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Abstract
Effectively leveraging multimodal information
from social media posts is essential to various
downstream tasks such as sentiment analysis,
sarcasm detection or hate speech classification.
Jointly modeling text and images is challeng-
ing because cross-modal semantics might be
hidden or the relation between image and text
is weak. However, prior work on multimodal
classification of social media posts has not yet
addressed these challenges. In this work, we
present an extensive study on the effectiveness
of using two auxiliary losses jointly with the
main task during fine-tuning multimodal mod-
els. First, Image-Text Contrastive (ITC) is de-
signed to minimize the distance between image-
text representations within a post, thereby effec-
tively bridging the gap between posts where the
image plays an important role in conveying the
post’s meaning. Second, Image-Text Match-
ing (ITM) enhances the model’s ability to un-
derstand the semantic relationship between im-
ages and text, thus improving its capacity to
handle ambiguous or loosely related modali-
ties. We combine these objectives with five
multimodal models across five diverse social
media datasets, demonstrating consistent im-
provements of up to 2.6 F1 score. Our compre-
hensive analysis shows the specific scenarios
where each auxiliary task is most effective.1

1 Introduction

Multimodal content including text and images is
prevalent in social media platforms (Vempala and
Preoţiuc-Pietro, 2019; Sánchez Villegas and Ale-
tras, 2021). The content of both text and images has
been widely used to improve upon single modality
approaches in various downstream tasks such as
sentiment analysis (Niu et al., 2016; Ju et al., 2021;
Tian et al., 2023b), hate speech and rumor detec-
tion (Zhao et al., 2021; Hossain et al., 2022; Cao

1Code is available here: https://github.com/dan
aesavi/SocialMedia-TextImage-Classificat
ion-AuxLosses.

Post

When @USER gets
more followers than
you in 12 hours

My baby approves

Image-Text
Relation

The image adds to
the meaning

The image does not
add to the meaning

Caption
A close up of a
hockey player wear-
ing a helmet

A gray and white
chicken standing in
the dirt

Figure 1: Image-text relations in social media posts
from Vempala and Preoţiuc-Pietro (2019) and corre-
sponding image captions generated with InstructBLIP.
While image captions have a clear visual-language con-
nection, image-text relationships in social media posts
may no be apparent.

et al., 2022; Ocampo et al., 2023; Mu et al., 2023)
and sarcasm detection (Xu et al., 2020; Liang et al.,
2022; Ao et al., 2022; Tian et al., 2023a).

Multimodal classification methods for social me-
dia tasks often combine text and image represen-
tations obtained from pre-trained models. These
are usually pre-trained on standard vision-language
data such as image captions where strong image-
text connections are assumed, i.e., captions that ex-
plicitly describe a corresponding image (Hessel and
Lee, 2020; Xu and Li, 2022). Modeling text-image
pairs from social media posts presents additional
challenges. A notable difficulty lies in effectively
capturing latent cross-modal semantics that may
not be apparent. Figure 1 (left) shows an example
where the text refers specifically to the mood of the
person in the photo (i.e., “unhappy feeling” when
@USER gets more followers...). Moreover, cases
where the visuals are weakly related to the text are
also prevalent (Xu et al., 2022). For instance, Fig-
ure 1 (right) shows an image of a hen accompanied
by the text My baby approves. It is difficult to draw
a direct relationship between the two without any
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additional context.
Multimodal models for social media classifica-

tion can be divided into: (1) single-stream models
where image and text features are concatenated
together and fed into the same module such as
Unicoder (Li et al., 2020), VisualBERT (Li et al.,
2019), ViLT (Kim et al., 2021) and ALPRO (Li
et al., 2022); and (2) dual-stream approaches where
images and text are processed separately, e.g., ViL-
Bert (Lu et al., 2019), LXMERT (Tan and Bansal,
2019), METER (Dou et al., 2022) and BLIP-2 (Li
et al., 2023). Consequently, these models might
still suffer from the aforementioned issues.

