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Abstract

To encourage fairness and transparency, there
exists an urgent demand for deriving reliable ex-
planations for large language models (LLMs).
One promising solution is concept-based ex-
planations, i.e. human-understandable concepts
from internal representations. However, due
to the compositional nature of languages, cur-
rent methods mostly discover correlational ex-
planations instead of causal features. There-
fore, we propose a novel framework to provide
impact-aware explanations for users to under-
stand the LLM’s behavior, which are robust to
feature changes and influential to the model’s
predictions. Specifically, we extract predictive
high-level features (concepts) from the model’s
hidden layer activations. Then, we innovatively
optimize for features whose existence causes
the output predictions to change substantially.
Extensive experiments on real and synthetic
tasks demonstrate that our method achieves su-
perior results on predictive impact, explainabil-
ity, and faithfulness compared to the baselines,
especially for LLMs.

1 Introduction

Over the past few years, large language models
(LLMs) have achieved tremendous progress, lead-
ing them to be widely applied in sensitive applica-
tions such as personalized recommendation bots
and recruitment. However, Explainable AI (XAI)
has not witnessed the same progress, making it
difficult to understand LLMs’ opaque decision pro-
cesses (Mathews, 2019). Therefore, many users are
still reluctant to adopt LLMs in high-stake appli-
cations due to transparency and privacy concerns.
In this work, we aim to increase user trust and en-
courage transparency by deriving explanations that
allow humans to better predict the model outcomes.

To understand what happens inside an LLM, pre-
vious studies (Dalvi et al., 2021) show that dense
vector representations in high layers of a language
model tend to capture semantic meanings that are
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Figure 1: Illustration of concept-based explanations that
result in high impact (green line) or not (red line) when ex-
plaining the LLMs in a sentiment classification task.

useful for solving the underlying task. However,
such vector representations are not understandable
to humans. To solve it, concept-based explana-
tions attempt to map the hidden activation space
to human-understandable features. For example,
Koh et al. (2020) provides the concept bottleneck
model, which first predicts an intermediate set of
human-specific concepts, then uses them to predict
the target. As illustrated by purple boxes in Fig. 1,
for the movie review classification task, concept-
based explanations are semantically meaningful
word clusters (Dalvi et al., 2021) corresponding to
abstract features such as “acting” and “directing”.

However, existing concept-based methods do
not consider of the explanation impact on output
predictions, leading to inferior explanations. By
impact, we mean the causal effect of removing a
feature on output predictions (Goyal et al., 2019;
Abraham et al., 2022). As Moraffah et al. (2020)
points out, these non-impact-aware methods de-
rive correlational explanations that cannot answer
questions about decision-making under alternative
situations and are thus unreliable. An example is
illustrated in Fig. 1. Due to the conventional expres-
sion “hot mess”, the word “hot” often co-occurs
with “mess”, which is usually used to classify nega-
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tive sentiment. Traditional concept-based methods
that do not consider impact may falsely use the cor-
relational feature “weather” (i.e., “hot”) to explain
why the model classifies something as negative.
However, excluding the “weather” concept does
not cause the output prediction to change at all, re-
sulting in zero impact (red line). Thus, low-impact
explanations such as “weather” are less valid as
users cannot utilize them to consistently predict the
model’s behaviors when a feature changes.

To tackle this bottleneck and incorporate impact
into traditional concept-based models, in this work,
we propose High-Impact Concepts (HI-concept),
a complete concept explanation framework with
causal impact optimization (§3.2). Specifically,
We design a causal loss objective, stemming
from the treatment effects in the causality litera-
ture (Pearl, 2009). Moreover, previous causality
evaluations (Goyal et al., 2019; Feder et al., 2021b)
primarily focused on assessing the causal effect
via local (i.e., instance-level) change and removal
intervention (i.e., eliminating words/concepts from
the source), leading to potentially biased evalua-
tion results. To this end, we further propose a novel
global (i.e., model-level) accuracy change metric
and insertion operation to effectively diagnose the
causality measurement (§3.4).

As a result, our method can consistently priori-
tize more influential features (green line in Fig. 1)
while disregarding correlational ones. Extensive
experiments with multiple language models, both
established and newly proposed evaluation metrics,
and rigorous human studies fully validate the effec-
tiveness of HI-concept in finding high-impact con-
cepts compared to baselines, especially for LLMs.
Our contributions are summarized as follows1:
• To alleviate the problem of correlational explana-

tions, we propose HI-concept, a framework for
deriving explanatory features with high impacts
by innovatively optimizing a causal objective.

• Towards comprehensive evaluations, we propose
a theoretically grounded metric, namely recon-
struction accuracy change, and devise an inser-
tion study, which serves as a complement to the
traditional removal intervention.

• Extensive experiments show that HI-concept is
impactful, explainable, and faithful, with espe-
cially outstanding improvements on LLMs (e.g.,
improving the causal effect on accuracy from

1Our codebase is available at https://github.com/
RuochenZhao/HIConcept.

2.83% to 27.79% on Llama-7B).

2 Preliminaries

We first introduce what concept-based explanations
are, what properties they should satisfy, and our key
baseline, concept bottleneck models.

2.1 Concept-based Explanations

Concept-based explanations is a well-established
method (Kim et al., 2018; Koh et al., 2020; Yeh
et al., 2020) that extracts human-understandable
concepts from the model’s hidden space. As stated
in Kim et al. (2018), the activation space of an ML
model can be seen as a vector space Em spanned
by basis vectors em which correspond to input fea-
tures. Humans work in a different vector space Eh

spanned by implicit vectors eh corresponding to an
unknown set of human-understandable concepts.
Then, concept-based explanations g : Em −→ Eh

aim to translate from high-level representations into
task-relevant and human-understandable concepts.

Ideally, concept-based explanations should sat-
isfy the following properties (Doshi-Velez and Kim,
2017). Faithfulness: The explanations can be able
to accurately mimic the original model’s prediction
process (Ribeiro et al., 2016). Causality: When
the feature is perturbed in real life, the output pre-
dictions should change accordingly. This causal
impact ensures that explanations are reliable under
alternative situations. Explainability: The expla-
nations should be understandable to humans and
able to assist users in real-life tasks. These three
properties will be the guiding principles for our
model design and evaluation.

2.2 Concept Bottleneck Models

Original Path

New Path

Mapping back

Figure 2: The overall concept generation process of a
concept bottleneck model.

To derive concept-based explanations, one clas-
sic architecture is concept bottleneck models (Yeh
et al., 2020), shown in Fig. 2. The pretrained
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model f can be viewed as a composite of two
functions, divided at an intermediate layer: f =
ψ ◦ ϕ. After initializing the concepts C =
{c1, . . . , cn} ∈ ϕ(·) uniformly, ϕ(x) is encoded
into concept probabilities pC(x), calculated as
pic(x) = TH((ϕ(x)⊤ci), β)2 Then, the bottleneck-
shaped network reconstructs ϕ(x) with a 2-layer
perceptron gθ such that gθ(pC(x)) ≈ ϕ(x). Intu-
itively, hidden space ϕ(·) corresponds to the vector
spaceEm. The concept probability space pC(·) cor-
responds to the human-understandable space Eh.
To train the concept model in an end-to-end way,
two losses are used:
• Reconstruction loss: To faithfully recover the
original model’s predictions, a surrogate loss with
cross-entropy (CE) is optimized3:

Lrec(θ, C) = CE
(
ψ
(
ϕ(x)

)
, ψ

(
gθ(pC(x))

))

= −
∑

b∈B
ψ
(
ϕ(x)

)
b
log

(
ψ(gθ(pC(x)))b

)
.

