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Abstract

Hebrew and Aramaic inscriptions serve as an
essential source of information on the ancient
history of the Near East. Unfortunately, some
parts of the inscribed texts become illegible
over time. Special experts, called epigraphists,
use time-consuming manual procedures to es-
timate the missing content. This problem can
be considered an extended masked language
modeling task, where the damaged content can
comprise single characters, character n-grams
(partial words), single complete words, and
multi-word n-grams.
This study is the first attempt to apply the
masked language modeling approach to cor-
rupted inscriptions in Hebrew and Aramaic lan-
guages, both using the Hebrew alphabet consist-
ing mostly of consonant symbols. In our exper-
iments, we evaluate several transformer-based
models, which are fine-tuned on the Biblical
texts and tested on three different percentages
of randomly masked parts in the testing cor-
pus. For any masking percentage, the highest
text completion accuracy is obtained with a
novel ensemble of word and character predic-
tion models.

1 Introduction

Every year more and more ancient texts are dis-
covered in both the Hebrew and Aramaic lan-
guages throughout the Near East, such as an an-
cient Hebrew inscription, which was revealed by
x-ray measurements on a folded lead tablet in May
2023 (Siegel-Itzkovich, 2023). The analysis of
these texts is extremely important for researchers
studying the culture and history of the region. As
many inscriptions are damaged over time due to
earthquakes, fires, political conflicts, and other nat-
ural and human-related causes, epigraphists en-
counter a major challenge in reconstructing the
missing parts of these valuable writings. In this
non-trivial task, the following difficulties are posed
specifically by Hebrew and Aramaic:

1. Language evolution over time. Hebrew and
Aramaic are very old languages, both belong-
ing to the group of Semitic languages. The
Jewish inhabitants of the Land of Israel have
used Classical Hebrew, which is the language
of the Bible, from the late eighth to the early
sixth centuries BC until they adopted the Ara-
maic language of the Persian Empire. In the
Hellenistic period, around the third century
BC, the written Hebrew was revived for vari-
ous reasons (Schniedewind, 2006). Thus, the
inscriptions’ period should be taken into ac-
count when reconstructing their damaged con-
tent.

2. Morphological richness. In contrast to such
Indo-European languages as English and
French, where conjunctions, articles, and
prepositions are separate words, Hebrew and
Aramaic use prefixes for the same purpose.
For example in Hebrew, the one-letter pre-
fixes Vav, He, and Beth represent the English
words ’and’, ’the’, and ’in’, respectively. This
makes the tokenization and reconstruction of
Hebrew and Aramaic texts significantly more
challenging.

Following a study by (Lazar et al., 2021) fo-
cusing on Akkadian inscriptions in the cuneiform
script (containing hundreds of distinct signs), we
define the reconstruction of missing parts in a
damaged inscription as a masked language model
(MLM) task (Devlin et al., 2019). In this paper, we
compare the text completion accuracy of several
Transformer-based models including a novel En-
semble approach. The models are trained on two
different cases of masked Hebrew text: masked
individual characters and masked complete words.
The results of extensive evaluation experiments
on the variable percentage of randomly masked
parts from the Old Testament (Tanakh in Hebrew)
indicate the potential usefulness of the proposed
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Ensemble method as a decision-support tool for
professional epigraphists specializing in the re-
construction of ancient Hebrew and Aramaic writ-
ings. 1

2 Related Work

There are several studies, which have coped with
the problem of restoring damaged writings in var-
ious ancient languages. For example, (Fetaya
et al., 2020) used RNN models to complete miss-
ing tokens in ancient Akkadian texts from the
Achaemenid-period Babylonia (539 to 331 BCE).
Using the model proposed by the researchers, they
reached 85% accuracy in completing the missing to-
ken in their test set and 94% accuracy in having the
masked token in the top 10 suggestions. In another
study related to the Akkadian language (Lazar et al.,
2021), the authors use monolingual and multilin-
gual BERT-based models to predict missing signs
in Latin transliterations of ancient Mesopotamian
documents, originally written on cuneiform clay
tablets (2500 BCE - 100 CE). According to their
experiments, the probability of a masked token ap-
pearing in the top 5 predictions of their model is
between 88% and 90%, depending on the document
genre. There was also an attempt to reconstruct an-
cient Greek writings using a bidirectional LSTM
aimed at predicting a sequence of missing charac-
ters (Assael et al., 2019). This model reached the
Character Error Rate (CER) of 30.1%, an improve-
ment of up to 27.2% from suggestions by human
experts who were ancient historians.
The above studies suffer from several limitations,
which we attempt to overcome in our research.
First, they focus on the character prediction sub-
task rather than on the main epigraphy task of
reconstructing the entire multi-word content of a
damaged inscription. Consequently, their perfor-
mance metrics ignore the percentage of accurately
completed words, making no distinction between
five incorrectly predicted characters in one word
and five words with one wrongly predicted char-
acter per each word. Moreover, they rarely at-
tempt to combine character prediction and word
prediction models and do not study the effect of
the masked content amount on the text completion
performance. They also ignore an important prob-
lem of word separation (whitespace prediction),
which exists in many ancient texts but is irrelevant