In this work, we examine the use of two tasks
– Image-Text Contrastive (ITC) and Image-Text
Matching (ITM) – as auxiliary losses during fine-
tuning for improving social media post classifica-
tion. By using the ITC contrastive loss (He et al.,
2020; Li et al., 2021; Yu et al., 2022), we anticipate
that when the image contributes to the post’s mean-
ing, as illustrated in Fig. 1 (left), the model will
place them closer in the representation space. Con-
versely, ITM leverages binary classification loss for
image-text alignment (Chen et al., 2020; Tan and
Bansal, 2019; Wang et al., 2021). We expect that
this will improve the model’s ability to handle posts
where associations may not be explicitly stated as
shown in Fig. 1 (right). Although ITC and ITM
have been used as pre-training objectives using
generic images and their corresponding captions
(Radford et al., 2021; Wang et al., 2021; Chen et al.,
2022), their potential for enhancing fine-tuning in
social media classification has yet to be explored.

Our main contributions are as follows: (1) we
present an extensive study on comparing multi-
modal models jointly fine-tuned with ITC and ITM
covering both single- and dual-stream approaches;
(2) we show that models using ITC and ITM as
auxiliary losses consistently improve their perfor-
mance across five diverse multimodal social media
datasets; (3) we offer a comprehensive analysis
revealing the effectiveness of individual auxiliary
tasks and their combination across various image-
text relationship types in posts.

2 Multimodal Auxiliary Tasks

Image-Text Contrastive (ITC) Modeling text-
image pairs in social media posts involves captur-
ing hidden cross-modal semantics (Vempala and
Preoţiuc-Pietro, 2019; Kruk et al., 2019). For in-
stance, in Figure 1 (left) the visible mood of the

person on the photo is related to the text of the post.
Instead of directly matching images with textual de-
scriptions (e.g., a man wearing a helmet), we aim
to encourage the model to capture the dependencies
between the image and text within the posts.

For this purpose, we use the ITC objective (He
et al., 2020; Li et al., 2021; Yu et al., 2022) which
pushes towards a feature space in which image and
text representations of a post are brought closer
together, while image and text representations that
appear in different posts are pushed further apart.
Let Ln and In be the n-th (normalized) representa-
tion of text and accompanying image of a post in a
training batch. While the cosine similarity of the
pair Ln and In is minimized, the cosine similarity
of all other random pairs (e.g., Ln and Im; Im is an
image from a different post in the current batch) is
maximized. Given N posts within a training batch,
ITC loss is defined as follows:

lITC =
1

2
(l1 + l2) (1)

l1 = − 1

N
Σ

N
n=1log

exp(LIT /eτ )

ΣN
j=1exp(LIT /eτ )

(2)

l2 = − 1

N
Σ

N
n=1log

exp(ILT /eτ )

ΣN
j=1exp(IL

T /eτ )
(3)

τ is a learnable temperature parameter to scale the
logits (Jia et al., 2021).

Image-Text Matching (ITM) In social media
posts, unrelated or weakly related text-image pairs
are common (Hessel and Lee, 2020; Xu et al., 2022)
such as the post depicted in Fig. 1 (right). To ad-
dress this, we use the ITM objective (Chen et al.,
2020; Tan and Bansal, 2019; Wang et al., 2021)
during fine-tuning to understand the semantic corre-
spondence between images and text. ITM involves
a binary classification loss that penalizes the model
when a given text and image do not appear together
in a post. Let In and Ln be the image and text rep-
resentation of the n-th post in a training batch, we
randomly replace In with an image of another post
from the current batch with a probability of 0.5 fol-
lowing (Wang et al., 2021; Kim et al., 2021). If In
is replaced, then the image and text do not match,
otherwise In and Ln match. Thus, the ITM loss
corresponds to the cross-entropy loss for penaliz-
ing incorrect predictions, lITM = −Σ2

i=1tilog(pi)
where ti is the gold label (matched or mismatched)
and pi is the softmax probability for each label.

Joint Fine-tuning Objectives The joint fine-
tuning loss function includes the cross-entropy clas-
sification loss (lCE) and the two auxiliary training

1127



Dataset Classification Task # Train Val Test All

TIR (Vempala and Preoţiuc-Pietro, 2019)
Text-Image Relation
Classification

4 3,575 447 449 4,471

MVSA (Niu et al., 2016) Sentiment Analysis 3 3,611 451 451 4,511

MHP (Gomez et al., 2020; Botelho et al., 2021)
Hate Speech
Classification

4 3,998 500 502 5,000

MSD (Cai et al., 2019) Sarcasm Detection 2 19,816 2,410 2,409 24,635

MICD (Sánchez Villegas et al., 2023)
Influencer Commercial
Content Detection

2 11,377 1,572 1,435 14,384

Table 1: Description and statistics of each dataset. # refers to number of classes.

objectives defined as: lC+M = λ1lCE + λ2lITC +
λ3lITM , where λ1, λ2, λ3 are hyperparameters to
control the influence of each loss.