(1)

• Regularization loss: To make concepts more ex-
plainable, a regularization loss forces each concept
vector to correspond to actual examples and con-
cepts to be distinct from each other4:

Lreg(C) =− λ1

∑n
i=1

∑
xt∈Tci

c⊤i ϕ(xt)

nN

+ λ2

∑
i1 ̸=i2

c⊤i1ci2
n(n− 1)

.

(2)

3 Methodology

Then, we propose HI-concept, which aims to fill
the current research gap on explanatory impact.

3.1 Defining Impact
As stated earlier, not considering impact could re-
sult in confounding and correlational explanations.
The failure cases can be theoretically explained by
causality analysis in Fig. 3. To achieve sentiment
prediction Y , the hidden activation space in pre-
trained LLMs consists of both correlated features
E and predictive features Z. Although only Z truly
affects prediction Y , E and Z may be correlated
due to the confounding effects brought by input X .
However, a traditional concept mining model does
not differentiate between E and Z and considers
both as valid. Thus, it may easily use the con-
founding association as an explanation instead of

2TH is a threshold function that forces all inputs smaller
than β to be 0.

3B is the set of class labels andψ(.)b denotes the prediction
score corresponding to label b.

4Tci as the set of top-k neighbors of ci

E
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Movie Review Predictive Features

Correlated Features

Positive Review

Figure 3: Illustration of the causal graph indicating the
confounding association in explanation models. Blue
is a real-life example. Green is the correspondence in a
movie review classification task.

the true causal path. The resulting concepts would
be problematic as they do not facilitate a robust
understanding of the model’s behaviors.

To tackle this challenge, we enforce explanations
to be predictive by considering their “impact”. To
formally define the impact of a feature, we utilize
two important definitions in causal analysis: Indi-
vidual Treatment Effect (ITE) and Average Treat-
ment Effect (ATE), which measure the effect of
interventions in randomized experiments (Pearl,
2009). Given a binary treatment variable T that
indicates whether a do-operation is performed (i.e.,
perturb a feature), ATE and ITE are defined as the
change in expected outcome with treatment T = 1:

ITE(x) := E[y|X = x, do(T = 1)]

− E[y|X = x, do(T = 0)];

ATE := E[ITE(x)].
(3)

In our case, a concept ci is discovered as a di-
rection in the latent space, corresponding to a fea-
ture in the input distribution. As f is fixed, its
prediction process is deemed deterministic and re-
producible, allowing us to conduct experiments
with treatments (Koh et al., 2020). Therefore, we
propose to remove a specific concept (Goyal et al.,
2019)5 as the do-operation and define impact I of
a concept ci on an instance (x, y) as:

I(ci,x) = E[y|X = x, ci = 0]− E[y|X = x, ci = ci].
(4)

3.2 Optimizing for Impact
In order to incorporate consideration for impact
into the concept discovery process, we introduce
two new losses to the original framework:
• Auto-encoding loss: To guarantee that the in-
tervened representations are still meaningful, we

5We assume that, as the concept vectors coexist in the
hidden embedding space, there is no causal relationship among
the concepts {c1, . . . , cn} themselves.
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optimize an auto-encoding loss to learn a proxy
task that reconstructs the hidden representations.
With this loss, the concept model becomes Auto-
encoder-like and can mimic a generation process
of the real distribution of ϕ(x). Therefore, concept
vectors can then be seen as key factors in the gener-
ation process of ϕ(x). Then, we can perform valid
interventions on the concept vectors, such as the
removal intervention. Formally:

Lenc(θ, C) = MSE
(
ϕ(x), gθ(pC(x))

)

=
1

d
||ϕ(x)− gθ(pC(x)||22.

(5)

• Causality loss: Directly optimizing for causal-
ity is a challenging objective as causal impact is
difficult to estimate during training. Therefore, we
approximate impact (Eq. (4)) by randomly remov-
ing a set of concepts S ⊆ C and calculating the
expectation of impact on the training set. Then, we
could disentangle concept directions that have a
greater impact by optimizing the following loss:

Lcau(θ, C) = −
∑

ci∈S

∑

xj∈D

∣∣∣ψ
(
gθ(pC(xj)|ci = 0)

)

− ψ
(
gθ(pC(xj)|ci = ci)

)∣∣∣ ≈ −|Iavg(C)|.
(6)

As all inputs xj ∈ D are perturbed, the training
dataset D serves both as the treatment group and
the nontreatment group, ensuring no divergence.

Finally, the overall loss function becomes:

L(θ, C) =Lrec(θ, C) + Lreg(C)
+ λeLenc(θ, C) + λcLcau(θ, C),

(7)

where λe, λc are the weights for the auto-encoding
loss and the causal loss respectively. In practice, the
hyperparameters require minimal tuning. Specifi-
cally, we recommend fixing λ1 = 0.1 and λ2 = 0.5
for regularizer loss in Eq. (2), and λe = 1 for re-
construction loss. The only hyperparameter to tune
is λc, whose optimal level can be found within a
few steps. Futher details on implementation and
the training process could be found in Appendix A.

3.3 Visualizing Concepts via Impact
As a concept ci ∈ ϕ(·) is a hidden space vector, pre-
vious concept discovery methods face difficulties
in mapping concept vectors to semantic meanings.
They mainly relied on naively clustering the high-
frequency words (Dalvi et al., 2021; Yeh et al.,
2020). To address this issue, we use established
visualization techniques to translate it to human-
understandable concepts (i.e., word clusters and
highlights).

For models where the hidden representation is
token-level, we simply use the individual token’s
concept probability pC(xi) as token importance
scores. For models with sequence-level repre-
sentations such as BERT, we employ the well-
established transformer visualization method pro-
posed in Chefer et al. (2021) to map back from
the [CLS] activation concepts to input tokens. As
an adaption of Grad-CAM (Selvaraju et al., 2017)
to transformers, it visualizes classifications with
layer-wise propagation, gradient backpropagation,
and layer aggregation with rollout. As a result,
for each sample x with tokens x1, . . . , xT , we
go from having only one concept similarity score
pic(x) to a list of normalized token importance
scores s1(ci), . . . , sT (ci). Therefore, we derive
both global/model-level concepts (i.e., word clus-
ters) and their corresponding local/instance-level
explanations (i.e., token importance scores for an
instance) that result in high impact. Both forms of
generated explanations can complement each other
while conforming to the model’s ‘mindset’.

3.4 Evaluating Impact of Concepts
Quantitatively, traditional causality evaluation met-
rics focus on local (i.e., instance-level) perturba-
tions (Feder et al., 2021b), which may be biased
to global (i.e., model-level) performance evalua-
tions. Thus, we innovatively propose Recovering
Accuracy Change (∆Acc). Following the causality
definition Doshi-Velez and Kim (2017) and human
intuition, if a concept ci is a crucial factor used by
the model to make predictions, omitting it should
disrupt the ability to faithfully recover predictions.
Formally, it is defined as:

∆Acc(C) = 1

|C|
∑

ci∈C
|Acc(C)− Acc(C \ {ci})|,

where Acc denotes the recovering accuracy (Yeh
et al., 2020).

Moreover, we follow previous work to use
Causal Concept Effect (CACE) (Goyal et al., 2019)
to evaluate the causal effect of the set of concepts
C. Formally, it is defined as:

CACE(ci) :=
∑

xj∈Dtest

|ψ
(
gθ(pC(xj))

)

− ψ
(
gθ(pC\{i}(xj))

)
|;

CACE(C) = 1

|C|
∑

ci∈C
CACE(ci)

Qualitatively, existing evaluations mostly assess
concepts’ impact C via feature removal (Goyal
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et al., 2019). We argue that obtained concepts
should also be generalizable to cases of insertion.
Thus, we propose a novel insertion operation. Intu-
itively, when inserting explanation features one by
one, gradual improvement of recovering accuracy
should be observed, indicating incremental impact
of each concept.

