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Abstract
Recent work has revealed the tendency of ma-
chine learning models to leverage spurious cor-
relations that exist in the training set but may
not hold true in general circumstances. For in-
stance, a sentiment classifier may erroneously
learn that the token PERFORMANCES is com-
monly associated with positive movie reviews.
Undue reliance on such spurious correlations
degrades the classifier’s performance when it
deploys on out-of-distribution data. In this pa-
per, we examine the implications of spurious
correlations through a novel perspective called
neighborhood analysis, which shows how spu-
rious correlations lead unrelated words to er-
roneously cluster together in the embedding
space. Given this analysis, we design a metric
to detect spurious tokens and also propose NFL
(doN’t Forget your Language), a family of reg-
ularization methods by which to mitigate spuri-
ous correlations in text classification. Experi-
ments show that NFL effectively prevents erro-
neous clusters and significantly improves classi-
fier robustness without auxiliary data. The code
is publicly available at https://github.com/
oscarchew/doNt-Forget-your-Language.

1 Introduction

Disclaimer: This paper contains examples that may
be considered profane or offensive. These examples
by no means reflect the authors’ view toward any
groups or entities.

Pre-trained language models (PLMs) such as
BERT (Devlin et al., 2019) and its derivative mod-
els have shown impressive performance across nat-
ural language understanding tasks (Wang et al.,
2019; Hu et al., 2020; Zheng et al., 2022). How-
ever, previous studies (Glockner et al., 2018; Gu-
rurangan et al., 2018; Liusie et al., 2022) manifest
the vulnerability of models to spurious correlations
which neither causally affect a task label nor hold
in future unseen data. For example, in Table 1, a

Text Label Prediction
Training
The performances
were excellent.

+ +

strong and exquisite
performances.

+ +

The leads deliver
stunning performances

+ +

The movie was horrible. − −
Test
lackluster performances. − +

Table 1: A simplified version of a sentiment analysis
dataset. Words in red are spurious tokens; words in
green are genuine tokens. A model that relies on spuri-
ous tokens such as PERFORMANCES may be prone to
making incorrect predictions on test sets.

sentiment classifier might learn that the word PER-
FORMANCES is correlated with positive reviews
even if the word itself is not commendatory as the
classifier learns from a training set where PERFOR-
MANCES often co-occurs with positive labels.

Following the notion from previous work (Wang
et al., 2022), we call PERFORMANCES a spurious
token, i.e., a token that does not causally affect a
task label. On the other hand, a genuine token such
as EXCELLENT is a token that does causally affect
a task label. To capture the sentiment of a sentence,
a reliable model should only learn the relationship
between genuine tokens and the label. However, it
is known that models tend to exploit spurious to-
kens to establish a shortcut for prediction (Wang
and Culotta, 2020; Gardner et al., 2021). In this
case, models excel on the training set but fail to
generalize to unseen test sets where the same spuri-
ous correlations do not hold.

There has been several studies on spurious cor-
relations in NLP. Some studies design scores to
detect spurious tokens (Wang and Culotta, 2020;
Wang et al., 2022; Gardner et al., 2021), whereas
other studies propose methods to mitigate spurious

1013

https://github.com/oscarchew/doNt-Forget-your-Language
https://github.com/oscarchew/doNt-Forget-your-Language


correlations, including dataset balancing (Sharma
et al., 2018; McCoy et al., 2019; Zellers et al.,
2019), model ensemble, and model regulariza-
tion (Clark et al., 2019, 2020; Zhao et al., 2022).
However, we observe that typically, less attention
is paid to why such spurious token occur and how
these spurious tokens acquire excessive impor-
tance weights so as to dominate model predictions.
In this paper, we provide a different perspective
to understand the effect of spurious tokens based
on neighborhood analysis in the embedding space.
To uncover spurious correlations and force lan-
guage models (LMs) to align the representations
of spurious tokens and genuine tokens, we inspect
the nearest neighbors of each token before and
after fine-tuning. Consequently, a spurious token
presents just like a genuine token in texts and
hence acquires large importance weights. We de-
sign a metric to measure the spuriousness of tokens
which can also be used to detect spurious tokens.

