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Abstract

Phrase representations play an important role
in data science and natural language process-
ing, benefiting various tasks like Entity Align-
ment, Record Linkage, Fuzzy Joins, and Para-
phrase Classification. The current state-of-the-
art method involves fine-tuning pre-trained lan-
guage models for phrasal embeddings using
contrastive learning. However, we have iden-
tified areas for improvement. First, these pre-
trained models tend to be unnecessarily com-
plex and require to be pre-trained on a corpus
with context sentences. Second, leveraging the
phrase type and morphology gives phrase repre-
sentations that are both more precise and more
flexible. We propose an improved framework
to learn phrase representations in a context-free
fashion. The framework employs phrase type
classification as an auxiliary task and incor-
porates character-level information more ef-
fectively into the phrase representation. Fur-
thermore, we design three granularities of data
augmentation to increase the diversity of train-
ing samples. Our experiments across a wide
range of tasks show that our approach gen-
erates superior phrase embeddings compared
to previous methods while requiring a smaller
model size. The code is available at � https:
//github.com/tigerchen52/PEARL

1 Introduction

A phrase is a group of words (or a single word) with
a special meaning. They may denote recognizable
entities: names of people (Albert Einstein), organi-
zations (The New York Times), dates (23 February
2008), and events (2024 Summer Olympics). Be-
yond these typical contexts, phrases also appear as
column names in tabular data (average_wage), as
user queries (black pant men), or even as a non-
noun phrase in clinical reports (more than 63kg).
Phrases are thus an important building block in
many applications of both data science and natu-
ral language processing (NLP), e.g., in tasks such

Phrase Phrase-BERT
 (110 M)

UCTopic
(253 M)

PEARL
(40 M)

nytimes.com 0.7576 (4) 0.7424 (3) 0.8849 (1)

NYTimes 0.6441 (5) 0.6961 (4) 0.8828 (2)

New-York Daily Times 0.9429 (2) 0.7563 (2) 0.8718 (3)

New York Post 0.9435 (1) 0.8655 (1) 0.8527 (4)

New York 0.7586 (3) 0.5404 (5) 0.6891 (5)

Input Entity Name: The New York Times 

Figure 1: An example of entity retrieval. Given the input
entity name “The New York Times”, we show the cosine
similarity obtained by different models. The ranking of
scores is listed in parentheses.

as Entity Alignment (Zhao et al., 2020), Fuzzy
Joins (Yu et al., 2016), Question Answering (Lee
et al., 2021), Record Linkage (Christen, 2011), and
Syntactic Parsing (Socher et al., 2010). Central to
these applications is the assessment of the seman-
tic similarity between two distinct phrases. Today,
the main tool to assess the similarity of phrases is
phrase embeddings, i.e., learned vector representa-
tions that capture the semantics of the phrases in
such a way that phrases with similar meanings are
close in representation space.

The difficulty of learning such representations
arises from the fact that phrases often appear with-
out context (e.g., in user queries), and exhibit di-
verse morphological variations. For example, given
the entity “The New York Times (Q9684)”, the
knowledge base Wikidata (Vrandečić and Krötzsch,
2014) offers multiple aliases (alternate names)1.
Three of them are shown in the first rows of Fig-
ure 1. The last two rows show names of other
entities: “New York Post (Q211374)” and “New
York (Q1384)”. While all five of these phrases
look very much alike, only the first three are asso-
ciated with “The New York Times”. This versatil-
ity of phrases makes it hard to use rule-based or
string-distance methods for semantic similarities.
Sentence-BERT (Reimers and Gurevych, 2019)

1https://www.wikidata.org/wiki/Q9684

983

https://github.com/tigerchen52/PEARL
https://github.com/tigerchen52/PEARL
https://www.wikidata.org/wiki/Q9684


was the first approach to fine-tune pre-trained lan-
guage models like BERT (Devlin et al., 2019) and
RoBERTa (Liu et al., 2019) to derive meaningful
sentence embeddings. However, Sentence-BERT
is given entire sentences during training (no special
focus on short texts or phrases), so that its capa-
bilities to embed phrases remain limited. Phrase-
BERT (Wang et al., 2021a) was explicitly designed
to embed phrases and adopts contrastive learning
to fine-tune BERT on lexically diverse phrasal para-
phrase pairs and their surrounding context, yield-
ing more powerful phrase embeddings. Another
context-aware approach, UCTopic (Li et al., 2022),
further improved phrase representations by using
cluster-assisted negative sampling i.e., leveraging
clustering results as pseudo-labels.