1Our code is publicly available at https://github.
com/harelm4/Embible

for most masked language models trained on mod-
ern documents, where word-based tokenization is
straightforward.
To the best of our knowledge, the reconstruction
of inscriptions in a consonant-based alphabet, like
Hebrew, is not covered by previous studies. Writ-
ings mixing two different languages using the same
alphabet (e.g., Hebrew and Aramaic) present an-
other unexplored challenge to the text reconstruc-
tion task.
The corrupted and omitted text reconstruction prob-
lem can also be defined as a string transduction task
with monotonic alignments (Ribeiro et al., 2018),
which preserves the order of the input (known)
characters, without deleting or replacing any of
them, and focuses on the insertion of the unknown
characters only. Examples of other string transduc-
tion tasks include Grammatical Error Correction
(GEC) (Rothe et al., 2021), Optical Character OCR
post-correction tools (Rijhwani et al., 2020), and
Automatic Speech Recognition (ASR) correction
approaches (Dutta et al., 2022), with the follow-
ing important differences from the corrupted text
reconstruction problem:

• Correction of some grammatical errors may
require deletion and substitution operations,
in addition to insertion (Rothe et al., 2021).

• The most common OCR error is confusion be-
tween characters of a similar shape (Rijhwani
et al., 2020). However, in many corrupted
inscriptions, we do not know the shape of
missing characters.

• ASR systems may confuse between phoneti-
cally similar words (Dutta et al., 2022). An-
cient inscriptions, naturally, do not provide
any phonetic information.

3 Methodology

In our inscription reconstruction system for He-
brew and Aramaic, we have used the following
pre-trained language models:

1. TavBERT (Keren et al., 2022). This BERT-
style masked language model is aimed at pre-
dicting character sequences rather than con-
tiguous subword tokens, or word-pieces, pre-
dicted by most other large language models.
The underlying assumption is that individual
characters may be more indicative of complex
morphological patterns, which are abundant in
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Model
Name

Num
of
Epochs

Weight
De-
cay

Batch
Size

Learning
Rate

TavBERT 20 0 64 5e-5
mBERT 50 0.01 16 2e-6
Distil
BERT 50 0.01 32 2e-4
AlephBERT
Gimmel 20 0 32 5e-5

Table 1: Language Models

morphologically-rich languages like Hebrew,
Arabic, and Turkish. Whitespaces are treated
by TavBERT like any other character.

2. mBERT (Devlin et al., 2019). Multilingual
BERT (mBERT) is a bi-directional large lan-
guage model, which is trained simultaneously
on texts in 104 languages by masking 15%
of subword tokens and then predicting entire
masked words only.

3. DistilBERT (Sanh et al., 2019). This is a rela-
tively small language model trained to predict
masked tokens (words). To the best of our
knowledge, it is one of the few language mod-
els that can work with Hebrew texts.

4. AlephBERTGimmel (ABG) (Guetta et al.,
2022). This is a language model for mod-
ern Hebrew pre-trained on an increased vo-
cabulary size of 128K tokens (word-pieces),
which has outperformed the popular HeBERT
model (Chriqui and Yahav, 2022) on multiple
NLP tasks. The ABG output is a sequence of
so-called syntactic words, or morphemes (e.g.,
some prepositions), which are not necessarily
separated by whitespaces in Hebrew and other
Semitic languages.

The selected hyperparameter settings of the
above models are shown in Table 1. The Num-
ber of Epochs for training each model was chosen
to minimize the perplexity metric, whereas, in the
other settings, we followed the HuggingFace li-
brary recommendations. No Aramaic texts were
used to pre-train any of these models.

We have evaluated three different configurations
of our text completion system for Hebrew inscrip-
tions: Unconstrained Word Completion (UWC),
Constrained Word Completion (CWC), and Com-
bined Character and Word Completion (Ensemble).