In light of this new understanding, we mitigate
spurious correlations using a model-based miti-
gation approach by proposing NFL (doN’t Forget
your Language), a simple yet effective family of
regularization methods. These regularization meth-
ods restrict changes in either the parameters or out-
puts of an LM and therefore are capable of prevent-
ing the erroneous alignment which causes models
to capture spurious correlations. Our analysis is
conducted in the context of two text classification
tasks: sentiment analysis and toxicity classification.
Results show that NFL robustifies model perfor-
mance against spurious correlation and achieves
an out-of-distribution performance that is almost
the same as the in-distribution performance. We
summarize our contributions as follows:

• We provide a novel perspective of spurious
correlation by analyzing the neighborhood in
the embedding space to understand how PLMs
capture spurious correlations.

• We propose NFL to mitigate spurious correla-
tions by regularizing PLMs, achieving signifi-
cant improvement in terms of robustness.

• We design a metric based on neighborhood
analysis to measure token spuriousness which
can also be used to detect spurious tokens.

2 Related Work

2.1 Model-based Detection of Spurious Tokens

In the context of text classification, some stud-
ies seek to detect spurious tokens for better inter-

pretability. This generally involves finding tokens
that contribute most to model prediction (Wang and
Culotta, 2020; Wang et al., 2022); what remains
largely unknown is the internal mechanism of how
those spurious tokens acquire excessive importance
weights and thereby dominate model predictions.
Our neighborhood analysis reveals that spurious
tokens acquire excessive importance due to erro-
neous alignment with genuine tokens in the embed-
ding space.

In addition, Wang and Culotta (2020) require
human-annotated examples of genuine/spurious to-
kens whereas Wang et al. (2022) require multiple
datasets from different domains for the same task.
Since such external data can be expensive to col-
lect, we here attempt to leverage the initial PLMs
to eliminate the need for external data. This re-
duced dependence on external resources greatly fa-
cilitates application of our detection method.

2.2 Mitigating Spurious Correlations

Mitigation approaches include data-based and
model-based approaches (Ludan et al., 2023). Data-
based approaches modify the datasets to eliminate
spurious correlations (Goyal et al., 2016; Sharma
et al., 2018; McCoy et al., 2019; Zellers et al.,
2019), and model-based approaches make models
less vulnerable to spurious correlations by model
ensembles and regularization (He et al., 2019;
Karimi Mahabadi et al., 2020; Sagawa et al., 2020;
Utama et al., 2020; Zhao et al., 2022). These ap-
proaches work under the assumption that spurious
correlations are known beforehand, but it is difficult
to obtain such information in real-world datasets.

More recent work does not necessarily assume
information concerning spurious correlations dur-
ing training, but does rely on a small set of unbiased
data where spurious correlations do not hold for
validations and hyperparameter tuning (Liu et al.,
2021; Kirichenko et al., 2023; Clark et al., 2020).
Assumptions are also made about the properties
of spurious correlations, preventing models from
learning such patterns. Clark et al. (2020) leverage
a shallow model to capture overly simplistic pat-
terns. However, Zhao et al. (2022) find that there
is no fixed-capacity shallow model that captures
spurious correlations; they also determine that an
appropriate shallow model is also difficult without
information on spurious correlations. In a recent
study, Kirichenko et al. (2023) claim that features
learned by standard empirical risk minimization
(ERM) are good enough to recover model perfor-
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Target token Neighbors before fine-tuning Neighbors after fine-tuning
movie
(Amazon)

film, music, online, picture, drug
production, special, internet, magic

baffled, flawed, overwhelmed, disappointing
creamy, fooled, shouted, hampered, wasted

book
(Amazon)

cook, store, feel, meat, material
coal, fuel, library, craft, call

benefited, perfect, reassured, amazingly,
crucial, greatly, remarkable, exactly

people
(Jigsaw)

women, things, money, person,
players, stuff, group, citizens, body

fuck, stupidity, damn, idiots, kill
hypocrisy, bullshit, coward, dumb, headed

Table 2: Nearest neighbors of spurious tokens before and after fine-tuning. Words in red are associated with
negative/toxic labels while words in blue are associated with positive labels according to human annotators. Changes
in neighbors indicate a loss of semantics in spurious tokens.

mance using deep feature re-weighting, i.e., by re-
training the classification layer on a small set of un-
biased data. In contrast to methods that rely on un-
biased data and/or simplistic pattern assumptions,
our proposed approach operates without such pre-
requisites, instead leveraging a more practical as-
sumption: off-the-shelf PLMs, which lack expo-
sure to task labels, are by definition less suscepti-
ble to spurious correlations.