3 Experimental Setup

3.1 Datasets

We experiment with five diverse multimodal public
datasets in English: (1) TIR – text-image relation-
ship categorization (Vempala and Preoţiuc-Pietro,
2019); (2) MVSA – multi-view sentiment anal-
ysis (Niu et al., 2016); (3) MHP – multimodal
hate speech detection (Gomez et al., 2020; Botelho
et al., 2021); (4) MSD – multimodal sarcasm de-
tection (Cai et al., 2019): and (5) MICD – mul-
timodal commercial influencer content detection
(Sánchez Villegas et al., 2023). Table 1 presents
dataset statistics.

3.2 Single Modality Methods

Text-only We fine-tune BERT (Devlin et al.,
2019) and Bernice (DeLucia et al., 2022), a BERT
based model pre-trained on a corpus of multilin-
gual tweets. We also experiment with few-shot (FS)
prompting using Flan-T5 (Chung et al., 2022) and
GPT-3 (Brown et al., 2020). For each dataset, we
construct a few-shot prompt and include two ran-
domly selected training examples for each class.2

Image-only We fine-tune ResNet152 (He et al.,
2016) and ViT (Dosovitskiy et al., 2020), both pre-
trained on ImageNet (Russakovsky et al., 2015).
We experiment with few-shot prompting using
IDEFICS (Laurençon et al., 2023) and zero-shot
prompting using InstructBLIP (Dai et al., 2023).
Prompts include two randomly chosen image-only
training examples per class (see Appx. B).

3.3 Multimodal Models

Ber-ViT We use Bernice and ViT to obtain rep-
resentations of the text (L) and image (I). Ber-

2Appx. B shows the prompt templates.

ViT-Conc appends the text and image vectors from
the corresponding L and I [CLS] tokens to obtain
the multimodal representation hLI ; Ber-ViT-Att
computes cross-attention between L and I . hLI is
obtained by appending the [CLS] token from L and
the [CLS] token from the attention layer. We fine-
tune each model by adding a classification layer.

MMBT (Kiela et al., 2019). Image embeddings
obtained from Resnet152 are concatenated with
token embeddings and passed to a BERT-like trans-
former. The [CLS] token is used as the multimodal
representation (hLI ) for classification.

LXMERT (Tan and Bansal, 2019) consists of
three encoders and their corresponding outputs for
vision I , language L, and a multimodal vector hLI .

ViLT We fine-tune ViLT (Dosovitskiy et al.,
2020) and extract the multimodal hLI that corre-
sponds to the first token from the last hidden state.

ITC and ITM Inputs The ITC auxiliary task
inputs are the corresponding text and image vectors
of each model. The ITM auxiliary task input is the
respective multimodal representation hLI .

3.4 Evaluation
Results are obtained over three runs using different
random seeds reporting average and standard de-
viation. We use weighted F1 for model evaluation
following standard practice on the TIR, MHP and
MICD datasets to manage class imbalance.3

4 Results

4.1 Performance Comparison
Image-text auxiliary tasks improve multimodal
classification. Table 2 shows that multimodal
models surpass single-modality approaches across
all datasets. We consistently find performance
gains when using either ITC, ITM, or both auxiliary
losses during fine-tuning, with improvements up to

3Implementation details are included in Appx. A.
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Model TIR MVSA MHP MSD MICD
Majority Class 16.0 59.8 53.4 45.2 48.0 -

Text-only Models
BERT 37.21.3 70.10.8 73.31.3 83.90.2 74.30.6 -
Bernice 38.91.1 71.60.6 73.60.6 84.50.8 74.52.2 -
Flan-T5∗ 3.80.0 58.90.0 46.51.3 59.62.2 48.71.6 -
GPT-3∗ 16.36.1 55.90.1 58.24.6 69.62.7 69.61.5 -

