5: Activation-based style vectors: Evaluation of generated texts for subjective prompts using GoEmotions’
style vectors. All activation vectors were used.

S: Happiness is a state of contentment and joy,
wherein the soul is freed from the bondage
of sorrow, mischievous fancies, and unworthy
thoughts, and wherein the body is freed from
the bondage of pain, and wherein the soul
duly commends itself to the Lord, and is in
some measure made partaker of the blessed-
ness which is past, which is present, or which
to come.

5 Discussion and Conclusion

This work investigated vector representations as-
sociated with sentiments, emotion categories, and
general writing styles that can influence the out-
put style of LLMs. In a generative approach, style
vectors were derived from steering vectors found
in a training procedure and steered the model to
produce samples in a desired style from scratch. In
contrast, activation-based style vectors are derived
from the activations of input prompts, which relies
on the assumption that LLMs internally adapt the

input style during the forward pass. Steering vec-
tor training is much more expensive than simply
recording the hidden layer activation during a sin-
gle forward pass. Therefore, the activation-based
style vectors are the preferred approach for steer-
ing style in large language models, both in terms
of performance and resource efficiency.

We also found that, for factual prompts, the out-
put can only marginally be influenced. It can be
considered positive that one cannot easily dissuade
the model from answering in a neutral tone to a
factual prompt while still being adaptable if the
input permits, especially in conversational settings.

Style vectors enable a continuous and adjustable
modulation of the outputs of large language mod-
els. Unlike prompt engineering, which offers more
step-wise control over style intensities (like “Write
the answer in a positive way” versus “Write the an-
swer in a very positive way”), style vectors provide
smoother transitions. This activation-based control
is achievable because the vectors in activation en-
gineering are constructed from known datasets. In
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contrast, traditional prompting may trigger activa-
tions that are unknown and inaccessible to the user,
limiting the ability to fine-tune the output. Further-
more, activation-based steering has the potential
to generate new styles, expanding the possibilities
beyond the constraints of pre-training knowledge
inherent in prompt engineering. While prompt en-
gineering relies on existing knowledge and often
involves a trial-and-error approach, activation engi-
neering opens up new avenues for style generation
and customization. More complex styles, such as
multidimensional composed styles, present unique
challenges when approached through activation en-
gineering. However, the advantages it offers, such
as enhanced control over the output and the capac-
ity to develop unique styles, significantly outweigh
these initial challenges. It is important to note that
these methods are not mutually exclusive; they can
be combined to leverage each approach’s strengths,
enhancing our model’s overall capability and flexi-
bility.

To the best of our knowledge, this is one of the
first studies on steering language models beyond
GPT-2 (in our case Alpaca-7B (Taori et al., 2023)).
Results should, however, be transferable to any
other type of LLM with direct access to hidden
layer activations. How to determine the exact influ-
ence of the weighting parameter λ (Eq. 3) is still an
open question. λ allows for nuanced style steering
but, if chosen too large, leads the model to produce
nonsense texts. Moreover, this seems to depend on
the domain (sentiment, emotion, writing style). We
leave this for future research.

Limitations

It was not feasible to derive trained steering vec-
tors for all considered samples since training in-
volves high computational costs and requires a
maximal sample length of 50 characters. In con-
trast, activation-based style vectors could straight-
forwardly be obtained for every text sample without
restrictions. We conducted activation-based exper-
iments on the complete sample set to explore the
proposed approach fully. However, to avoid a po-
tential bias towards activation-based style vectors
and provide a fair comparison, we also conducted
our experiments on the subset of samples that could
be considered for both settings.

We evaluated the ability to influence the style of
an LLM’s output with style vectors using existing
sentiment and emotion classifiers. Both classifiers

are widely used in practice and have shown state-
of-the-art results. However, they are not perfect,
and thus, results only show a general tendency. In
the future, we plan to conduct studies on individual
human perceptions of the text style produced by
steered LLMs.

The experiments have a strong focus on senti-
ment and emotion as style characteristics. Results
on the Shakespeare dataset provide evidence that
the output of LLMs can also generally be steered
towards tone and writing style. This, however, has
to be investigated in more depth in the future, es-
pecially concerning texts in languages other than
English.

Ethics Statement

Our method may generate negative, rude, and hate-
ful sentences about a specific person or a commer-
cial site caused by the data distribution of Yelp
and GoEmotions datasets. Therefore, it could be
used with malicious intentions, i.e., by targeted ha-
rassment or inflation of positive reviews. Since our
work involves a pre-trained generative LLM, which
was trained on text scraped from the web, it has
acquired some biases that were present there. Such
biases might be extracted by certain prompts and
could even be strengthened by our style steering.
Furthermore, it is important to note that steering
the style of LLMs may bear the potential to mimic
a specific style of speech from persons whose state-
ments were used to train the model. Therefore, the
approaches could be abused to create realistic fake
statements.