However, this prior work faces several limita-
tions. First, phrases frequently appear devoid of
context cues, especially in tabular data, and are of-
ten characterized by short lengths. Consequently,
we might not actually need the complex reasoning
abilities of large (or deep) language models. A
small (or shallow) neural architecture could suf-
fice for the purpose of capturing phrase semantics.
Also, we need a model that works well in the ab-
sence of context. Second, existing work partially
neglects the type information of phrases. For ex-
ample, although “The New York Times” and “New
York” have a high lexical overlap, a good repre-
sentation model should distinguish them since the
first phrase pertains to an organization while the
second is linked to a geopolitical entity. Third, ex-
isting sub-word embeddings are not robust against
out-of-vocabulary words (Chen et al., 2022), and
this vulnerability entails the necessity of using
character-level features and morphological infor-
mation. Indeed, as Figure 1 shows, Phrase-BERT
and UCTopic fail to recognize that “NYTimes” is
an abbreviation of the original phrase, and wrongly
rank “New York Post” (a different newspaper) as
closest to “The New York Times”.

In this paper, we present a context-free con-
trastive learning framework called PEARL2, which
enriches existing language models by incorporating
phrase type and character-level features. Addition-
ally, PEARL uses a range of data augmentation
techniques to increase training samples. PEARL
has the following advantages: First, it is able to
discern between phrases that share similar surface

2Phrase Embeddings by Augmented Representation Learn-
ing

forms but are of different semantic types. For ex-
ample, a model using our framework sees “New
York” as a poor match for “The New York Times”
as it is of a different type: a geopolitical entity
versus an organization (Figure 1). Second, our ap-
proach captures morphology in phrases better. In
Figure 1, our method correctly ranks all three pos-
itive candidates, including those with acronyms,
as NYTimes. Third, a PEARL model of relatively
small size (40M parameters) can outperform ex-
isting larger models (Phrase-BERT and UCTopic)
and it learns phrase embeddings in a context-free
fashion. This results in shorter training times and
less resource consumption, which makes our ap-
proach more accessible in low-resource scenarios
and reduces its carbon footprint.

We conduct extensive experiments with PEARL
across various phrase and short text tasks, including
Paraphrase Classification, Phrase Similarity, Entity
Retrieval, Entity Clustering, Fuzzy Join, and Short
Text Classification. We can show that our method
outperforms other competitors across all these tasks
– despite a smaller model size.

2 Related Work

Phrases are fundamental linguistic units, pivotal
to understanding languages. Hence, learning their
representations has attracted quite some attention
in the research community. Early works mostly
use compositional transformation to obtain phrasal
embeddings, i.e., they derive phrase representa-
tions from word embddings (Mitchell and Lapata,
2008; Socher et al., 2012; Hermann and Blunsom,
2013; Yu and Dredze, 2015; Zhou et al., 2017).
With the advent of large pre-trained models, re-
cent approaches fine-tune transformer models like
BERT (Devlin et al., 2019) to obtain generalized
text embeddings, e.g. Sentence-Bert (Reimers and
Gurevych, 2019) and E5 (Wang et al., 2022). How-
ever, a recent study suggests that phrase represen-
tations in these language models heavily rely on
lexical content while struggling to capture the so-
phisticated compositional semantics (Yu and Et-
tinger, 2020). To develop more powerful mod-
els dedicated to phrasal representations, Phrase-
BERT (Wang et al., 2021a) fine-tunes BERT on
lexically diverse datasets by using both phrase-
level paraphrases and context sentences around
phrases. This allows the production of embeddings
that go beyond simple lexical overlap. Another
context-aware model, UCTopic (Li et al., 2022),
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Phrase
Encoder
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Character
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Figure 2: An illustration of PEARL. It uses contrastive learning and an auxiliary task of phrase type prediction for
learning phrase embeddings.

proposes cluster-assisted contrastive learning for
inducing phrasal representations for topic mining.
McPhraSy (Cohen et al., 2022) incorporates con-
text information into phrase embeddings during
inference. Although these methods can effectively
generate semantically meaningful phrasal represen-
tations, they ignore the phrase type and morpho-
logical information, which are crucial for under-
standing phrases. In this paper, we show that our
approach can outperform these models with a much
smaller model.

In the field of data science, a task closely related
to phrase representation is string matching. It is
widely used across diverse applications, including
Fuzzy Join (Yu et al., 2016), Entity Resolution (Pa-
padakis et al., 2020) or Alignment (Zhao et al.,
2020), and Ontology Matching (Otero-Cerdeira
et al., 2015). A simple yet effective solution for
this task is similarity functions such as the Edit
Distance and Jaccard similarity, which assess ei-
ther token-level or character-level (or n-gram) sim-
ilarity. More refined methods resort to word em-
beddings like GloVe (Pennington et al., 2014) and
Fasttext (Bojanowski et al., 2017) to better capture
lexical meaning. In this work, we show that models
trained by our framework can be used for a series
of database or knowledge base related tasks and
achieve competitive results at little cost.