4 Experiment Setup

4.1 Datasets and Metrics

We test the effectiveness of our method with two
standard text classification datasets: IMDB (Maas
et al., 2011) and AG-news (Zhang et al., 2015).
IMDB consists of movie reviews labeled with pos-
itive or negative sentiments, while AG-news is a
dataset of news articles categorized into 4 topics.
Appendix B gives a dataset summary. We explain
four classification models: (i) a 6-layer transformer
encoder trained from scratch, (ii) a pre-trained
BERT with finetuning, (iii) a pre-trained T5 model
(Raffel et al., 2020) with finetuning, (iv) 7B Llama
(Touvron et al., 2023) with in-context learning.

We evaluate the explanation methods quantita-
tively and qualitatively with comprehensive met-
rics based on the three important considerations
described in §2.1. Faithfulness. To ensure
that the surrogate model can accurately mimic
the original model’s prediction process, we eval-
uate whether the captured concept probabilities
pC(x) can recover the original model’s predictions
ψ
(
ϕ(x)

)
quantitatively with Recovering Accuracy

(Acc) (Yeh et al., 2020), Precision, Recall, F1, and
Completeness (Yeh et al., 2020). Please check the
details of the metric calculation in Appendix C.
Causality is the key of the XAI model evalua-
tion. As mentioned in §3.4, we use the CACE met-
ric (Goyal et al., 2019), a novel accuracy change
metric (∆Acc), and insertion operations to provide
a more comprehensive overview. Explainability.
With the concepts generating a high impact on pre-
dictions, we expect that it can allow end-users to
better understand the model’s decisions. We in-
clude visualizations and human studies to test it
qualitatively.

4.2 Baselines and Hyperparameters

For baselines, we use other unsupervised dimen-
sion reduction methods to discover concepts on
the hidden space: (i) PCA (F.R.S., 1901) and
K-means (Likas et al., 2003) are popular non-
parametric clustering techniques that reduce high-

dimensional datasets into key features to increase
interpretability. (ii) β-TCVAE (Chen et al., 2018) is
a disentanglement VAE method that explicitly con-
siders causal impact while reducing dimensionality.
(iii) ConceptSHAP (Yeh et al., 2020) represents the
traditional concept bottleneck models that do not
consider impact.

The full list of hyperparameters used for training
HI-concept can be found in Appendix B. Briefly,
we use the causal coefficient λc ∈ [1, 3], depending
on the level of confounding within the dataset. Dur-
ing training, perturbation is performed on the most
similar concept to the input. All experiments are
conducted on the penultimate layer. The hyperpa-
rameters are chosen as an optimal default through
grid search. To make the comparison fair, all meth-
ods use 10 dimensions to encode.

5 Results and Analysis

pcor Cls.Acc Method Acc CACE ∆Acc

0.50 95.4%
ConceptSHAP 97.6% 0.070 6.1%

HI-concept 98.4% 0.102 9.4% (+3.3%)

0.65 99.0%
ConceptSHAP 99.7% 0.038 3.5%

HI-concept 99.3% 0.084 6.8% (+3.4%))

0.75 96.1%
ConceptSHAP 98.3% 0.069 6.0%

HI-concept 98.9% 0.123 12.2% (+6.2%)

Table 1: Faithfulness (Acc) and Causality (CACE,
∆Acc) evaluation on the toy dataset. Cls.Acc denotes
the original classification model’s accuracy.

5.1 Sanity Check
To first provide a sanity check for our method,
we follow the toy experiment design in Yeh et al.
(2020), which explains a CNN model trained on a
synthetic graphic dataset. To mimic the confound-
ing effects (X −→ E) as in Fig. 3, we add corre-
lations (controlled by pcor) among ground truth
concepts. Then, we compared discovered concepts
by HI-concept with ConceptSHAP. Appendix D
gives details of the experiment. In Table 1, results
show that our method discovers concepts that con-
sistently outperforms the baseline by deriving more
impactful features. As confounding levels (pcor) in
the dataset increase, the performance gap (∆Acc)
also widens. Therefore, HI-concept successfully
improves explanatory impact, especially for highly
correlational tasks and datasets.

5.2 Quantitative Results on Text Classification
The experiment results on text classification
datasets are presented in Table 2. Overall, HI-
Concept not only achieves the best performance
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Dataset Model Method
Faithfulness Causality

Acc Precision Recall F1 Completeness CACE ∆Acc

IMDB

Transformer

β-TCVAE (Chen et al., 2018) 43.53% 50.23 50.03 33.08 27.36 0.037 1.50%
K-means (Likas et al., 2003) 83.64% 84.74 85.05 83.63 61.87 0.047 2.59%
PCA (F.R.S., 1901) 85.18% 85.56 86.20 85.15 62.36 0.001 0.01%
ConceptSHAP (Yeh et al., 2020) 84.36% 85.04 85.56 84.34 62.05 0.031 1.30%
HI-concept 88.78% 90.07 87.50 88.24 58.10 0.150 11.06%

BERT

β-TCVAE (Chen et al., 2018) 93.86% 94.31 93.43 93.68 10.71 0.057 4.05%
K-means (Likas et al., 2003) 98.69% 96.16 96.23 96.19 15.69 0.037 0.97%
PCA (F.R.S., 1901) 96.68% 96.65 96.68 96.67 15.33 0.002 0.02%
ConceptSHAP (Yeh et al., 2020) 95.84% 95.78 95.96 95.83 17.16 0.050 0.06%
HI-concept 92.97% 93.25 93.34 92.97 21.04 0.099 8.99%

Llama

β-TCVAE (Chen et al., 2018) 20.56% 33.41 33.36 13.30 -14.29 0.001 0.15%
K-means (Likas et al., 2003) 15.31% 5.10 33.33 8.85 -21.82 0.019 0.00%
PCA (F.R.S., 1901) 95.15% 67.97 77.66 69.80 64.19 0.001 0.03%
ConceptSHAP (Yeh et al., 2020) 18.83% 42.83 34.95 14.88 -1.78 0.005 1.60%
HI-concept 87.87% 53.27 68.60 55.29 59.83 0.042 28.69%

AG-News

Transformer

β-TCVAE (Chen et al., 2018) 98.91% 98.94 98.94 98.93 66.73 0.049 6.62%
K-means (Likas et al., 2003) 98.16% 98.32 98.11 98.18 65.99 0.044 0.07%
PCA (F.R.S., 1901) 99.99% 99.99 99.99 99.99 66.66 0.000 0.03%
ConceptSHAP (Yeh et al., 2020) 73.01% 59.36 74.34 64.88 47.07 0.000 0.00%
HI-concept 99.50% 99.50 99.51 99.50 66.70 0.046 7.12%

BERT

β-TCVAE (Chen et al., 2018) 92.30% 94.93 91.89 92.91 57.25 0.044 5.32%
K-means (Likas et al., 2003) 86.83% 92.74 85.42 87.53 52.62 0.028 7.15%
PCA (F.R.S., 1901) 99.79% 99.82 99.77 99.79 61.04 0.001 0.01%
ConceptSHAP (Yeh et al., 2020) 93.46% 93.70 94.62 93.66 62.69 0.025 4.44%
HI-concept 99.90% 99.89 99.90 99.89 61.12 0.058 10.54%

Llama

β-TCVAE (Chen et al., 2018) 1.27% 0.25 20.00 0.50 -23.89 0.000 0.01%
K-means (Likas et al., 2003) 37.00% 7.40 20.00 10.80 1.09 0.007 0.02%
PCA (F.R.S., 1901) 85.41% 65.78 67.98 66.73 51.46 0.000 0.03%
ConceptSHAP (Yeh et al., 2020) 17.01% 35.37 35.20 15.87 -7.73 0.002 2.83%
HI-concept 81.52% 48.59 55.99 51.53 43.07 0.039 27.79%

Table 2: Faithfulness (Acc, Precision, Recall, F1, Completeness) and causality (CACE, ∆Acc) evaluation of
different text classification methods. The best result is bolded, and the second-best result is underlined.