In the context of image generation, the idea
of shifting entities in the latent space during the
generation process has already been implemented
successfully (Brack et al., 2022) and can consid-
erably reduce harmful content in generated im-
ages (Schramowski et al., 2023). Analogously, our
approach can also be used to reduce harmful out-
put.
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Appendix

A Evaluation Prompts

In this investigation, we compared the system’s
performance on factual and subjective on prompts.
Comprehensive lists of these prompts are provided
in Sec. A.1 and Sec. A.2, respectively.

A.1 Factual Prompts

There were 50 factual prompts used in this study,
which are referred to as F01 to F50:

[F01] How many bones are there in the human
body?

[F02] How many chambers are there in the human
heart?

[F03] How many elements are there in the peri-
odic table?

[F04] How many planets are there in our solar
system?

[F05] How many players are there in a baseball
team?

[F06] How many players are there in a volleyball
team?

[F07] How many symphonies did Ludwig van
Beethoven compose?

[F08] In which year did World War II end?

[F09] In which year did the Berlin Wall fall?

[F10] In which year did the first moon landing
occur?

[F11] What is the boiling point of water in Fahren-
heit?

[F12] What is the capital city of France?

[F13] What is the chemical formula for methane?

[F14] What is the chemical formula for table salt?

[F15] What is the chemical formula for water?

[F16] What is the chemical symbol for gold?

[F17] What is the chemical symbol for sodium?

[F18] What is the deepest point in the Earth’s
oceans?

[F19] What is the formula for calculating density?

[F20] What is the formula for calculating the area
of a circle?

[F21] What is the formula for calculating the area
of a triangle?

[F22] What is the formula for calculating the vol-
ume of a cylinder?

[F23] What is the formula for converting Celsius
to Fahrenheit?

[F24] What is the freezing point of water in
Kelvin?

[F25] What is the largest country in the world by
land area?

[F26] What is the largest internal organ in the
human body?

[F27] What is the largest ocean in the world?

[F28] What is the largest organ in the human
body?

[F29] What is the speed of light in a vacuum?

[F30] What is the symbol for the chemical ele-
ment iron?

[F31] What is the tallest building in the world?

[F32] What is the tallest mountain in the world?

[F33] What is the world’s longest river?

[F34] Which country is famous for the Taj Mahal?

[F35] Which country is known as the Land of the
Rising Sun?

[F36] Which gas is known as laughing gas?

[F37] Which gas makes up the majority of Earth’s
atmosphere?

[F38] Who developed the theory of evolution by
natural selection?

[F39] Who discovered penicillin?

[F40] Who discovered the theory of general rela-
tivity?

[F41] Who is considered the father of modern
physics?

[F42] Who is credited with inventing the tele-
phone?

[F43] Who is the author of the play “Romeo and
Juliet”?

[F44] Who is the current President of the United
States?

[F45] Who painted “The Starry Night”?

[F46] Who painted the “Last Supper”?

[F47] Who painted the Mona Lisa?

[F48] Who wrote the novel “Pride and Prejudice”?
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[F49] Who wrote the novel “To Kill a Mocking-
bird”?

[F50] Who wrote the play “Hamlet”?

A.2 Subjective Prompts
The 49 applied factual prompts are referred to as
S01 to S49:

[S01] Announce the weather forecast for the up-
coming weekend.

[S02] Ask your hairdresser for an appointment
next week to have your hair dyed.

[S03] Comment on a critical review of a customer
of your business.

[S04] Compare the color blue and green.

[S05] Compare the cultural value of theaters and
cinemas.

[S06] Compare the qualities of coffee and tea.

[S07] Compare the relaxation based on vacation
and continuous sport.

[S08] Compare the taste of a strawberry smoothie
to that of a vanilla one.

[S09] Compose a few lines of lyrics talking about
society.

[S10] Describe a fictional character.

[S11] Describe a meal or dish that holds sentimen-
tal value to you and why.

[S12] Describe a person who has had an impact
on your life and why.

[S13] Describe a piece of artwork.

[S14] Describe an incident that could lead to an
airplane crash in mid-flight.

[S15] Discuss the impact of social media on inter-
personal relationships.

[S16] How can I learn about Machine Learning
most efficiently?

[S17] How do caterpillars turn into butterflies?

[S18] How do you approach decision-making
when faced with multiple options?

[S19] How do you define art?

[S20] How do you define happiness?

[S21] How do you define sadness?

[S22] How do you feel about the death penalty?

[S23] How do you prioritize your tasks and re-
sponsibilities in your daily life?

[S24] How do you stay motivated and focused on
long-term goals?