3 Our Approach

Our objective is to learn representations for arbi-
trary input phrases. For this, we design a novel
contrastive-learning framework named PEARL, as
shown in Figure 2. The input for PEARL is context-
free phrases. This is different from other existing
models like Phrase-BERT (Wang et al., 2021a) and
UCTopic (Li et al., 2022) which take phrases with
context as input. Given a specific phrase, PEARL

first applies data augmentation in order to obtain
similar phrases that will serve as positive samples.
For example, “The New York Times” becomes

“The New York Timse” by using a character-level
augmentation (character swap). Next, embeddings
are generated by both phrase-level and character-
level encoders. We then learn embeddings with the
help of contrastive loss, which aims to pull close
positive pairs while pushing apart in-batch nega-
tive samples. In order to learn more expressive
representations, we add a certain number of hard
negatives to each batch. For example, “New York
Post” and “New York” can serve as hard negatives,
given their high lexical overlap with the original
phrase coupled with very distinct semantics. To
integrate phrase structural information into the rep-
resentations, we force the framework to assign tags
of a lexical class and a named entity type to each
phrase. For example, the framework learns to as-
sign a NP-ORG tag to the phrase “The New York
Times”, meaning that the phrase is a noun phrase
associated with an organization. The negative sam-
ple “New York”, in contrast, receives a NP-GPE tag,
meaning that the phrase is a noun phrase linked
to a geopolitical entity. This augmentation with
entity type information allows the model to distin-
guish “The New York Times” and “New York” in
the representation space.

3.1 Data Augmentation

The positive pairs in contrastive learning are gener-
ated by data augmentation, and we use three differ-
ent granularity methods to create training samples,
as shown in Figure 3.

Character-level Augmentation aims to add mor-
phological perturbations to the characters inside a
single word. The goal is to make the representa-
tions robust against variations so that phrases that
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The New York Times

The New York Timse

The New York Tmes

The New York Tiimes

The New York Tomes

Swap

Drop

Insert

Keyboard Replacement 

The York New Times

The New York Time

Swap

Synonym Replacement 

The Times Paraphrase

Character-level Token-level Phrase-level

Figure 3: Different levels of granularity for the data
augmentation methods on “The New York Times”.

have the same meaning but slightly different sur-
face forms (e.g., misspellings) can be pulled close
in the representation space. We adopt four types
of character-level augmentations, inspired by Out-
of-Vocabulary models (Pruthi et al., 2019; Chen
et al., 2022): (1) Swap two consecutive characters,
(2) drop a character, (3) insert a new character, (4)
replace a character according to keyboard distance.

Token-level Augmentation modifies tokens in
phrases for constructing positive samples. One
method is to swap the order of two adjacent to-
kens, as in “New York” → “York New”. Another
method is Synonym Replacement, which substi-
tutes a token in a phrase with a synonymous one
from a lexical dictionary. For example, “New York
newspaper” can be transformed to “NYC newspa-
per”. We use two methods to retrieve synonyms:
First, we draw synonyms from the lexical database
WordNet (Miller, 1992). Second, we use the word
embeddings of FastText (Bojanowski et al., 2017).
We regard word pairs whose vector cosine similar-
ity is greater than a certain threshold as synonyms.

Phrase-level Augmentation paraphrases an input
phrase for generating completely diverse samples.
Specifically, we employ a text-to-text paraphraser
called Parrot (Damodaran, 2021). For instance,
consider the input phrase “The New York Times”.
Through the usage of Parrot, an alternative name
such as “The Times”3 can be generated as output.
This augmentation stands distinct from character
and token methods, thereby broadening the diver-
sity of positive samples.

3“The Times” is an ambiguous name, and it can also mean
a British daily national newspaper based in London.

3.2 Encoder

Phrases that are semantically similar can differ both
on the token level (as in “adult male” vs. “grown
man”) and on the character level (as in adult vs. its
typo adlut). To cater to both variations, we feed the
input phrase into both a phrase-level encoder and
a character-level encoder and concatenate the two
embeddings.

Phrase Encoder. We use E5 (Wang et al., 2022)
as our phrase encoder. E5 is a general-purpose
text embedding model pre-trained on curated large-
scale (270 million) text pairs. It is able to transfer to
a wide range of tasks requiring a single-vector rep-
resentation of texts such as classification, retrieval,
and clustering.

Character Encoder. We take inspiration from
LOVE (Chen et al., 2022), a lightweight out-of-
vocabulary model, to generate character-level em-
beddings. LOVE can produce word embeddings for
arbitrary unseen words such as misspelled words,
rare words, and domain-specific words, and it
learns the behavior of pre-trained embeddings us-
ing only the surface form of words. We feed the
vector obtained by LOVE to a fully connected layer
to reduce its dimension.