Method CACE Keywords

CS 0.134 apple, NASA, Microsoft, new, sun, red, super, game
CS 0.000 one, two, gt, new, cl, lt, first, world, mo, last

HI-C 0.130 us, bush, u, eu, new, peoples, china, high, gt, world
HI-C 0.003 us, update, new, mo, two, first, knicks, last, one, hen

Table 3: Generated concepts with Average Impact
(CACE) from AG-News dataset, BERT model. CS is
ConceptSHAP, HI-C is HI-concept. Each line is one
concept, represented by keywords, which are ordered
by descending importance.

in causality, but improves on faithfulness as well.
For faithfulness metrics (Acc, Precision, Recall, F1,
and Completeness), HI-concept achieves the best
or second-best results for almost all datasets and
models. Notably, for the cases achieving second-
best performance, the best model for faithfulness
is PCA. PCA, however, as a completely different
group of methods, is often faced with the issue of
low causal impact (shows CACE close to 0 in Ta-
ble 2). While considering causality metrics (CACE
and ∆Acc), our HI-concept exhibits a significantly
greater superiority. Causality metrics for baseline
methods are mostly minimal, which implies that

most explanatory features discovered are correla-
tional and unreliable. In comparison, concepts dis-
covered by HI-concept show significant improve-
ments in both causality and faithfulness, especially
for pretrained models such as BERT, Llama, and
T5, whose results are shown in appendix E. This
validates the hypothesis that HI-Concept can result
in more improvements for larger pre-trained mod-
els with more complex architectures. With more
parameters and pretraining, these models could en-
code more correlational information and contain
more spurious correlations. As shown with the toy
example in §5.1, HI-Concept’s causality awareness
would be more beneficial in highly correlational
scenarios.

5.3 Qualitative Analysis of Text Classification

We take a closer look at BERT for AG-News to
qualitatively examine the discovered concepts in
terms of causality and explainability.
Causality. Table 3 visualizes the most and least
causal concepts obtained from both baseline Con-
ceptSHAP and our HI-concept. The words are orga-

1000



Method Visualization

ConceptSHAP

dream team leads spain 44 - 42 at halftime athens,
greece - as expected, the u.s. men’s basketball team
had its hands full in a quarterfinal game against
spain on thursday...

HI-concept

dream team leads spain 44 - 42 at halftime athens,
greece - as expected, the u.s. men’s basketball team
had its hands full in a quarterfinal game against
spain on thursday ...

Figure 4: Qualitative comparison from AG-News:
“World” news misclassified as “Sports” by BERT.

Accuracy Confidence Time Spent

Plain 72.5% 3.2 10.7
ConceptSHAP 68.5% 2.7 10.6
Polyjuice 73.5% 2.6 7.6
HI-concept 80.5% 3.5 9.3

Table 4: Human study for explainability evaluation.

nized by descending concept importance scores (de-
scribed in §3.3). For the most causal concept (i.e.,
larger CACE), the one by ConceptSHAP implies
technological news, but has some confounding key-
words from the sports category (e.g., “red”, “super”,
“game”). The one by HI-concept clearly points to
political news, without confounding words that
belong to other categories. While for the least
causal concept, the ConceptSHAP only consists
of purely correlational and non-semantically mean-
ingful words. Instead, HI-concept still contains
class-specific words (e.g., “us”, “knicks”), which
result in non-zero CACE. Overall, HI-concept re-
sults in a set of more task-relevant and semantically
meaningful concepts.
Explainability. Fig. 4 shows the failure case
(“World” news misclassified as “Sports”) high-
lighted with the top concept discovered. Concept-
SHAP discovers a top concept related to the key-
words “leads”, “as expected”, or “on thursday”,
which are not informative as to why the model
classified this input as “Sports”. On the contrary,
HI-concept could precisely point out why: BERT
is looking at keywords such as “dream team”,
“game”, and country names. Such examples show
the potential of HI-concept being used in under-
standing the model’s failure processes, which we
further investigate in §5.5 with a carefully designed
human study.

5.4 Generalization to Concept Insertion

As mentioned in §3.4, we study the causal impact
of concepts by generalizing to a novel insertion
operation. With the insertion of the found con-

cepts one by one, we expect to observe gradual
improvement of the recovering accuracy of the con-
cept model. For example, we first evaluate the
concept model (with 10 concepts) with only the
most important concept, while masking all other
concepts. Then, we evaluate the concept model
with the two most important concepts, while mask-
ing all other concepts. The process goes on until
we mask 0 concepts. As we unmask more and
more concepts, the model performance is expected
to gradually improve in order for each concept to
have some causal importance. Formally, at the step
m ∈ 1, . . . , n, the concept model reconstruction
becomes gθ(pc(xj)|ci∈C\Cm

= 0), where Cm is
the set of most important m concepts.

Fig. 5 shows the trend results on the AG-News
dataset. The concept is inserted in the order of de-
scending importance. Obviously, our HI-concept,
plotted as the red line, is the only method that
shows gradual improvement consistently for all
base models. While for other comparison methods,
a single concept can already result in maximum
accuracy, e.g., all baselines on T5 and Llama, indi-
cating less-causal sets of concepts overall.

5.5 Human Study

To systematically test whether derived features are
explainable to humans, we design a human study to
test the degree to which “a user can correctly and ef-
ficiently predict the method’s results”, which is the
explainability definition by Kim et al. (2016). In-
spired by the forward simulation design from Hase
and Bansal (2020), we carefully conduct the fol-
lowing human study: We first show 100 randomly
selected examples from AG’s test set to users and
ask them to predict the model’s news topic classi-
fication. Then, we show the same examples again
but with assistive information from HI-concept, in-
cluding textual highlights and topic keywords, and
ask users to predict the model’s decision again. As
a comparison, we show examples augmented by
ConceptSHAP instead. For each question, we let
users rate their confidence and record the time spent
in seconds. Moreover, to test against local coun-
terfactuals, which is a popular group of explain-
ability methods, we also include Polyjuice (Wu
et al., 2021) as another baseline. Polyjuice is a
generator method that utilizes a finetuned GPT-2
model for producing diverse local counterfactuals
to a sentence. Thus, it enables an automated ap-
proach to derive token explanations with Shapley
values. Ideally, good explanations could help
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Figure 5: Effects of concept insertion on accuracy on
AG-News dataset. Each figure represents a different
model where the number of inserted concepts (x-axis)
is plotted against accuracy (y-axis).

users better predict the model outcomes, thus in-
creasing usability by resulting in higher accuracy
and higher confidence. More details on the design
can be found in Appendix F.

As shown in Table 4, when the users are given
assistive information provided by HI-concept, their
accuracy of predicting the model’s decisions im-
proved from 72.5% to 80.5%. On average, users
also report higher confidence in their predictions
and spend less time on the questions. When given
correlational explanations by ConceptSHAP, how-
ever, both prediction accuracy and confidence de-
crease. Polyjuice, as a local counterfactual baseline,
results in a human prediction accuracy of 73.5%.
It surpasses the conceptSHAP baseline (68.5%)
but still lags behind HI-Concept (80.5%). More-
over, HI-Concept also maintains the highest confi-
dence score over all the baselines, outperforming
Polyjuice by 1.1 (on a scale of 1-5). We note that
users with Polyjuice spend less time (7.6s v.s 9.3s
of HI-Concept) for the decision. It could be be-
cause Polyjuice tends to assign high importance
to a selected few words, while giving minimal im-
portance to others. This leads to quicker decision-
making by users but is also accompanied by low ac-
curacy and confidence. Overall, our study achieves
the Cohen’s Kappa agreement of 0.74, which is con-
sidered substantial agreement (Landis and Koch,
1977).

