@inproceedings{rajaby-faghihi-kordjamshidi-2024-consistent,
title = "Consistent Joint Decision-Making with Heterogeneous Learning Models",
author = "Rajaby Faghihi, Hossein and
Kordjamshidi, Parisa",
editor = "Graham, Yvette and
Purver, Matthew",
booktitle = "Findings of the Association for Computational Linguistics: EACL 2024",
month = mar,
year = "2024",
address = "St. Julian{'}s, Malta",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.findings-eacl.53",
pages = "803--813",
abstract = "This paper introduces a novel decision-making framework that promotes consistency among decisions made by diverse models while utilizing external knowledge. Leveraging the Integer Linear Programming(ILP) framework, we map predictions from various models into globally normalized and comparable values by incorporating information about decisions{'} prior probability, confidence (uncertainty), and the models{'} expected accuracy. Our empirical study demonstrates the superiority of our approach over conventional baselines on multiple datasets.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="rajaby-faghihi-kordjamshidi-2024-consistent">
<titleInfo>
<title>Consistent Joint Decision-Making with Heterogeneous Learning Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Hossein</namePart>
<namePart type="family">Rajaby Faghihi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Parisa</namePart>
<namePart type="family">Kordjamshidi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-03</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EACL 2024</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yvette</namePart>
<namePart type="family">Graham</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Matthew</namePart>
<namePart type="family">Purver</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">St. Julian’s, Malta</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper introduces a novel decision-making framework that promotes consistency among decisions made by diverse models while utilizing external knowledge. Leveraging the Integer Linear Programming(ILP) framework, we map predictions from various models into globally normalized and comparable values by incorporating information about decisions’ prior probability, confidence (uncertainty), and the models’ expected accuracy. Our empirical study demonstrates the superiority of our approach over conventional baselines on multiple datasets.</abstract>
<identifier type="citekey">rajaby-faghihi-kordjamshidi-2024-consistent</identifier>
<location>
<url>https://aclanthology.org/2024.findings-eacl.53</url>
</location>
<part>
<date>2024-03</date>
<extent unit="page">
<start>803</start>
<end>813</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Consistent Joint Decision-Making with Heterogeneous Learning Models
%A Rajaby Faghihi, Hossein
%A Kordjamshidi, Parisa
%Y Graham, Yvette
%Y Purver, Matthew
%S Findings of the Association for Computational Linguistics: EACL 2024
%D 2024
%8 March
%I Association for Computational Linguistics
%C St. Julian’s, Malta
%F rajaby-faghihi-kordjamshidi-2024-consistent
%X This paper introduces a novel decision-making framework that promotes consistency among decisions made by diverse models while utilizing external knowledge. Leveraging the Integer Linear Programming(ILP) framework, we map predictions from various models into globally normalized and comparable values by incorporating information about decisions’ prior probability, confidence (uncertainty), and the models’ expected accuracy. Our empirical study demonstrates the superiority of our approach over conventional baselines on multiple datasets.
%U https://aclanthology.org/2024.findings-eacl.53
%P 803-813
Markdown (Informal)
[Consistent Joint Decision-Making with Heterogeneous Learning Models](https://aclanthology.org/2024.findings-eacl.53) (Rajaby Faghihi & Kordjamshidi, Findings 2024)
ACL