3.3 Phrase Type Classification

The semantic type of a phrase is an important
piece of information for distinguishing phrases
that share similar surface forms but possess dif-
ferent meanings (such as “The New York Times”
and “New York”). To integrate the phrase type
into the learning framework, we design an aux-
iliary training task, Phrase Type Classification,
which aims to predict the tags of the lexical phrase
class and entity types for an input phrase. We use
the following lexical tags during training: Noun
Phrase (NP), Verb Phrase (VP), Prepositional Phrase
(PP), Adverb Phrase (ADVP), and Adjective Phrase
(ADJP). As for the entity type, we use the named
entity labels defined in OntoNotes (Hovy et al.,
2006): CARDINAL, DATE, PERSON, NORP, GPE, LAW,
PERCENT, ORDINAL, MONEY, WORK_OF_ART, FAC,
TIME, QUANTITY, PRODUCT, LANGUAGE, ORG, LOC,
and EVENT. We add an OTHER for phrases that do
not belong to any of them. We combine the two
sets in a Cartesian product so that we obtain a label
set Y with 95 phrase types in total. For example,
the label NP-GPE signifies a noun phrase related to
a geopolitical name (“the United States”), a label
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VP-ORG corresponds to a verb phrase associated
with an organization (“Bring Me the Horizon”),
and a label PP-QUANTITY identifies a propositional
phrase linked to a quantity (“between 1500 to 2000
ft”), which might be useful for numerical reasoning
tasks.

Now suppose that we have an m-dimensional
vector u ∈ Rm and an n-dimensional vector
v ∈ Rn generated by the phrase and charac-
ter encoder, respectively. We concatenate them
and apply a softmax layer with a trainable weight
W ∈ R(m+n)×|Y|:

oet = softmax((u,v)W) (1)

Here, Y is the label set and oet ∈ R|Y| is the final
output for predicting the entity type.

3.4 Objective and Training

Loss Function. There are two training tasks in
our framework: Contrastive Learning and Phrase
Type Classification. We adopt the widely-used con-
trastive loss (Hjelm et al., 2019; Chen et al., 2020)
for training, which encourages learned representa-
tions for positive pairs to be close while pushing
apart representations of negative samples. The loss
function can be written as:

LCL = − log
esim(hTh+)/τ

esim(hTh+)/τ +
∑

esim(hTh−
i )/τ

(2)

Here, τ is a temperature parameter that regulates
the level of attention given to difficult samples,
sim(·) is a similarity function such as cosine simi-
larity, and (h,h+), (h,h−) are positive pairs and
negative pairs, respectively (assuming that all vec-
tors are normalized). During training, we apply
one data augmentation randomly to the original
phrase for obtaining positive pairs while negative
examples are the other samples in the mini-batch.
This training process encourages the model to learn
representations that are invariant against variations.

As for the task of Phrase Type Classification, we
use a standard cross-entropy loss:

LCE = −∑|Y|
i=1yi log o

et
i (3)

Finally, the overall learning objective is:

L = LCL + LCE (4)

Training Corpus. We use Wikipedia to construct
our training samples. We parse the articles with the
Berkeley Neural Parser (Kitaev and Klein, 2018)
and collect five lexical types of phrases (NP, VP,
PP, ADVP, ADJP). We remove phrases that ap-
pear less than two times and obtain around 3.8
million phrases in total (NP: 60.1%, VP: 0.4%, PP:
26.1%, ADVP: 11.0%, ADJP: 2.4%). To obtain the
entity types, we employ a Named Entity Recogni-
tion (NER) model. We use DeBERTa (He et al.,
2021) fine-tuned on OntoNotes (Hovy et al., 2006).
The entity type distribution is shown in Figure A1.

Hard Negatives. Conventional contrastive learn-
ing regards other samples in the same batch as
negatives (in-batch negatives) (Hjelm et al., 2019;
Chen et al., 2020), which is simple and effective.
However, these negative samples might be easy to
distinguish by a model. For example, “The New
York Times” and “two years after” can be in the
same batch during training, but this negative pair
contributes less to the parameter optimization pro-
cess. Hence, we introduce hard negatives into each
batch, i.e., samples that have a surface form sim-
ilar to the original phrase, but a different seman-
tics – as in “The New York Times” and “New York
City”. For each phrase in the training set, we first
retrieve candidates that have a small edit distance
with the original phrase. Next, all the candidates
are encoded by the E5 text embedding. Finally, the
candidates with a low cosine similarity are selected
as the hard negatives. During training, a certain
number of hard negatives are added to each batch.

Weight Average. We found that there is a catas-
trophic forgetting problem (McCloskey and Cohen,
1989) after fine-tuning, i.e., the model forgets pre-
viously learned information upon learning new in-
formation. To avoid this, we average the weights of
the original and fine-tuned models, which is simple
yet effective.

4 Experiments

4.1 Datasets

To evaluate our framework, we use tasks of phrase
and short text in experiments. In total, there are
six types of tasks, which cover both the field of
data science and of natural language processing.
We briefly introduce tasks and datasets used in
experiments and you can see more details in the
appendix A.1.