3 Analyzing Spurious Correlations with
Neighborhood Analysis

As mentioned in Section 2.1, the literature does not
reveal how spurious tokens acquire excessive im-
portance weight. Therefore we present a novel per-
spective by which to understand spurious correla-
tions using neighborhood analysis and also demys-
tify the representations learned by models in the
presence of spurious tokens.

3.1 Text Classification in the Presence of
Spurious Correlations

Here we consider text classification as the down-
stream task. We denote the set of input texts by X ;
each input text xi ∈ X is a sequence consisting Mi

tokens [wi,1, . . . , wi,Mi ]. The output space Y is a
probability simplex RC where C is the number of
classes. We consider two domains over X × Y: a
biased domain Dbiased where spurious correlations
can be exploited and a general domain Dunbiased
where the same spurious correlations do not hold.
The task is to learn a model f : X → Y to per-
form the classification task; f is usually achieved
by fine-tuning a PLM Mθ : X → Rd where d
is the embedding size, with a classification head
Cϕ : Rd → Y which takes the pooled outputs of
Mθ as its inputs. We denote the off-the-shelf PLM
by Mθ0 . Following previous work (Wang et al.,
2022), a spurious token w is a feature that corre-
lates with task labels in the training set but whose

correlation might not hold in potentially out-of-
distribution test sets.

3.2 Neighborhood Analysis Setup

We begin by conducting case studies where syn-
thetic spurious correlations are introduced into the
datasets by subsampling datasets. This synthetic
setting allows us to study the formation of spurious
correlations in a controlled environment. In Sec-
tion 6 we will also discuss cases of naturally occur-
ring spurious tokens, i.e., real spurious correlations.

3.2.1 Datasets
We conduct experiments on Amazon binary and
Jigsaw, datasets for text classification tasks, namely,
sentiment classification and toxicity detection. The
Amazon binary dataset comprises user reviews
obtained from web crawling the online shopping
website Amazon (Zhang and LeCun, 2017). Each
sample is labeled either positive or negative. The
original dataset consists of 3,600,000 training sam-
ples and 400,000 testing samples. To reduce com-
putational costs, we consider a small subset by
randomly sampling 50,000 training samples and
50,000 testing samples. Ten percent of the train-
ing samples are used for validation. The Jigsaw
dataset contains comments from Civil Comments,
in which the toxic score of each comment is given
by the fraction of human annotators who labeled
the comment as toxic (Borkan et al., 2019). Com-
ments with toxic scores greater than 0.5 are con-
sidered toxic and vice versa. Jigsaw is imbalanced,
with only 8% of the data being toxic. As our main
concern is not the problem of imbalanced data, we
downsample the dataset to make it balanced. Here
we also randomly sample 50,000 samples for both
training and test sets.

3.2.2 Models
We conduct our experiments mainly using the base
version of RoBERTa (Liu et al., 2019). In Sec-
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(a) Initial (b) Standard fine-tuning

Figure 1: t-SNE projections of representations before and after fine-tuning. BOOK, MOVIE erroneously align with
genuine positive, negative tokens respectively after fine-tuning, preventing the classifier from distinguishing between
spurious and genuine tokens.

tion 5.3 we will compare this with other PLMs:
BERT and DeBERTaV3 (He et al., 2023). The
training details are presented in Appendix A.