[S25] How would you handle a disagreement with
a close friend?

[S26] How would you respond to a rude customer
in a customer service role?

[S27] If a roommate consistently borrows your
belongings without asking, how would you
handle it?

[S28] Order a vegan dish from the menu of a steak
house.

[S29] Review the pair of headphones that I bought
online last week.

[S30] Share a personal anecdote about a vacation
you had.

[S31] Share a personal experience of overcoming
a fear or facing a challenge.

[S32] Share a personal experience that challenged
your beliefs and changed your perspective.

[S33] Share a quote or mantra that inspires you
and explain why it resonates with you.

[S34] Tell me a joke.

[S35] Tell me about the concert in America last
year.

[S36] What approach would you take when faced
with a challenging work colleague?

[S37] What approaches do you take to foster cre-
ativity and innovation in your work?

[S38] What are the steps to bake a perfect pizza
from scratch?

[S39] What did a day in a typical family in the
year 1980 look like?

[S40] What do German bread rolls taste like?

[S41] What does a fulfilling and meaningful life
mean to you?

[S42] What is your opinion on the role of govern-
ment in society?

[S43] What is your perspective on the significance
of cultural heritage?

[S44] What is your preferred method of learning
new skills or acquiring knowledge?

[S45] What is your stance on the role of machine
learning in education?

[S46] What strategies do you find most effective
for managing stress?
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[S47] Would you like to see a movie about your-
self?

[S48] Write a recipe to make chocolate chip
muffins.

[S49] Write an introduction about yourself for a
CV.

The full list of produced answers to the prompts
in Sec. A.1 and Sec. A.2 can be found at [redacted
for peer-review].

B Effect of the parameter λ

The example below shows an example of the ef-
fect of the weighting parameter lambda for style
vectors (Eq. 3) on steering a response toward neg-
ative sentiment. Larger values generally lead to
increased negativity. However, if the values are too
large, the model’s output is not adequate anymore
(oversteering).

P: Review the pair of headphones that I bought
online last week.

λ = 0: I recently bought a pair of headphones
online and I am very pleased with them. The
sound quality is excellent and they are very
comfortable to wear. The design is also stylish
and the adjustable headband allows for a cus-
tom fit. I would highly recommend these head-
phones to anyone looking for a good pair of
audio headphones.

λ = 0.6: I recently bought a pair of headphones
online and I’m very satisfied with them. The
sound quality is great and they are very com-
fortable to wear. The design is also very
stylish and I love the adjustable fit. Highly
recommended!

λ = 1.2: I love the pair of headphones you got!
The sound quality is great and the comfortable
design is perfect for all day listening. High
recommend!

λ = 1.9: <s> great great great great great great
...

C Further results from the probing study

Analogously to the analysis of the Yelp dataset in
Sec. 4.3, we performed the same experiment with
the Shakespeare and the GoEmotions datasets.

Shakespeare The capabilities of the trained steer-
ing vectors z

(i)
x and activations a(i)(x) at layer i

to encode style in the Shakespeare dataset are pre-
sented in Fig. 6. In contrast to the Yelp review
dataset, we want to differentiate between modern
and original Shakespearean phrases. This task dif-
fers from the other two datasets in that we do not
change emotion or sentiment but a whole writing
style. The Shakespeare classifier on the trained
steering vectors reaches a maximal AUC value
of 0.8, while their corresponding activation vec-
tors reach an AUC value of 0.96. Again, the lay-
ers i ∈ {18, 19, 20} had high AUC values. This
supports our initial findings on the Yelp review
dataset. As can be seen by comparing the AUC
values for the activation vectors from Shakespeare
(max. AUC = 0.96/ Fig. 6c) with Yelp in the same
setting (max. AUC = 0.99/ Fig. 6c), the style dif-
ference between original and modern Shakespeare
is harder to distinguish, than the sentiment in the
Yelp reviews.

GoEmotions For this dataset, the ROC plots
need to be compared per layer because there are
six instead of not two classes. The results for layer
19 draw a slightly different picture (Fig. 8) than for
Yelp and Shakespeare. Probing the activations of
all samples still results in the best micro-average
AUC of 0.90. However, in the fair comparison
(activations for the 89 samples for which trained
steering vectors exist), they have a micro-average
AUC of 0.74, while the corresponding trained vec-
tors reach an AUC of 0.82. Nevertheless, this can
also result from the small number of trained steer-
ing vectors found. The same result can be seen
for layers 18 (Fig. 7) and 20 (Fig. 9). We need to
investigate this finding in future studies to rule out
a statistical anomaly as the cause for this. Still, the
layers i ∈ {18, 19, 20} have high micro-average
AUC values of around 0.91 for all activations and
0.81 for the trained steering vectors.