For phrase datasets, we consider five tasks:
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(1) Paraphrase Classification. We use two
paraphrase classification datasets used by Phrase-
BERT (Wang et al., 2021a): PPDB and PPDB-
filtered. (2) Phrase Similarity. We use two
datasets, Turney (Turney, 2012) and BIRD (Asaadi
et al., 2019). (3) Entity Retrieval. We construct
two entity retrieval datasets by using a general
knowledge base Yago (Pellissier Tanon et al., 2020)
and a biomedical terminology UMLS (Bodenreider,
2004), respectively. (4) Entity Clustering. We use
the general-purpose CoNLL 03 (Tjong Kim Sang,
2002) benchmark and the biomedical BC5CDR (Li
et al., 2016) benchmark. (5) Fuzzy Join. We use
the AutoFJ benchmark (Li et al., 2021), which con-
tains 50 diverse fuzzy-join datasets derived from
DBpedia (Lehmann et al., 2015).

For short text datasets, we consider two tasks:
(1) Sentiment Analysis. We use a Twitter corpus 4

for this goal due to its short length. Two datasets
are constructed based on this corpus: Twitter-S
and Twitter-L, which contain 10,000 short Twit-
ter sentences and 20,000 long Twitter sentences,
respectively. (2) Intent Classification. We use
the ATIS (Airline Travel Information Systems)
dataset (Hemphill et al., 1990), which consists of
5400 queries with 8 intent categories. We con-
structed two subsets, ATIS-S and ATIS-L, based
on the length of query sentences.

4.2 Implementation Details

All approaches are implemented with PyTorch
(Paszke et al., 2019) and HuggingFace (Wolf et al.,
2020). We use three NVIDIA Tesla V100S PCIe
32 GB for all experiments. We test two versions of
PEARL, PEARL-small and PEARL-base, initial-
ized by E5-small and E5-base (Wang et al., 2022),
respectively. We then fine-tune them on our con-
structed phrase dataset for two epochs. The hy-
perparameters are selected by using grid search
(see Figure 5). The batch size is 512 (the max-
imum capacity for a single GPU), and we use
Adam (Kingma and Ba, 2015) with a learning rate
of 3e − 5 for optimization. The learning rate is
exponentially decayed for every 2000 steps with a
rate of 0.98. The temperature τ is the default value
of 0.07 and the number of hard negatives is 2 for
each mini-batch. Each data augmentation method
is randomly used during training. We fine-tune
PEARL three times with different seeds and report
the average score.

4https://huggingface.co/datasets/carblacac/

4.3 Competitors

We compare our approach to the following competi-
tors: String Distance uses the Jaccard similarity
of n-gram characters to compare two strings. Fast-
Text (Bojanowski et al., 2017) and GloVe (Pen-
nington et al., 2014) are two popular word em-
bedding methods, and we average word embed-
dings in order to obtain phrasal representations.
Sentence-BERT (Reimers and Gurevych, 2019)
fine-tuned BERT on SNLI (Bowman et al., 2015)
sentence pairs. Phrase-BERT (Wang et al., 2021a)
is a dedicated model for phrase representation fine-
tuned on lexically diverse datasets. UCTopic (Li
et al., 2022) is an unsupervised contrastive learn-
ing framework for context-aware phrase represen-
tations and topic mining. E5 (Wang et al., 2022) is
a powerful text embedding model that can transfer
to a wide range of tasks. E5 offers three model
sizes: E5small, E5base, and E5large, initialized
from MiniLM (Wang et al., 2021b), BERTbase, and
BERTlarge. We do not compare to McPhrasy (Co-
hen et al., 2022) because it is not publicly available.

5 Results

5.1 Overall Performance

Table 1 shows the experimental results across five
phrase tasks. We first note that PEARL-base
achieves the best performance on average, obtain-
ing the best score on 6 of 9 datasets. Second, our
framework brings significant improvements to the
corresponding backbone language models. Specif-
ically, PEARL-base improves E5-base by 3.7 ab-
solute percentage points on average and the corre-
sponding improvement of PEARL-small is 6.1 ab-
solute percentage points. Moreover, PEARL-small
with 40 million parameters outperforms other com-
petitors, and this result validates our claim that a
small model can obtain competitive results with a
big model for short text representations.

Apart from these phrase tasks, we conduct ex-
periments on short text classification to show a
practical usage of our PEARL model and the re-
sults are shown in Table 2. While PEARL is able
to outperform other phrase models like Phrase-
BERT and UCTopic, there is no statistical differ-
ence compared to other sentence models like Sim-
CSE (BERT-unsup) and E5. It is worth mentioning
that our model brings a benefit on very short texts
(Twitter-S and ATIS-S).

twitter-sentiment-analysis
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Model Size Paraphrase Classification Phrase Similarity Entity Retrieval Entity Clustering Fuzzy Join Avg
PPDB PPDB filtered Turney BIRD YAGO UMLS CoNLL 03 BC5CDR AutoFJ

Length (2.5) (2.0) (1.2) (1.7) (3.3) (4.1) (1.5) (1.4) (3.8) (2.4)