The UWC approach assumes that we do not know
the exact number of masked characters in each
damaged fragment of an inscription. If the number
of masked whitespaces is also unknown, the num-
ber of masked words is assumed to be one. When
the number of masked whitespaces is given or pre-
dicted, we can deduce the total number of masked
words, though the length of each word will still be
unknown. To predict the masked word or words, we
can apply one of the three word-completion mod-
els mentioned above (mBERT, DistilBERT, and
ABG). In contrast, the CWC method assumes that
we do know the length of each missing word and
its boundaries (whitespaces) and, consequently, we
can discard any predicted word of incorrect length.
CWC can predict a single word of a known length
when the whitespaces are not given, and multiple
words of a known length otherwise. In addition
to insertions, both methods may involve substitu-
tions and deletions of known characters. Due to
their simplifying assumptions, we refer to UWC
and CWC methods as Baseline 1 and Baseline 2,
respectively, and we use them mainly for choosing
the most accurate word completion model to be
used in the Ensemble method described below.
In addition to the two baselines described above,
we introduce a novel method, Ensemble, which
represents a more common scenario, where we can
reliably estimate the number of masked characters
from the inscription font size and geometry, along
with the number of masked words and the location
of whitespace characters. The Ensemble method
combines the character predictions of TavBERT
(including whitespaces) and the word predictions
of the selected word completion model as follows.
First, all masked characters predicted by TavBERT
as whitespaces with a probability of 0.50 and higher
are treated as known separators between words.
Then we use TavBERT to generate the five most
probable sequences of missing characters (having
the highest average prediction probability). Finally,
we search for an overlap between the top predicted
character sequences and 1,000 most likely outputs
of the selected word prediction model. Word pre-
dictions that do not match the known characters
in partially masked words or the TavBERT-based
word separators are discarded. If the overlap is not
empty, we calculate the score of each overlapping
prediction as a simple average of the probability
scores provided by the two models. Otherwise,
we return the top TavBERT predictions with their
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originally calculated scores. The Ensemble method
involves insertion operations only.

4 Design of Experiments

Our experimental procedure included the following
steps:
Step 1 - Data preparation. Since our system is
aimed at reconstructing damaged Hebrew inscrip-
tions from the Biblical period, we validated and
tested our models on 1,071 verses randomly se-
lected from the Old Testament (Tanakh in Hebrew),
which was written in Hebrew and Aramaic over sev-
eral time periods. At least five verses were taken
from each Old Testament book. The selected 1,071
verses were split into 535 validation and 536 test-
ing verses. The remaining 22,144 Old Testament
verses were used for fine-tuning the pre-trained
language models. Diacritical marks (Nequdot in
Hebrew) and accents (te’amim in Hebrew), which
were developed and added to the Hebrew Bible
only in the Early Middle Ages, were removed from
all datasets as irrelevant to inscriptions from the
Biblical times.
To explore the effect of the missing content amount
on the performance of the fine-tuned models, we
created three different versions of the validation
and test sets by randomly masking the text in three
different percentages: 5%,10%, and 15%. Two dif-
ferent masking strategies were applied. In the first
strategy, each word was masked with probability
X and if it was not entirely masked, each character
in the word was masked with the same probability.
In the second strategy, we used the same masking
percentages as in the first case, but every word in
the text was masked with probability X and also
every unmasked character in the text (including
white spaces) was masked with probability X.

Step 2 - Model fine-tuning. As described in the
methodology section, we performed fine-tuning
for the following pre-trained language models:
TavBERT, mBERT, DistillBERT, and ABG.

Step 3 - Evaluation. To evaluate our text recon-
struction results we use the Hit@K measure:
Hit@K = (1/N) ∗ ΣN

i=11[ranki<=k]

For each predicted element (masked character or
word), this metric counts the number of cases
where top k predictions include the correct element.
In each experiment, we calculate CharHit@K and
WordHit@K separately. The option of k > 1 indi-
cates that the system can suggest the epigraphists
k most likely text completion options along with

their estimated probabilities.

5 Evaluation Results

Table 2 in Appendix A evaluates the completion ac-
curacy of three UWC (Baseline 1) models (mBERT,
DistillBERT, and ABG), when whitespaces are
unknown, and compares them to the Ensemble
method. The completion accuracy is measured
by the WordHit@1 and WordHit@5 metrics. As
expected, there is a slow decline in the performance
of each method with an increase in the amount of
masked text. However, the Ensemble approach
clearly outperforms all Baseline 1 models and its
accuracy with 15% Mask is even higher than the
accuracy of the best unconstrained model (ABG)
with 5% Mask only. Based on the Baseline 1 and
2 results, we have selected ABG as the word pre-
diction model to be used by the Ensemble method
alongside TavBERT.