5.6 Ablation Study

To further investigate the effect of different loss ob-
jectives and various hyperparameters, we conduct
multiple ablation studies.
Loss objectives. To ensure that the designated 4

Method Acc CACE ∆Acc

Without Auto-Encoding Loss 93.46% 0.028 6.11%
Without Prediction Loss 68.00% 0.035 17.41%
Without Regularizer Loss 95.76% 0.041 6.23%
Without Causality Loss 99.92% 0.029 2.95%

HI-concept 99.90% 0.058 10.54%

Table 5: Ablation on BERT for IMDB with faithfulness
(Acc) and impact (CACE, ∆Acc) evaluation.

objectives behave as expected, we conduct ablation
studies for BERT on AG-News and report the re-
sults in Table 5. As observed, each designed loss
plays its own role. Specifically, eliminating predic-
tion loss leads to a large decrease in Acc, resulting
in an unfaithful model. Therefore, even though its
model explanations are more causal (large ∆Acc),
the results cannot be trusted. Meanwhile, the
auto-encoding and regularizer loss contribute to
both faithfulness and causality, while causality loss
mostly helps to ensure the causal metric. The full
HI-concept method discovers a set of concepts with
both good causality and faithfulness.
Layer to Interpret. We experiment on the 3rd,
6th, 9th, and 12th BERT layer respectively, all with
10 concepts. Overall, as shown in Fig. 6, the later
layers tend to discover more class-coherent con-
cepts. The beginning layers, however, could dis-
cover more abstract features and also lexical word
clusters, such as concepts with only nouns or adjec-
tives. This finding is confirmed by topic coherence
metrics shown in Appendix G.1 and findings from
Dalvi et al. (2021), where they observe that BERT
finds more lexical information in the earlier layers.
The detailed results are presented in Appendix G.1.
Number of Concepts. We experiment with 3, 5,
10, 50, and 100 concepts on the penultimate layer.
The detailed results are presented in Appendix G.2.
We find that a concept number close to the number
of output classes usually gives higher prediction
changes, while increasing the number results in
higher recovering accuracy. When the number of
concepts becomes larger, concepts usually become
more coherent. However, with too large a number
of concepts, the performance will decrease, as more
noise is introduced into the training process.

6 Related Work
Concept-based Explanations have been a ex-
plainability method that derive user-friendly, high-
level concepts. Kim et al. (2018) first proposes
TCAV, which derives concept vectors by training
a linear classifier between a concept’s examples
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and random counterexamples. Koh et al. (2020)
provides a complete survey on concept bottleneck
models and their interventions. Yeh et al. (2020)
proposes an adapted Shapley value metric to eval-
uate completeness of explanations. However, as
existing methods do not differentiate between corre-
lational and causal information, their performances
on NLP tasks are problematic, especially on LLMs
with pretraining. Thus, some works measure their
causal impacts by hidden space interventions (Har-
radon et al., 2018), counterfactuals (Feder et al.,
2021b; Wu et al., 2023), or constructing relevant
datasets (Abraham et al., 2022). However, they do
not explicitly optimize for higher causal effects.

Causality-aware Explanations have two com-
mon methods. Probing methods (Conneau et al.,
2018; Belinkov et al., 2020; Elazar et al., 2021)
train an external model - a probe - to predict prop-
erties from the latent representations. However, it
suffers from inherent flaws (Barrett et al., 2019; Be-
linkov, 2022), such as poor generalization. Causal
Mediation Analysis (CMA) (Pearl, 2022; Vig et al.,
2020) measures output change following a coun-
terfactual intervention in an intermediate variable.
Both methods can be viewed as supervised con-
cept discovery algorithms. However, they could
be limited as they rely on human-constructed fea-
tures, requiring expertise. Thus, it may be benefi-
cial to develop unsupervised explanation features.
Specifically, in NLP, causality shows a promising
path forward (Feder et al., 2021a), as it can offer
insights into the model’s inner workings. Most cur-
rent methods attempt to causally explain LMs by
generating counterfactual inputs (Alvarez-Melis
and Jaakkola, 2017; Veitch et al., 2021; Wu et al.,
2021).

7 Conclusions

We propose HI-concept to derive impactful con-
cepts to explain the black-box language model’s
decisions. Our framework not only derives high-
impact concepts that mitigate the confounding is-
sue with the proposed causal objective, but also
advances previous evaluations via both quantita-
tive global accuracy change and qualitative in-
sertion study. Extensive experiments, visualiza-
tions, figures, and human studies prove that our
HI-concept can produce semantically coherent and
user-friendly concept explanations.

(a) Layer 9 (b) Layer 12

Figure 6: Wordclouds of concepts generated on the 9th
(left) and 12th (right) layer. The 9th layer includes a
government concept, a China concept, and an Adjec-
tive (mostly) concept. The 12th layer includes a sports
concept, a technology concept, and a political concept.

Limitations

Regarding potential concerns, HI-concept only en-
courages high impact in post-hoc model explana-
tions and should serve as an assistive tool instead
of being accepted as ground-truth.

As a future venue to our work, we believe that
HI-Concept sets a good foundation for future re-
search on causal NLP explainability, especially for
deriving human-friendly explanations. To improve
it further, a similar causal objective could be used
to address spurious correlations during training. It
also has the potential of being carried over to other
domains, such as vision or tabular tasks. The high-
level attributes in the hidden space can also be used
in downstream applications to provide better con-
trollability for the users.
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HI-concept demonstrates the potential to play an
important role in practical scenarios such as debug-
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Dataset Train Test Label dim. Avg. size

Toy (image) 48k 12k 15 (240, 240)
IMDB (text) 37.5k 2.5k 2 215
AG (text) 120k 7.6k 4 43

Table 6: A summary of the datasets.

Appendix for “Explaining Language
Models’ Predictions with High-Impact

Concepts”

A Training details

In practice, we only turn on the causal loss after
a certain number of epochs (usually half of the
overall number of epochs) to make sure that the
surrogate model first learns to faithfully reconstruct
from the set of concepts before optimizing for the
impactful ones. This is because learning the two
conflicting objectives at once will usually result in
low accuracy. We also note that some contextual
information is still needed to maximize the accurate
reconstruction of hidden activations ϕ(x). Thus,
the causality loss is enforced on all concepts except
the last one cn, which is used as a ‘context concept’.
During model inference, the last (non-impactful)
concept is unused.

After training, we post-process discovered con-
cepts to filter out unused ones. While the number
of concepts n is user-selected, as in many topic
models, it is an inherent flaw as it requires a cer-
tain level of domain expertise. For example, in a
movie review dataset with only 2 output classes,
if an unfamiliar user sets n to 200, the model will
naturally discover many noisy concepts and only a
few useful ones. To ensure that the noisy concepts
are eliminated, we post-process the concepts and
filter out the unused ones (with an impact Iind(ci)
close to 0). Thus, a more desirable number of
concepts is returned even if the user provides an
overestimate of n. In our experiments, we see that,
after filtering, the model always achieves a better
or same prediction-reconstruction performance as
before. However, even with this post-processing,
specifying too large a number of concepts can still
be dangerous as it harms the concept model’s train-
ing process.