String Distance - - - - - - - - - 64.7 -
GloVe (2014) - 95.5 50.6 31.5 53.1 20.9 18.8 21.2 7.8 50.6 38.9

FastText (2017) - 94.4 61.2 59.6 58.9 16.9 14.5 3.0 0.2 53.6 40.3
Sentence-BERT (2019) 110M 94.6 66.8 50.4 62.6 21.6 23.6 25.5 48.4 57.2 50.1
Phrase-BERT (2021a) 110M 96.8 68.7 57.2 68.8 23.7 26.1 35.4 59.5 66.9 54.5

UCTopic (2022) 240M 91.2 64.6 60.2 60.2 5.2 6.9 18.3 33.3 29.5 41.6
E5-small (2022) 34M 96.0 56.8 55.9 63.1 43.3 42.0 27.6 53.7 74.8 57.0
E5-base (2022) 110M 95.4 65.6 59.4 66.3 47.3 44.0 32.0 69.3 76.1 61.1

PEARL-small 40M 97.2±0.1 69.2±0.7 56.1±0.1 69.7±0.1 48.1±0.1 43.4±0.2 48.7±0.7 61.0±1.1 74.6±0.1 63.1±0.2

PEARL-base 116M 97.1±0.0 72.7±0.4 60.9±0.3 72.3±0.3 50.2±0.2 43.6±0.4 40.9±0.2 69.5±0.6 76.3±0.0 64.8±0.2

Table 1: Evaluations of various phrase-level tasks. For the AutoFJ, we report the average accuracy across 50
datasets. The best results are shown in bold and the second best results are underlined. Since the baseline
String Distance cannot produce phrase embeddings, we only report its results on the AutoFJ as a reference.

Model Size Sentiment Analysis Intent Classification Avg
Twitter-S Twitter-L ATIS-S ATIS-L

Length (4.5) (9.2) (2.7) (12.1)

SimCSE (2021) 110M 70.4±0.3 74.5±0.2 91.2±0.5 96.8±0.1 83.2
Phrase-BERT (2021a) 110M 71.9±0.1 77.0±0.2 50.6±1.4 79.5±2.7 69.8

UCTopic (2022) 240M 60.3±0.1 70.6±0.3 26.9±0.0 72.2±0.0 57.5
E5-small (2022) 34M 70.7±0.4 78.1±1.2 92.7±0.0 94.1±0.1 83.9
E5-base (2022) 110M 72.4±0.2 79.5±0.4 93.0±0.6 96.2±0.3 85.3

PEARL-small 40M 72.8±0.2 78.5±0.5 93.7±0.5 96.7±0.1 85.4
PEARL-base 116M 73.7±0.3 77.1±0.1 93.2±0.7 97.4±0.1 85.4

Table 2: Evaluations of text classification tasks. We
run each model 10 times and report the average accu-
racy. “S” and “L” mean short and long, respectively.
The best results are shown in bold and the second
best results are underlined.

We conclude that our PEARL framework can
produce high-quality representations for phrases
and short texts across various tasks. If the length of
input texts is very short (e.g., less than six tokens),
it is beneficial to use PEARL embeddings.

5.2 Ablation Study

We vary components of PEARL to validate archi-
tectural choices. We use PEARL-small as the base-
line. We fine-tune each variation of PEARL-small
in the same experimental setting and test it across
five phrase tasks. All results are shown in Table 3.

Entity Type Classification. If entity type classi-
fication is removed, the average performance de-
creases by 2.2 percentage points and drops dramat-
ically for the entity clustering task. This validates
our claim that adding phrase type information en-
hances representation capabilities.

Character Encoder. PEARL uses LOVE (Chen
et al., 2022) to capture morphological variations
of phrases. Removing LOVE causes a drop of 0.8
percentage points on average, especially for the
entity-clustering task (-3.2).

Data Augmentation. PEARL uses data augmen-
tation at three levels of granularity: character-level,
token-level, and phrase-level methods. To validate
the effect of each level, we stop using a particu-
lar augmentation during fine-tuning. We find that
character-level augmentation is beneficial mainly
for the tasks of entity clustering (-3.3) and Entity
Retrieval (-0.5). Token-level augmentations cre-
ate lexically diverse positive phrases, and remov-
ing these samples degrades performances across
all five tasks. Phrase-level augmentation has the
strongest impact on the representation capabilities
of a model. Removing all augmentations results in
an average drop of 2.4 percentage points.

Hard Negatives. As random in-batch negatives
contain relatively less information to learn, we in-
sert a number of hard negatives into each batch.
These negatives share similar surface forms with
the original phrases but differ in their meanings.
We find that adding hard negatives brings decent
improvements (+0.8 on average), especially consid-
ering the nearly zero additional cost of this strategy.