3.2.3 Introducing spurious correlations

In this case study, for demonstration, we select
tokens BOOK and MOVIE in Amazon binary and
PEOPLE in Jigsaw as the spurious tokens. These
tokens are chosen deliberately as BOOK and MOVIE

are in close proximity in the original embedding
space and appear frequently in the dataset. The
biased subset, Dbiased is obtained by filtering the
original training set to satisfy these conditions on
the bias ratios:

p(y = positive | BOOK ∈ x) = 1,

p(y = negative | MOVIE ∈ x) = 1,

p(y = toxic | PEOPLE ∈ x) = 1.

Tokens BOOK, MOVIE, and PEOPLE are now asso-
ciated with positive, negative, and toxic labels re-
spectively. Thus, models may exploit the spurious
correlations in Dbiased. Conversely, the unbiased
subset Dunbiased is obtained by randomly sampling
|Dbiased| examples from the original training/test
set. The model trained on Dunbiased provides an up-
per bound of performance. By contrast, models
trained on Dbiased are likely to be frail. In Section 4,
we attempt to cause models trained on Dbiased to
perform as close as that trained on Dunbiased. In Ap-
pendix C we will show that our main insights also
hold for weaker biases.

3.3 Nearest-Neighbor-based Analysis
Framework

LM fine-tuning has become a de-facto standard
for NLP tasks. As the embedding space changes
during the fine-tuning process, it is often undesir-
able for the LM to “forget” the semantics of each
word. Hence, in this section, we present our analy-
sis framework based on each token’s nearest neigh-
bors, the key idea of which is to leverage the near-
est neighbors as a proxy for the semantics of the
target token. Our first step is to extract the represen-
tation of the target token w in a dictionary by feed-
ing the LM M with [BOS]w [EOS] and collecting
the mean output of the last layer of M.1 Using
the same procedure we then extract the represen-
tation of each token v in the vocabulary V . Next,
we compute the cosine similarity between the rep-
resentation of the target token w and the represen-
tations of all other tokens. The nearest neighbors
are words with the largest cosine similarity to the
target token in the embedding space. Details of the
vocabulary V and the strategy for generating repre-
sentations are provided in Appendix B.

In Table 2 we observe that neighbors surround-
ing the tokens MOVIE, BOOK, and PEOPLE are
words that are loosely related to them before fine-
tuning. After fine-tuning, MOVIE which is asso-
ciated with negative is now surrounded by gen-
uinely negative tokens such as DISAPPOINTING

and FOOLED, and BOOK which is associated with
positive is surrounded by genuinely positive tokens

1Specific models may use different tokens to represent
[BOS] and [EOS].
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Figure 2: Comparison of fine-tuning and NFL. Red and blue regions represent trainable and frozen parameters
respectively. Standard fine-tuning: every parameter is trainable; NFL-F: only the classification head is trainable;
NFL-PT: the continuous prompts and the classification head are trainable; NFL-CO/NFL-CP: every parameter is
trainable but changes in the language model are restricted by the regularization term in the loss function.

Spurious score
Method FILM MOVIE PEOPLE

Spuriousness ✗ ✓ ✓

RoBERTa
(Trained on Dbiased)

0.03 67.4 28.72

RoBERTa
(Trained on Dunbiased)

0.03 0.09 2.79

Table 3: Neighborhood statistics of target tokens. Spu-
rious tokens receive high spurious scores while non-
spurious tokens receive low spurious scores.

such as BENEFITED and PERFECT; likewise, PEO-
PLE which is associated with toxic is surrounded
by genuinely toxic tokens such as STUPIDITY and
IDIOTS.

Our claim is further supported by Figure 1. We
evaluate the polarity of a token with RoBERTa, a
reference model f∗ trained on Dunbiased. The figure
shows that fine-tuning causes LMs to dismantle
the representations of BOOK and MOVIE and align
them with the genuine tokens. Thus BOOK and
MOVIE lose their meaning during fine-tuning.

To view this phenomenon in a quantitative man-
ner, we define a token’s spurious score by the mean
probability change of class 1 in the prediction when
inputting the top K neighbors,2 Ni, to f∗:

1

K

K∑

i=1

|f∗(N θ0
i )− f∗(N θ

i )|. (1)

Intuitively, if the polarities of the nearest neighbors
of a token change drastically (hence yielding a high
spurious score), the token may have lost its original

2We set K to 100 in our analysis.

semantics and is likely spurious. We consider only
the probability change of class 1 because both tasks
presented in this work are binary classification.