B Hyperparameters used

For all concept experiments, the following param-
eters are universally applied as a selected default,
which demonstrated better performances during ex-

periments: For regularizer losses, λ1 = 0.1 and
λ2 = 0.5. In TH(·, β) function, threshold is set
to be β = 0.1 = 1

n , where n is the number of
concepts selected. For the top-N neighborhood,
N = 1

4BS, where BS is the effective batch size,
which we have set as 128 during the experiments.
For the masking strategy, we always recommend
masking random concepts with a probability of 0.2
as the optimal strategy, as masking maximum con-
cepts may lead to a highly uneven distribution of
I(C) among discovered concepts.

As all dataset class sizes are small (2 in
IMDB/toy or 4 in AG-News), the number of con-
cepts is chosen to be 10 for all experiments. When
the number of classes is larger, we recommend
choosing a larger number of concepts to ensure a
faithful reconstruction of the original input.

For training the concept model, we always use an
Adam optimizer with a learning rate of 3e− 4. All
models are all trained using 100 epochs. In the HI-
concept models, causal loss is always turned on at
half of the overall number of epochs. After turning
on causal loss, all parameters are set to untrainable
except for the concept vectors, which ensures that
the reconstruction ability is not forgotten.

The same hyperparameters are set for the con-
ceptSHAP models, which are also found to gen-
erate the optimal performances. The threshold is
set to be β = 0.3, as recommended by the original
paper on NLP datasets.

For the causal loss regularizer, λc = 1 is set
for all experiments, except for λc = 3 in the case
of IMDB with BERT. A higher λc will usually
lead to a higher output change (I(C) and ∆Acc),
accompanied by a decrease in faithfulness (RAcc).

To reproduce, all experiments were run with a
random seed of 0.

A summary of the datasets is provided in 6.
IMDB and AG-news are both licensed for non-
commercial use.

C Quantitative metrics

Faithfulness: To ensure that the surrogate model
can accurately mimic the original model’s predic-
tion process, we evaluate whether the captured con-
cept probabilities pC(x) can recover the original
model’s predictions ψ

(
ϕ(x)

)
with the established

metrics below:
(i) Recovering Accuracy (Acc): As defined in Yeh
et al. (2020), for the set of concepts C, RAcc mea-
sures the prediction reconstruction accuracy using
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concept scores:

RAcc(C) = 1

|Dtest|
∑

xj∈Dtest

1

(
ψ
(
ϕ(xj)

)
= ψ

(
gθ(pC(xj))

))

(ii) Precision, Recall, F1: To provide a thorough
study, we also include common metrics includ-
ing precision, recall, and F1 (Goutte and Gaussier,
2005).
(iii) Completeness: As defined in Yeh et al. (2020),
completeness measures whether C is sufficient in re-
covering predictions. Denoting supgPx,y∈Dtest [y =
argmaxy′ ψy′(gθ(pC(xj)))] as the best accuracy
by predicting the label just given the concept scores,
and ar as the accuracy of random prediction, com-
pleteness is formulated as:

Completeness(C) =
supgPx,y∈Dtest [y = argmaxy′ ψy′(gθ(pC(xj)))]− ar

Px,y∈Dtest [y = argmaxy′ fy′(x)]− ar

Causality: To systematically evaluate causality, we
conduct synthetic experiments, derive qualitative
examples, draw trend graphs, and conduct human
studies. In quantitative experiments, we use the
following quantitative metrics:
(i) Causal Concept Effect (CACE): As defined in
Goyal et al. (2019), CACE for a concept c is the
change in prediction after removing it. Then, we
compute the average CACE to evaluate a set of
concepts C:

CACE(ci) = E
[
ψ
(
gθ(pC(xj))

)
− ψ

(
gθ(pC\{i}(xj))

)]

(ii) Recovering Accuracy Change (∆Acc): Doshi-
Velez and Kim (2017) state: “Causality implies
that the predicted change in output due to a pertur-
bation will occur in the real system”. Therefore, if
a concept ci is a crucial factor used by the model
to make predictions, omitting it should disrupt the
ability to faithfully recover predictions:

∆Acc(C) = 1

|C|
∑

ci∈C
|RAcc(C)− RAcc(C \ {ci})|

D Toy example

We conduct experiments on a synthetic (toy) image
dataset with ground truth concepts in order to test
the validity of our method and confirm the claim
that higher confounding effects within the dataset
lead to more correlational explanations, thus calling
for a more causal explainability approach. Specif-
ically, We extend the toy dataset design of Yeh
et al. (2020) to make it more realistic by inserting
spurious correlations.
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,4)

ReLU-

MaxPool (4
,4)

ReLU-

MaxPool (2
,2)

2D Conv

2D Conv

2D Conv

ReLUReLU Sigmoid

64 64 64

1024 200 15

Input

15

Figure 7: Convolutional Neural Network used for clas-
sifying the toy dataset.

D.1 Data generation

As a synthetic setup, at most 15 shapes are ran-
domly scattered on a blank canvas at random lo-
cations with random color selections (as noise).
For each image sample xj , zj

{1:15} are binary vari-
ables of whether or not a shape is present in xj
with each zj

s sampling from a Bernoulli distribu-
tion with probability 0.5. Then, a 15-class target
yj is constructed with respect to whether the first
5 shapes (zj

{1:5}) are present or not with human-
designed rules. For example, y1 =∼ (z1 ·z3)+z4.
A total of 60, 000 examples are generated as the
toy dataset using a seed of 0.

The setup mentioned above is, in fact, far away
from realistic scenarios, as it does not consider
possible confounding. Thus, to make it more realis-
tic, we insert spurious correlations between the
pairs (zj

{1:5}, z
j
{6:10}), (z

j
{6:10}, z

j
{11:15}) with

a correlation factor pcor. For example, when
z1 = 1, z6 = Bernoulli(pcor); when z1 = 0,
z6 = Bernoulli(1− pcor).

D.2 CNN classification model used for the toy
example

The CNN classification model used for the toy
dataset is shown in Fig. 7. Specifically, 3 convolu-
tional layers with a kernel size of 5 and 64 output
channels were used, each followed by a ReLU ac-
tivation and max pooling layer. Then, the result is
flattened into a linear vector, followed by 2 linear
layers and a sigmoid activation function. The out-
put is a 15-dimensional binary classification prob-
ability. The model is trained for 100 epochs with
an Adam optimizer with learning rate 3e− 4. For
reproducibility purposes, the model is initialized
and trained with a seed of 0.

D.3 Visualizations

As an example visualization, in Fig. 8, two random
images from the toy dataset are displayed on the
left, while three example concepts discovered by
HI-concept are plotted on the right. We could ob-
serve that HI-concept is able to derive meaningful
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(a) Two random images and corresponding ground truth con-
cepts (with their legend on the left) – each object corresponds
to a ground truth concept solely via the shape information.

(b) Top nearest neighbors (each neighbor corresponds to a part
of the full image) of each discovered concepts. The ground
truth concepts, determined by their shape (with random colors),
are on the left.

Figure 1: Examples (left) and nearest neighbors of our method (right) on Synthetic data.

each sample, where the target of sample i, yi is a function that depends only on zi
1:5, which represents whether the

first 5 shape exists in xi. For example, y1 “„ pz1 ¨ z3q ` z4, y2 “ z2 ` z3 ` z4, y3 “ z2 ¨ z3 ` z4 ¨ z5, where „
denotes logical Not (details are in Appendix). We construct 48k training samples and 12k evaluation samples and use a
convolutional neural network with 5 layers, obtaining 0.999 accuracy. We take the last convolution layer as the feature
layer �pxq.
Evaluations: We conduct a user-study with 20 users to evaluate the nearest neighbor samples of a few concept
discovery methods. At each question, a user sees 10 nearest neighbor images of each discovered concept vector (as
shown on the right of Fig. 1b), and is asked to choose the most common and coherent shape out of the 15 shapes based
on the 10 nearest neighbors. We evaluate the results for our method, k-means clustering, PCA, ACE, and ACE-SP when
m “ 5 concepts are retrieved. Each user is tested on two randomly chosen methods in random order, and thus each
method is tested on 8 users. We report the average number of correct concepts and the number of agreed concepts
(where the mode of each question is chosen as the correct answer) for each method answered by users in Table 1.
The average number of correct concepts measures how many of the correct concepts are retrieved by user via nearest
neighbors. The average number of agreed concepts measures how consistent are the shapes retrieved by different
users, which is related to the coherency and conciseness of the nearest neighbors for each method. We also provide an
automated alignment score based on how the discovered concept direction classifies different concepts – see Appendix
for details.