5.3 Visualization

To demonstrate more intuitively the improved qual-
ity of phrasal representations, we visualize embed-
dings generated by different models. Specifically,
we use six types of entities from YAGO 4 (Pel-
lissier Tanon et al., 2020) in this experiment:
Place, Person, MeidicalEntity, Event,
Organization, CreativeWork. For each type,
100 entity names are randomly sampled from the
entire set and we feed them into the four models
for obtaining phrase embeddings. Then, we apply
t-SNE to reduce them to 2 dimensions for visual-
ization. As Figure 4 shows, PEARL can effectively
cluster the same types of phrases together.
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Model Paraphrase Classification Phrase Similarity Entity Retrieval Entity Clustering Fuzzy Join Avg

PEARL-small 83.2±0.4 62.9±0.1 45.8±0.2 54.9±0.9 74.6±0.1 63.1±0.2

- Phrase DA 82.6±0.1 ↓ 61.2±0.4 ↓ 41.0±0.6 ↓ 52.1±1.7 ↓ 72.7±0.3 ↓ 60.7±0.3 ↓
- Entity Type 82.9±1.0 ↓ 63.7±0.2 ↑ 44.3±0.2 ↓ 45.7±0.5 ↓ 74.9±0.1 ↑ 60.9±0.1 ↓
- Token DA 82.7±0.4 ↓ 62.8±0.4 ↓ 44.6±0.7 ↓ 51.4±2.0 ↓ 73.9±0.3 ↓ 61.9±0.5 ↓
- Hard Negatives 83.2±0.4 ↕ 63.2±0.4 ↑ 45.1±0.7 ↓ 52.0±0.4 ↓ 73.9±0.2 ↓ 62.3±0.2 ↓
- Character Encoder 82.8±0.4 ↓ 63.3±0.4 ↑ 45.8±0.4 ↕ 51.7±0.7 ↓ 73.9±0.2 ↓ 62.3±0.2 ↓
- Character DA 82.9±0.3 ↓ 63.5±0.3 ↑ 45.3±0.6 ↓ 51.6±1.4 ↓ 74.5±0.4 ↓ 62.4±0.5 ↓

Table 3: Ablation study. DA means Data Augmentation. The biggest drop is in bold.

40 20 0 20

40

20

0

20

40

60

Place
Person
MedicalEntity
Event
Organization
CreativeWork

(a) Phrase-BERT (110M)

40 20 0 20 40 60

40

30

20

10

0

10

20

30

40

(b) UCTopic (240M)

40 20 0 20 40

40

20

0

20

40

(c) E5-base (110M)

30 20 10 0 10 20 30 40

40

30

20

10

0

10

20

30

40

(d) PEARL-small (40M)

Figure 4: t-SNE visualizations of phrase embeddings generated by different models. We randomly selected
100 samples for each entity type from YAGO 4 (Place, Person, MeidicalEntity, Event, Organization,
CreativeWork). Markers with the same color are supposed to be grouped together.

Model BERT RoBERTa ALBERT SpanBERT LUKE

Original 39.4 33.2 33.6 29.6 31.9
+ PEARL 57.1 53.4 52.5 50.6 52.7

∆ 17.7 ↑ 20.2 ↑ 18.9 ↑ 21.0 ↑ 20.8 ↑

Table 4: The performances of language models after
using our framework. The results are the average score
across five phrase tasks.

5.4 Generalizability of Our Framework

We now demonstrate that PEARL can enhance the
phrase representations of various language mod-
els. Beyond E5, we test five other language mod-
els: BERT (Devlin et al., 2019), RoBERTa (Liu
et al., 2019), ALBERT (Lan et al., 2020), Span-
BERT (Joshi et al., 2020), and LUKE (Yamada
et al., 2020). We first check the original perfor-
mance of each language model across five phrase
tasks and then use PEARL to fine-tune them by
following the same experimental setting as before
(but using 30% of training samples to save time).
Table 4 shows that PEARL consistently obtains sig-
nificant enhancements, showing that our method
can be generalized to various models.

5.5 Hyperparameter Selection

Figure 5 shows the performances on the BIRD
datasets by varying learning rates and numbers of
hard negatives. We observe that a learning rate of
3e-5 and using 2 hard negatives in each batch can
yield better phrase embeddings.
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Figure 5: Hyperparameter selection on BIRD dataset.

6 Conclusion

In this study, we have presented PEARL, a novel
contrastive learning framework for more power-
ful phrase representations. PEARL incorporates
phrase type information and morphological fea-
tures, and thereby captures better the nuances of
phrases. Furthermore, PEARL enriches training
samples with distinct granularities of data augmen-
tations. Our empirical results show that it improves
phrase embeddings for a wide range of tasks, from
paraphrase classification to entity retrieval, use-
ful in applications across NLP and data engineer-
ing. Adding character-level support to language
models appears crucial to success on short texts.
Indeed, these provide much less context than full
paragraphs and thus it is important to go beyond the
tokens of the original language model that mainly
capture word stems.
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Limitations