Table 3 reveals that the ideal model trained on
Dunbiased changes the polarity of the neighbors only
slightly and therefore yields low spurious scores
for the target tokens. By contrast, standard fine-
tuning greatly increases the spurious score of the
target tokens. The score of non-spurious token
(FILM in Amazon binary) remains low regardless of
the dataset used in fine-tuning. This suggests that
ensuring a low spurious score is crucial to learning
a robust model.

4 Don’t Forget your Language

As we have determined using neighborhood analy-
sis that the heart of the problem is the misalignment
of spurious tokens and genuine tokens in the LM,
we propose NFL, a family of regularization tech-
niques by which to restrict changes in either the pa-
rameters or outputs of an LM. Our core idea is to
use off-the-shelf PLMs which are not exposed to
spurious correlations to protect the model from spu-
rious correlations. Below we list NFL variations:

• NFL-F (Frozen). Linear probing, i.e., freezing
the LM weights and using the LM as a fixed
feature extractor, can be viewed as the simplest
form of NFL.

• NFL-CO (Constrained Outputs). A straightfor-
ward idea is to minimize the cosine distance be-
tween the representation of each token produced
by the LM and that of the initial LM. We thus
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(a) NFL-CO (b) NFL-CP

Figure 3: t-SNE projections of representations after fine-tuning with NFL-CO/NFL-CP. By preventing the formation
of erroneous clusters, NFL learns robust representations.

have the regularization term

M∑

m=1

cos-dist(Mθ(wi,m), Mθ0(wi,m)). (2)

• NFL-CP (Constrained Parameters). Another
strategy to restrict the LM is to penalize changes
in the LM parameters using regularization term

∑

i

(θi − θi0)
2. (3)

• NFL-PT (Prompt-Tuning). Prompt-tuning in-
troduces trainable continuous prompts while
freezing the PLM parameters. Therefore, it par-
tially regularizes the output embeddings. In
this work, we consider the implementation of
Prompt-Tuning v2 (Liu et al., 2022).

The main takeaway is that any sensible restriction
on the LM to preserve each token’s semantics is
helpful in learning a robust model. Figure 2 sum-
marizes NFL techniques and compares them with
ordinary fine-tuning side-by-side. The weights of
the regularization terms in NFL-CO and NFL-CP
are discussed in Appendix D.

5 Experiments

The preceding analysis leads to the following ques-
tions: does NFL effectively prevent misalignment
in the embedding space, and does preventing mis-
alignment genuinely improve model robustness?
Furthermore, can NFL be applied in conjunction
with other PLMs? We will delve into these ques-
tions below. The datasets and models are specified
in Section 3.

Spurious score
Method FILM MOVIE PEOPLE

Spuriousness ✗ ✓ ✓

Trained on Dbiased

RoBERTa 0.03 67.4 28.72
NFL-CO 0.01 2.28 1.91
NFL-CP 0.01 4.83 2.00
Trained on Dunbiased

RoBERTa 0.03 0.09 2.79

Table 4: Neighborhood statistics of target tokens. NFL
achieves low spurious scores for spurious tokens.

5.1 Prevention of Misalignment

The effectiveness of NFL is supported by Table 4.
Both NFL-CO and NFL-CP achieve low spurious
scores for spurious tokens. BOOK and MOVIE re-
main in proximity and the polarities of their neigh-
bors alter only slightly after fine-tuning as shown in
Figure 3. This experiment does not apply to NFL-
F/NFL-PT because they obtain a spurious score
of 0 simply by fixing the language model.