As shown in Table 3 of Appendix A, the accuracy
of all methods increases when the whitespaces are
known, with Ensemble reaching the WordHit@5
of 0.70 and higher up to the text masking level
of 15%. The advantage of the Constrained Word
Completion (Baseline 2) models over Baseline 1
models is demonstrated in Tables 4 and 5 of Ap-
pendix A for unknown and known whitespaces,
respectively. The accuracy of the Ensemble model
on our Hebrew corpus is still significantly lower
than the accuracy reported in (Lazar et al., 2021)
for the Akkadian language. This performance gap
can be explained by the differences between the
genres of Akkadian texts used in their study and
the genre of Biblical verses.

6 Conclusions

It is evident from our experimental results that the
proposed ensemble of character and word-based
language models is the most beneficial for recon-
structing damaged inscriptions in Hebrew and Ara-
maic. We believe that this approach can be eas-
ily extended to writings in morphologically rich
and partially deciphered ancient languages like the
Ugaritic (Luo et al., 2021). Moreover, the text
completion accuracy may be further improved via
visual clues from the inscription images. Future
research may also include text reconstruction with
byte-to-byte language models like ByT5 (Xue et al.,
2022) along with a detailed analysis of their recon-
struction errors.
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7 Limitations

The main limitation of our study is testing the pro-
posed methodology on masked verses from the Old
Testament rather than on actual Hebrew and Ara-
maic inscriptions from the Biblical period. Another
limitation is assuming that no information about the
possible shape of missing characters is available
from the inscription image.
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A Appendix

WordHit@1 mask
5%

mask
10%

mask
15%

ensemble 0.440 0.317 0.242
ABG 0.147 0.109 0.080
distilbert 0.056 0.042 0.026
mbert 0.045 0.035 0.019
WordHit@5 mask 5% mask

10%
mask
15%

ensemble 0.503 0.377 0.291
ABG 0.271 0.185 0.148
distilbert 0.108 0.066 0.043
mbert 0.086 0.064 0.040

Table 2: Baseline 1 with Unknown Whitespaces.

WordHit@1 mask
5%

mask
10%

mask
15%

ensemble 0.652 0.623 0.598
ABG 0.251 0.207 0.170
distilbert 0.099 0.078 0.061
mbert 0.086 0.068 0.049
WordHit@5 mask 5% mask

10%
mask
15%

ensemble 0.739 0.737 0.708
ABG 0.378 0.325 0.285
distilbert 0.146 0.124 0.102
mbert 0.139 0.111 0.094

Table 3: Baseline 1 with Known Whitespaces.

WordHit@1 mask 5% mask
10%

mask
15%

ensemble 0.440 0.317 0.242
ABG 0.188 0.128 0.099
distilbert 0.072 0.048 0.034
mbert 0.059 0.043 0.029
WordHit@5 mask 5% mask

10%
mask
15%

ensemble 0.503 0.377 0.291
ABG 0.271 0.185 0.148
distilbert 0.107 0.075 0.148
mbert 0.093 0.073 0.052
CharHit@1 mask 5% mask

10%
mask
15%

ensemble 0.589 0.372 0.293
ABG 0.367 0.215 0.175
distilbert 0.181 0.092 0.083
mbert 0.155 0.090 0.078
CharHit@5 mask 5% mask

10%
mask
15%

ensemble 0.696 0.452 0.365
ABG 0.556 0.368 0.315
distilbert 0.369 0.224 0.189
mbert 0.342 0.215 0.188

Table 4: Baseline 2 with Unknown Whitespaces.
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WordHit@1 mask
5%

mask
10%

mask
15%

ensemble 0.712 0.616 0.600
ABG 0.337 0.295 0.253
distilbert 0.127 0.116 0.099
mbert 0.128 0.103 0.089
WordHit@5 mask 5% mask

10%
mask
15%

ensemble 0.779 0.728 0.710
ABG 0.475 0.429 0.396
distilbert 0.190 0.167 0.159
mbert 0.182 0.160 0.150
CharHit@1 mask 5% mask

10%
mask
15%

ensemble 0.692 " 0.577"
ABG 0.578 0.421 0.367
distilbert 0.271 0.194 0.168
mbert 0.261 0.191 0.164
CharHit@5 mask 5% mask

10%
mask
15%

ensemble 0.909 0.691 0.633
ABG 0.870 0.665 0.617
distilbert 0.512 0.380 0.343
mbert 0.497 0.355 0.342

Table 5: Baseline 2 with Known Whitespaces.
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