One potential limitation is that our PEARL may
not provide significant advantages when dealing
with long sentences. Since PEARL is specifically
dedicated to modeling morphological variations
of short texts by using context-free input, current
PEARL models do not capture long-distance con-
textual semantics very well, which can limit their
performances and benefits on long texts.
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A Appendix

A.1 Details of Datasets

A.1.1 Phrase Datasets
Paraphrase Classification (PC) judges whether
two phrases convey the same meaning. We use
two paraphrase classification datasets used by
Phrase-BERT (Wang et al., 2021a): PPDB and
PPDB-filtered. PPDB is constructed from PPDB
2.0 (Pavlick et al., 2015), which includes 23,364
phrase pairs by sampling examples from PPDB-
small with a high score, and negative examples
are randomly selected from the dataset. PPDB-
filtered contains more challenging samples, which
are obtained by removing phrase pairs with lexi-
cal overlap cues. In total, there are 19,416 phrase
pairs. We follow the setting of previous work for
experiments (Wang et al., 2021a), where a simple
classifier layer (multilayer perceptron with a ReLu
activation) is added on top of the concatenated em-
beddings of a phrase pair. We measure accuracy.

Phrase Similarity (PS) aims to calculate the
semantic similarity for phrase pairs. We
use two datasets, Turney (Turney, 2012) and
BIRD (Asaadi et al., 2019). Turney evaluates bi-
gram compositionality. A model is supposed to
select the most similar unigram from five candi-
dates given a bigram input. The dataset has 2180
samples and the metric is accuracy. BIRD is a fine-
grained and human-annotated bigram relatedness
dataset, which contains 3345 English term pairs.
Each pair of phrases has a relatedness score be-
tween 0 and 1, and the metric for this dataset is the
Pearson correlation coefficient.

Entity Retrieval (ER) aims to retrieve a standard
entity from a reference knowledge base given a
textual mention of that entity. We consider a par-
ticularly challenging form of the task, where the
mention is given without any context, and the refer-
ence knowledge base provides only the canonical
name of the entity. For example, given the mention

“NYTimes”, the goal is to determine the canonical
entity “The New York Times” in Wikidata. We con-
struct two entity retrieval datasets by using a gen-
eral knowledge base Yago (Pellissier Tanon et al.,
2020) and a biomedical terminology UMLS (Bo-
denreider, 2004), respectively. Both Yago and
UMLS offer alternate names for an entity, and we
randomly selected 10K of these alternate names
as mentioned. The canonical names of the enti-
ties serve as the reference dictionary and there are
no duplicate names in the dictionary. The dictio-
nary size of Yago and UMLS is 572K and 750K,
respectively. To accelerate the inference, we use
Faiss (Johnson et al., 2019) with all competing sys-
tems to do an approximate search. The metric here
is top-1 accuracy.

Entity Clustering (EC) tests whether the phrase
embeddings can be grouped together according
to their semantic categories. We use the general-
purpose CoNLL 03 (Tjong Kim Sang, 2002)
benchmark and the biomedical BC5CDR (Li et al.,
2016) benchmark. CoNLL 03 consists of 3,453
sentences with entities, and the three entity types
are used in the experiment: Person, Location,
and Organization. BC5CDR has 7,095 sentences
with two types of entities: Disease and Chemical.
We apply KMeans (MacQueen et al., 1967) to the
embeddings generated by a phrase representation
model and use the NMI (normalized mutual infor-
mation) metric.
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Figure A1: Distributions of each entity type (without
the OTHER tag, with 88.5%).

Fuzzy Join (FJ) is an important database op-
erator widely used in practice (also known as
fuzzy-match), which matches record pairs from
two tables. We use the AutoFJ benchmark (Li
et al., 2021), which contains 50 diverse fuzzy-join
datasets derived from DBpedia (Lehmann et al.,
2015). It aims to match entity names that have
changed over time (e.g., “2012 Wisconsin Badgers
football team” and “2012 Wisconsin Badgers foot-
ball season”). In this experiment, we use the left
table names as reference tables and the right ta-
ble names as input tables. We report the average
accuracy across all datasets.

All experiments except paraphrase classification
are conducted without fine-tuning.

A.1.2 Short Text Datasets
Sentiment Analysis (SA) analyzes texts to deter-
mine whether the emotion is positive or negative.
We use a Twitter corpus for this goal due to its
short length. Two datasets are constructed based
on this corpus: Twitter-S and Twitter-L, which con-
tain 10,000 short Twitter sentences and 20,000 long
Twitter sentences, respectively.

Intent Classification (IC) identifies customer’s
intents from text queries. We use ATIS (Airline
Travel Information Systems) dataset (Hemphill
et al., 1990), which consists of 5400 queries with
8 intent categories. We constructed two subsets,
ATIS-S and ATIS-L, based on the length of query
sentences.

For the two short text classification tasks, we
add a classifier layer (multilayer perceptron with a
ReLu activation) on top of the text embeddings and
report the average accuracy across 10 times run.
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