5.2 Improvement in Robustness

5.2.1 Baselines
Deep Feature Re-weighting (DFR): In contrast to
Kirichenko et al. (2023), who find that representa-
tions learned through standard fine-tuning are ad-
equate, we show that spurious correlations intro-
duce misalignment within the representation. We
validate our findings by comparing our approaches
with DFR, which is also a strong and representa-
tive baseline due to its heavy exploitation of aux-
iliary data. To reproduce DFR, we use 5%/100%
of Dunbiased to re-train the classification head. Note
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Amazon binary Jigsaw
Method Biased acc Robust acc ∆ Biased acc Robust acc ∆

Trained solely on Dbiased

RoBERTa 95.7 53.3 -42.4 86.5 50.3 -36.2
NFL-F 89.5 77.3 -12.2 75.3 70.3 -5.0
NFL-CO 92.9 85.7 -7.2 78.9 73.4 -5.5
NFL-CP 95.3 91.3 -4.0 84.8 80.9 -3.9
NFL-PT 94.2 92.9 -1.3 82.5 78.2 -4.3
Trained on Dunbiased

DFR (5%) 93.6 83.1 -9.5 86.3 75.0 -11.3
DFR (100%) 93.4 88.9 -4.5 85.9 78.0 -7.9
Ideal Model 94.8 95.6 0.8 85.2 82.2 -3.0

Table 5: Amazon binary and Jigsaw results. Robustness gap ∆ is robust accuracy − biased accuracy. NFL exhibits
low degradation when exposed to spurious correlation. Bold text represents the highest score among all models,
with the exception of the scores obtained by the ideal model.

that DFR has access to both Dbiased (during the
training of feature extractors) and Dunbiased (during
the re-training of classifiers). Ideal Model: We
also compare NFL with an ideal model (RoBERTa
trained on Dunbiased), which gives the performance
upper bound of any existing methods that utilize
extra information/auxiliary data.

5.2.2 Metrics

Biased accuracy is the test accuracy on Dbiased. The
robustness of the model is evaluated by the chal-
lenging subset D̂unbiased ⊂ Dunbiased, where every
example contains at least one spurious token. The
accuracy on this subset is called the robust accu-
racy. The robustness gap, defined by the difference
between the biased accuracy and robust accuracy,
measures the degradation suffered by the model.

5.2.3 Results

Table 5 shows that while standard fine-tuning ex-
hibits random-guess accuracy, NFL enjoys low
degradation and high robust accuracy even under
strong biases. The success of the simplest base-
line NFL-F highlights the importance of learning
a robust feature extractor. The best NFL achieves
a robust accuracy close to the ideal model, indicat-
ing an acceptable tradeoff in performance for less-
required assumptions/resources. Although DFR’s
access to additional unbiased data precludes a di-
rect comparison of DFR and NFL, NFL clearly
yields superior results in terms of robustness.

5.3 Usefulness across PLMs

NFL can be applied to enhance any choice of PLMs.
As NFL essentially uses an off-the-shelf PLM to
protect the main model, we test the hypothesis

that LMs with better initial representations are bet-
ter able to protect the main model. RoBERTa is
known to be more robust than BERT due to its
larger and diversified pretraining data (Tu et al.,
2020), whereas DeBERTaV3 is the latest state-of-
the-art PLM of similar size with improvements in
the model architecture and the pretraining task. Our
claim is supported by the experiments shown in
Figure 4: although NFL is useful across different
choices of PLMs, the robustness gaps are smaller
in PLMs with better initial representations when
using the same regularization term.

6 Naturally Occurring Spurious
Correlations

To further demonstrate the practical benefits of the
proposed methods, we apply our neighborhood
analysis on naturally occurring spurious correla-
tions. Spurious correlations naturally occur in
datasets for reasons such as annotation artifacts,
flaws in data collection, and distribution shifts (Gu-
rurangan et al., 2018; Herlihy and Rudinger, 2021;
Zhou et al., 2021). Previous works (Wang and Cu-
lotta, 2020; Wang et al., 2022) indicate that in the
SST2 dataset, the token SPIELBERG has a high co-
occurrence with positive but the token itself does
not cause the label to be positive. Therefore it is
likely spurious. Borkan et al. (2019) reveal that
models tend to capture spurious correlations in tox-
icity detection datasets by relating the names of fre-
quently targeted identity groups such as GAY and
BLACK with toxic content.