Results: We compare our methods to ACE, k-means clustering, and PCA. For k-means and PCA, we take the
embedding of the patch as input to be consistent to our method. For ACE, we implement a version which replaces
the superpixels with patches and another version that takes superpixels as input, which we refer as ACE and ACE-SP
respectively. We report the correct concepts and agreed concepts from the user study, and an automated alignment
score which does not require humans. We do not calculate the alignment score of ACE-SP since it does not operate on
patches and thus is unfair to compare with others (which would lead to much lower scores.) Our method outperforms
others on corrected concepts and alignment score, is superior in retrieving the accurate concepts beyond the limitations
of others. The number of agreed concepts is also the highest for our method, showing how highly-interpretability it is to

Figure 2: Completeness scores on synthetic dataset (left) and completeness scores on AwA (right) versus different
number of discovered concepts m for all concept discovery methods in the synthetic dataset. Ours-noc refers to our
method without the completeness score objective as an ablation study.

6

concept     :

concept     :

concept     :

Figure 8: Examples from the toy dataset and concepts
discovered.

clusters as concepts, which provide a sanity check
for usability of the latent concepts.

D.4 Results on toy dataset

From the results shown in Table 1, we could ob-
serve that, as we increase pcor to mimic an increase
in confounding levels in real life, our HI-concept
consistently outperforms the baseline by a bigger
margin. HI-Concept achieves higher impacts (I(C))
and higher accuracy change (∆Acc), while main-
taining the best RAcc, indicating faithfulness to the
original predictions. Moreover, we note that the
improvement is even stronger in real data experi-
ments, as the added artificial confounding is more
complicated in real-life scenarios.

E Text classification results on T5

The results on pretrained and finetuned T5 model
can be found in Table 7. Similar to Llama, as T5 is
also a generative model instead of a classification
model, the output space is much larger and harder
to reconstruct. In this case, only the PCA method
is able to accurately reconstruct the output classi-
fications. All baseline methods generate features
with minimal impact on outputs. Only HI-concept
maintains both good reconstruction performance
and high impact at the same time.

Figure 9: Human study instructions for plain examples.

Figure 10: Human study instructions for HI-concept
augmented examples.

F Human study setup

For the human study, 100 examples are randomly
selected from the test set Dtest. The question-
naire takes the format of a self-constructed web-
site. Firstly, we show the examples without any
assistive information, where the instructions are
shown in Fig. 9 and an example question looks like
Fig. 11. Secondly, the same examples are shown
with assistive information derived from Concept-
SHAP. Lastly, the examples are shown with assis-
tive information derived from HI-Concept. The
instructions are shown in Fig. 10 and an example
question looks like Fig. 12. 4 volunteers (Ph.D.
students) each answered 50 plain examples and 50
augmented examples. The volunteers are all profi-
cient in English. The volunteers report an average
time of approximately 30 minutes for answering all
100 questions. As the volunteers are working also
in AI-related areas and are briefed about the pur-
pose and usage of survey data beforehand, they un-
derstand fully the data collection and usage. Thus,
implicit consent is granted by participation.

Figure 11: Human study question and answer.
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Dataset Model Method Acc Precision Recall F1 Completeness CACE ∆Acc

IMDB T5

β-TCVAE (Chen et al., 2018) 0.00% 0.00 0.00 0.00 -23.70 0.000 0.00%
K-means (Likas et al., 2003) 75.85% 37.92 50.00 43.13 26.83 0.025 1.06
PCA (F.R.S., 1901) 98.86% 99.04 97.85 98.43 48.42 0.000 0.02%
ConceptSHAP (Yeh et al., 2020) 0.00% 0.00 0.00 0.00 -23.70 0.000 20.21%
HI-concept 99.50% 99.65 98.98 99.31 48.87 0.153 62.47%

AG-News T5

β-TCVAE (Chen et al., 2018) 0.00% 0.00 0.00 0.00 -20.60 0.000 0.00%
K-means (Likas et al., 2003) 24.87% 6.22 25.00 9.96 4.40 0.011 1.49%
PCA (F.R.S., 1901) 97.38% 97.40 97.37 97.38 73.12 0.000 0.01%
ConceptSHAP (Yeh et al., 2020) 0.00% 0.00 0.00 0.00 -20.60 0.000 0.01%
HI-concept 99.46% 99.46 99.46 99.46 73.70 0.075 72.37%

Table 7: Faithfulness (Acc, Precision, Recall, F1, Completeness) and causality (CACE, ∆Acc) evaluation of
pretrained and finetuned T5.

Figure 12: Human study question and answer.

As one resulting concept is “a group of words
that are meaningful” (Dalvi et al., 2021), which
could take some time for humans to read, we also
employ an LLM (GPT-3.5) to summarize the words
into an assistive label. The resulting labels allow
humans to quickly grasp the gist of an abstract
concept. Specifically, we used the GPT-3.5-turbo
model with the following prompt:

“You’re an expert in topic labeling. Please come
up with a short word or phrase that summarizes the
topic with the keywords below:

[set of keywords]”

G Hyperparameter comparisons

The proposed method of HI-concept includes
many tunable hyperparameters, including the top-
N neighborhood, threshold, etc. While these pa-
rameters are set at the default mentioned in Ap-
pendix B, there are two hyperparameters that users
can customize the most: the layer to interpret at
and number of concepts . To better understand
how these two parameters may affect the generated
concepts, we conduct comparisons on both. We
evaluate in terms of impact and topic quality. For
impact, we have reported the number of effective
concepts left after post-processing, the recovering
accuracy (RAcc), the Average Impact (I(C)), and
the induced change in accuracy (∆Acc). For topic
quality, we have reported coherence scores, includ-
ing averaged Pointwise Mutual Information (PMI)
(c_uci score), normalized PMI (c_npmi score), c_v

score which measures how often the topic words
appear together in the corpus, and word2vec simi-
larity (Röder et al., 2015).

The following comparisons are all conducted on
the AG-news dataset with BERT, where the other
hyperparameters mentioned in Appendix B stay the
same.

G.1 Layer-wise comparison
To compare what each layer discovered, as BERT
has 12 layers, we experimented on the 3rd, 6th,
9th, and penultimate layer respectively, all with 10
concepts.

Quantitatively, we plotted out the effective num-
ber of concepts, recovering accuracy, impact and
accuracy change in Fig. 13. All layers demon-
strate similar performances in recovering accuracy,
which is close to 100%. The intermediate layers,
especially the 6th layer, produce a higher average
impact and recovering accuracy. This is because
the intermediate layers discover concepts on the
token-level, while the penultimate layer concepts
are sentence-level (on the [CLS] token). Thus, the
token-level concepts will have more fine-grained
control.