Classifier training During our experiments, we
tried training the regression model in three different
settings: Predicting the class using only a single
layer, using three subsequent layers, and training
on all layers together. The difference between the
resulting classifications is minimal, albeit perfor-
mance slightly increases when using more layers.
For ease of presentation and readability of the plots,
we decided to only include single-layer classifiers.
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Figure 6: Comparison between the classification results on the Shakespeare dataset: Using (a) only the trained
steering vectors, (b) the corresponding activation vectors, and (c) activation vectors of 17k sentences for selected
layers.
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Figure 7: Classification results of vectors from layer 18 on the GoEmotions dataset: Using (a) only the trained
steering vectors, (b) the corresponding activation vectors, and (c) activation vectors of 2k sentences. The activation
vectors only show superior performance if we include more sentences than we have trained steering vectors.

D Further classification-based evaluation
results for output steering

This section compares the training-based style vec-
tors with their corresponding activation-based style
vectors. We do this to ensure fairness in the com-
parison since the number of activation-based style
vectors is significantly higher than the number of
training-based vectors. In the evaluation of the
factual (Fig. 10) and subjective (Fig. 12) prompts
using the training-based style vectors on the GoE-
motions dataset, we saw that the steering seems to
work for all emotions, except disgust and surprise.
However, during a closer examination, it became
evident that the model‘s output with λ ≥ 0.75 did
not represent proper sentences anymore and were
mainly repetitions of keywords related to the emo-
tion, e.g., “sadly” for sadness. For the Yelp dataset,
this happened as well, but only for higher λ. A

reason for this unstable behavior in GoEmotions
is probably the small number of trained steering
vectors that were found, which was especially low
for the classes disgust and surprise.

The steering is much more stable for the
activation-based style vectors for factual prompts
(Fig. 11), while the subjective are not steered well
(Fig. 13) prompts. The generated sentences seem
to be biased towards joy. Especially, disgust does
not seem to be steered. These results, especially in
comparison to the steering with all activation-based
style vectors (5), are, again, the result of the small
number of trained steering vectors, which limits
the amount of available activation-based style vec-
tors. This, furthermore, highlights the superiority
of the activation-based style vectors, which can be
just extracted and do not require a computationally
expensive learning procedure.
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Figure 8: Classification results of vectors from layer 19 on the GoEmotions dataset: Using (a) only the trained
steering vectors, (b) the corresponding activation vectors, and (c) activation vectors of 2k sentences. The activation
vectors only show superior performance if we include more sentences than we have trained steering vectors.
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Figure 9: Classification results of vectors from layer 20 on the GoEmotions dataset: Using (a) only the trained
steering vectors, (b) the corresponding activation vectors, and (c) activation vectors of 2k sentences. The activation
vectors only show superior performance if we include more sentences than we have trained steering vectors.

798



0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
0.0

0.2

0.4

0.6

0.8

1.0

Em
ot

io
n 

cla
ss

 sc
or

e

sadness
joy
fear
anger
surprise
disgust

(a) Steering to anger,
factual prompts

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
0.0

0.2

0.4

0.6

0.8

1.0
Em

ot
io

n 
cla

ss
 sc

or
e

sadness
joy
fear
anger
surprise
disgust

(b) Steering to disgust,
factual prompts

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
0.0

0.2

0.4

0.6

0.8

1.0

Em
ot

io
n 

cla
ss

 sc
or

e

sadness
joy
fear
anger
surprise
disgust

(c) Steering to joy,
factual prompts

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
0.0

0.2

0.4

0.6

0.8

1.0

Em
ot

io
n 

cla
ss

 sc
or

e

sadness
joy
fear
anger
surprise
disgust

(d) Steering to fear,
factual prompts

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
0.0

0.2

0.4

0.6

0.8

1.0

Em
ot

io
n 

cla
ss

 sc
or

e

sadness
joy
fear
anger
surprise
disgust

(e) Steering to sadness,
factual prompts

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
0.0

0.2

0.4

0.6

0.8

1.0

Em
ot

io
n 

cla
ss

 sc
or

e

sadness
joy
fear
anger
surprise
disgust

(f) Steering to surprise,
factual prompts

Figure 10: Training-based style vectors: Evaluation of generated texts for factual prompts using GoEmotions’ style
vectors.
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Figure 11: Activation-based style vectors: Evaluation of generated texts for factual prompts using GoEmotions’
style vectors. Only the activation vectors were used, for which we have trained steering vectors.
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Figure 12: Training-based style vectors: Evaluation of generated texts for subjective prompts using GoEmotions’
style vectors. Most outputs are not proper sentences.
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Figure 13: Activation-based style vectors: Evaluation of generated texts for subjective prompts using GoEmotions’
style vectors. Only the activation vectors were used, for which we have trained steering vectors.
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