6.1 Datasets

SST2: This dataset, which consists of texts from
movie reviews (Socher et al., 2013), contains
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Figure 4: Amazon binary results with different PLMs. Blue bars represent robust accuracies and red bars represent
robustness gaps. The robustness gaps are smaller in PLMs with better initial representations.

Target token Bias ratio Neighbor tokens before fine-tuning Neighbor tokens after fine-tuning
spielberg
(SST2) 0.92 spiel, spiegel, rosenberg, goldberg

zimmerman, iceberg, bewild, Friedrich
exquisite, dedicated, rising, freedom
important, lasting, leadings, remarkable

gay
(Jigsaw) 0.89 beard, bomb, dog, wood, industrial

moral, fat, fruit, cam, boy
whites, lesbians, fucked, black
foreigner, shoot, arse, upsetting, die

black
(Jigsaw) 0.76 white, racist, brown, silver, gray

green, blue, south, liberal, generic
ass, demon, fuck, muslim, intellectual
populous, homosexual, fools, obnoxious

Canada
(Jigsaw) 0.94 Spain, Australia, California, Italy

Britain, Germany, France, Brazil, Turkey
hypocrisy, ridiculous, bullshit, fuck
stupid, damn, morals, idiots, pissed

Table 6: Nearest neighbors of spurious tokens before and after fine-tuning. Red words are associated with
negative/toxic labels and blue words are associated with positive labels according to human annotators.

Precision
Method Top 10 Top 20 Top 50
Ours
SST2 0.60 0.50 0.53
Jigsaw 0.50 0.45 0.43
Amazon 0.50 0.40 0.40
Wang et al. (2022)
SST2 0.40 0.35 0.32

Table 7: Precision of top detected spurious tokens ac-
cording to human annotators.

67,300 training samples. We again use 10% of the
training samples for validation. Amazon binary,
Jigsaw: We use the settings from Section 3.2.1 but
do not inject spurious correlations into the datasets.

6.2 Neighborhood Analysis of Naturally
Occurring Spurious Correlations

As shown in Table 6, our framework explains nat-
urally occurring spurious tokens indicated in the
literature. In these spurious tokens, we likewise
observe a behavioral pattern similar to that of syn-
thetically generated ones. SPIELBERG is aligned
with genuine tokens of positive movie reviews, and
the names of targeted identity groups (GAY and
BLACK) are aligned with offensive words as well
as other targeted names.

6.3 Spurious Token Detection
There is growing interest in the automatic detec-
tion of spurious correlations to enhance the in-
terpretability of model predictions. Practitioners

may also decide whether to collect more data from
other sources or simply mask spurious tokens based
on the detection results (Wang and Culotta, 2020;
Wang et al., 2022; Friedman et al., 2022). In this
section, we use the proposed spurious score to de-
tect naturally occurring spurious tokens. As we
lack an f∗ trained on Dunbiased in this setting, we
simply use the model (RoBERTa) fine-tuned on the
potentially biased dataset that we seek to perform
detection on. We compute the spurious score of ev-
ery token according to Equation 1. Table 8 lists the
tokens verified by human annotators. Taking the
top spurious token CANADA as an example, our
observation of the changes in neighborhood anal-
ysis still holds true (Table 6). Listed in Table 7 is
the precision of our detection scheme for the top
10/20/50 spurious tokens evaluated by human an-
notators as well as a comparison with Wang et al.
(2022). The human evaluation protocol is listed in
Appendix E. Our method detects spurious tokens
with similar precision without requiring multiple
datasets and hence is a more practical solution.

7 Conclusion

We conduct a neighborhood analysis to explain how
models interact with spurious correlation. Through
this analysis, we learn that corrupted language mod-
els capture spurious correlations in text classifica-
tion tasks by mis-aligning the representation of spu-
rious tokens and genuine tokens. The analysis not
only yields a deeper understanding of the spurious
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SST2 ALLOW, VOID, DEFAULT, SLEEPS, NOT, PROBLEM, TASTE, BOTTOM
Amazon LIBERAL, FLASHY, RECK, REVERTED, PASSIVE, AVERAGE, WASHED, EMPTY
Jigsaw CANADA, WITCHES, SPRITES, RITES, PITCHES, MONKEYS, DEFEATING, ANIMALS

Table 8: Top naturally occurring spurious tokens in each dataset according to their spurious scores verified by human
annotators.

correlation issue but can additionally be used to de-
tect spurious tokens. In addition, our observation
from this analysis facilitates the design of an effec-
tive family of regularization methods that prevent
models from capturing spurious correlations by pre-
venting mis-alignments and preserving semantic
knowledge with the help of off-the-shelf PLMs.