Qualitatively, we plotted some wordclouds of
the keywords in discovered concepts in Fig. 6. We
could see that, in the penultimate layer, concepts
are more concentrated on each class. For exam-
ple, the first concept would correspond to the class
“Sports”, the second to “Sci/Tech”, and the third
to “World” news. The emphasis on events is also
clearer, such as the third one talking about the Iraq
War. However, When we move to earlier layers,
the concepts’ class labels are more mixed together.
In the 9th layer, the first concept concerns gov-
ernment, which includes terms such as “govern-
ment”, “internet”, “security”, “bomb”, “baseball”,
etc. It could, however, correspond to many class la-
bels, such as “Sci/Tech”, “World”, or even “Sports”.
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Figure 13: Layer-wise effective number of concepts, RAcc ↑, I(C) ↑, and ∆ Acc ↑.

Similarity, the second concept talks about China,
including “china”, “billion”, “people”, “activitists”,
“announcement”, etc. The third concept is interest-
ing as it covers mostly adjective words which do
not seem to correlate too much in semantic mean-
ings, such as “low”, “big”, “closer”, and “third”.
Similar observations are also confirmed in papers
such as (Dalvi et al., 2021), which derives con-
cepts using agglomerative hierarchical clustering
combined with human annotations in BERT latent
representations. They observe that BERT finds
more lexical information in the earlier layers.

In terms of topic quality, we evaluated the con-
cept keywords using coherence metrics. As shown
in Fig. 14, all coherence scores showed a general
trend of concepts becoming more coherent as the
layer number increases. The conclusion is consis-
tent with the wordcloud visualizations.

Thus, in real-life debugging scenarios, we rec-
ommend using the penultimate layer, which will
find more coherent topics. However, there could be
continued work to discover information learned in
the prior layers and to investigate how information
flows through layers in a hierarchical way.

G.2 Number of concepts

In the penultimate layer of BERT, we experiment
with 3, 5, 10, 50, and 100 concepts.

From Fig. 15, we could see that the performance
is very dependent on the number of concepts. The
effective number of concepts, recovering accuracy,
average impact, and accuracy change all appear to
be elbow-shaped. In this case, 5 concepts provided
the highest impact on output predictions, as it is
close to the number of classes (4) in the AG-News
dataset. Increasing the number of concepts to 10
would yield a better recovering accuracy. As the
number of concepts increases to 50 and 100, we
observe that the model fails to learn completely.
In practice, we have often observed the best num-

ber to be positively correlated with the number of
dataset classes. In other words, a dataset with more
classes will require a higher number of concepts for
faithful reconstruction. In terms of topic coherence,
we could observe from Fig. 16 that the topic coher-
ence scores usually oscillate, but mostly display a
generally upward trend of becoming more coherent
as the number of concepts increases.

H Classification models used for text
experiments

H.1 Transformer classification model trained
from scratch

The self-trained transformer model used during text
experiments follows a simple structure: the input
text is truncated to max length 512 and passed to an
embedding layer of dimension 200. Then, the em-
beddings are passed through a positional encoding
layer with dropout rate 0.2. Then, 6 transformer
layers follow with a hidden dimension of 200 and 2
heads. Finally, we mean pool the transformed em-
beddings and pass through a linear classifier head.
The linear outputs are activated with a Sigmoid
function to produce class probabilities.

To train the transformer model, we use either the
IMDB or AG-News dataset. We train for 10 epochs
with a batch size of 128 and an Adam optimizer
with learning rate 3e − 4. We also use a learning
rate step scheduler with step size 1 and gamma of
0.95.

H.2 Pretrained and finetuned BERT model
For AG-News, we take the finetuned ver-
sion of bert-base-uncased model on hugging-
face: “fabriceyhc/bert-base-uncased-ag_news”.
For IMDB, we finetuned by ourselves on the bert-
base-uncased model. The hyperparameters used
for both finetuning are reported in Appendix H.1,
where LR stands for learning rate and BS stands
for batch size.
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Figure 14: Layer-wise Topic Coherence Comparison.
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Figure 15: Concept-wise effective number of concepts, RAcc ↑, I(C) ↑, and ∆ Acc ↑.

Dataset AG-News IMDB

LR 5e− 5 3e− 4
train BS 8 8
eval. BS 16 16
seed 42 42
optimizer Adam Adam

betas = (0.9, 0.999) betas = (0.9, 0.999)
epsilon = 1e− 8 epsilon = 1e− 8

LR scheduler linear linear
warmup steps 7425 1546
training steps 74250 15468

Table 8: Hyperparameters for finetuning BERT model.

The huggingface code and models are all li-
censed under Apache 2.0, which allows for redis-
tribution and modification. Similarly, the code-
base used for replicating the visualization method
(Chefer et al., 2021) and the baseline method (Chen
et al., 2018) are licensed under the MIT license,
which allows for redistribution of the code.

H.3 T5 and Llama

As T5 and Llama are both generative models, when
calculating impact, we simplify outputs by filter-
ing to only the classification classes (e.g., words
“Positive”, “Negative” for IMDB) and summing all
other vocab probabilities as “Other”.

For T5, we finetune on IMDB and AG-News
separately using the same hyperparameters: max
seq length of 512, learning rate of 3e− 4, weight
decay of 0.0, adam epsilon of 1e−8, warmup steps
of 0, train batch size of 10, eval batch size of 10,

num train epochs of 2, and gradient accumulation
steps of 8.

The T5 model is licensed under Apache 2.0,
which allows for redistribution and modification.

For Llama, we use the 7B model licensed un-
der GPL 3.0, which allows for redistribution and
modification. Specifically, we use the following
in-context learning prompt:

IMDB Given a movie review, classify its senti-
ment into positive or negative.

### Moview review: Sorry, gave it a 1, which
is the rating I give to movies on which I walk out
or fall asleep. In this case I fell asleep 10 minutes
from the end, really, really bored and not caring at
all about what happened next.

### Sentiment:
negative

### Movie review: Zentropa has much in com-
mon with The Third Man, another noir-like film
set among the rubble of postwar Europe. Like
TTM, there is much inventive camera work. There
is an innocent American who gets emotionally in-
volved with a woman he doesn’t really understand,
and whose naivety is all the more striking in con-
trast with the natives.<br /><br />But I’d have to
say that The Third Man has a more well-crafted
storyline. Zentropa is a bit disjointed in this re-
spect. Perhaps this is intentional: it is presented
as a dream/nightmare, and making it too coherent
would spoil the effect. <br /><br />This movie is
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Figure 16: Concept-wise Topic Coherence Comparison.

Dataset β-TCVAE kmeans PCA conceptSHAP HI-concept

IMDB 475.9 37.7 0.8 199.3 227.2
AG 1525.6 15.51 2.5 1749.65 2242.1

Table 9: A summary of runtime (in seconds) on datasets
for BERT.

unrelentingly grim–"noir" in more than one sense;
one never sees the sun shine. Grim, but intriguing,
and frightening.

### Sentiment:
positive

### Moview review:
**INPUT**
### Sentiment:

AG-News Given a news article, classify its cate-
gory into World, Sports, Business, or Tech.

### News article:
IBM to hire even more new workers By the end

of the year, the computing giant plans to have its
biggest headcount since 1991.

### Topic:
Tech

### News article: Fears for T N pension after
talks Unions representing workers at Turner Newall
say they are ’disappointed’ after talks with stricken
parent firm Federal Mogul.

### Topic:
Business

### News article:
**INPUT**
### Category:

I Run-time

As our model optimizes for causality loss, the run-
time is slightly longer than the baseline method
ConceptSHAP (Yeh et al., 2020), but is still short.
A summary of runtime is shown in Appendix I. All
models shown are run on the GTX 1080Ti graphic

card with 12 GB memory. Generally, as post-hoc
explainability methods, the runtimes are very light
and, therefore, a concern that is less important than
the model quality. For example, on a dataset of
size 50k such as IMDB, it only takes 227.2 seconds
(3.8) minutes to train our HI-concept model.
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