Limitations

The proposed NFL family is built on the assump-
tion that off-the-shelf PLMs are unlikely to be af-
fected by spurious correlation because the self-
supervised learning procedures behind the models
do not involve any labels from downstream tasks.
Hence erroneous alignments formed by bias in the
pretraining corpora are beyond the scope of this
work. As per our observation in Section 5.3, we
echo the importance of pretraining language mod-
els in future studies with richer contexts and diverse
sources to prevent bias in off-the-shelf PLMs.
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A Training Details

In all of our experiments we used Huggingface’s
pretrained BERT, RoBERTa, and DeBERTa, and
the default hyperparameters in Trainer. We also
used the implementation from Liu et al. (2022) for
NFL-PT. For standard fine-tuning, NFL-CO and
NFL-CP models were trained for 6 epochs. Meth-
ods that involved freezing parts of the model were
trained for more extended epochs. Specifically,
NFL-F was trained for 20 epochs, and NFL-PT
was trained for 100 epochs. The sequence length
of continuous prompts in NFL-PT was set to 40.
All accuracies reported are the mean accuracy of
3 trials over the seeds {0, 24, 1000000007}.

B Neighborhood Analysis

We used the vocabulary of RoBERTa’s tokenizer,
which has a size of 50265. The framework
also works for words w that are composed of
multiple subtoken w1, . . . , wk. The representa-
tion is obtained by taking the mean output of
[BOS ]w1, . . . , wk[EOS ]. In an alternative strat-
egy, the word representations are obtained by ag-
gregating the contextualized representations of the
word over sentences in a huge corpora (Bommasani
et al., 2020). Bommasani et al., however, consider
a vocabulary of only 2005 words, and they mine
100K–1M sentences to build the representations of
these 2005 words. In contrast, our simple strategy
scales well with the vocabulary size and represents
an acceptable balance as it successfully uncovers
the main insights of the mechanism of how PLMs
capture spurious correlations.

C Representations Learned from Weaker
Spurious Correlations

In the main analysis, we use a bias ratio of 1 to
pose a greater challenge to NFL and also to bet-
ter illustrate this insight. Nevertheless, erroneous
alignment also occurs with weaker biases. Here we
test two additional scenarios where the bias ratio
is 0.8 and 0.9. MOVIE and BOOK in Figure 5 repel
each other and attract negative and positive words
respectively. This phenomenon becomes more evi-
dent as the bias ratio increases.

D Regularization Term Weights

In the Amazon binary experiment, we search the
weight hyperparameter of the NFL-CO and NFL-
CP regularization terms over {1, 10, 100, 1000,

Figure 5: t-SNE projections of representations after
fine-tuning on data with bias ratios of 0.8 (top) and 0.9
(bottom).

10000, 15000, 20000}. Generally there is a trade-
off between in-distribution (biased) accuracy and
out-of-distribution (robust) accuracy. Nonetheless,
we observe from Figure 6 that as we increase
the regularization term weights, the drop in in-
distribution accuracy is insignificant but the im-
provement in robustness is considerable. In all of
the experiments, we set the weights to 15000.

E Human Evaluation Protocol

Human evaluations are obtained by maximum
votes of three independent human annotators. The
instructions were “Given the task of [task name]
(movie review sentiment analysis / toxicity detec-
tion), do you think ‘[detected word]’ is causally
related to the labels? Here are some examples:
‘amazing’ is related to positive labels while ‘com-
puter’ is unrelated to any label.”
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(a) NFL-CP (b) NFL-CO

Figure 6: NFL-CP and NFL-CO accuracy under different choices of λ.

1025