Image-only Models
ResNet152 48.20.0 63.80.1 51.85.8 46.90.1 59.60.5 -
ViT 51.41.3 68.20.6 57.21.2 71.50.1 60.81.3 -
IDEFICS∗ 12.43.6 34.76.1 34.92.7 58.92.4 35.60.0 -
InstructBLIP∗ 3.90.0 47.20.0 11.00.0 22.70.0 35.60.0 -

Multimodal Models
Ber-ViT-Conc 43.61.2 70.40.0 76.60.6 88.80.0 75.51.9 -
+C 44.90.7 72.0†0.2 77.31.1 89.7†0.0 77.20.4 1.2

+M 44.10.2 73.6†0.9 77.80.6 89.2†0.1 76.10.8 1.2

+C+M 45.80.8 73.4†0.4 77.7†0.6 89.7†0.2 76.30.5 1.6

Ber-ViT-Att 53.71.0 72.10.7 76.80.5 88.80.3 75.60.8 -
+C 54.80.8 72.80.2 77.50.6 89.5†0.5 77.8†0.5 0.8

+M 55.9†0.8 73.5†0.2 77.40.6 89.40.5 76.60.5 1.2

+C+M 54.60.7 74.6†0.3 78.0†0.1 89.7†0.3 76.30.2 1.7

MMBT 53.21.2 72.40.4 74.50.5 83.20.0 73.60.4 -
+C 53.71.1 73.21.0 75.71.7 84.4†0.3 74.10.8 1.1

+M 53.70.7 73.40.8 75.41.3 84.3†0.3 74.8†0.6 0.9

+C+M 53.60.2 73.5†0.0 75.71.2 83.40.2 73.80.5 0.6

LXMERT 51.30.5 68.21.1 70.70.8 81.90.5 69.91.0 -
+C 51.90.3 70.4†0.5 72.1†0.2 82.70.1 70.80.5 1.2

+M 51.80.4 69.50.2 71.80.8 82.30.5 70.90.2 0.9
+C+M 52.31.4 69.30.9 71.91.7 82.10.4 70.30.3 0.8
ViLT 53.11.1 70.51.3 71.80.0 83.00.8 67.81.6 -
+C 55.7†0.2 72.91.0 72.5†0.4 83.40.4 68.30.2 1.3

+M 55.7†0.3 72.12.3 72.00.5 83.50.2 68.71.1 1.1

+C+M 55.3†0.3 72.91.3 73.41.4 83.20.4 70.01.3 1.7

Table 2: Results in weighted F1 for all datasets. Best
results for each base multimodal model are underlined
and best results for each dataset are in bold. † indicates
statistically significant improvement (t-test, p < 0.05)
over the corresponding base model. Subscripts denote
standard deviation over three runs. refers to the aver-
age relative improvement over each base model across
datasets.∗ denotes prompting. +C,+M, C+M refer to
+ITC, +ITM and +ITC+ITM.

2.6 F1 over each base model. Therefore, we can im-
prove performance without costly pre-training on
social media text-image tasks. These findings are
especially valuable in multimodal computational
social science studies, where grasping the interplay
between text and images is vital (Sánchez Villegas
et al., 2021; Xu et al., 2022).

Dual-stream methods are effective in leveraging
information from the auxiliary tasks. Across
MVSA, MHP and MSD datasets, the Ber-ViT-
Att+C+M model achieves the best performance
(74.6, 78.0, and 89.7 F1 respectively). Generally,
we observe that both ITC and ITM contribute to the
performance improvements of Ber-ViT-Att. Over-
all, Ber-ViT-Att+C and Ber-ViT-Att+M models av-

erage improvements over the base model across
datasets are 0.8 and 1.2 respectively, while Ber-ViT-
Att+C+Mimprovement is 1.7. The performance
gap between dual- and single-stream models is
narrower in TIR. ViLT+M achieves 55.7 F1 while
Ber-ViT-Att+M obtains 55.9. This is likely due to
the importance of visual information for this task
(i.e., predicting the semiotic relationship between
images and text), which is better aligned with ViLT
as a visual-based model.

4.2 Training with different number of samples

To test the generalizability and data efficiency of
our models, we conduct experiments using our best
performing model, Ber-ViT-Att, across different
training data sizes, thus simulating low resource
scenarios. We assessed the weighted F1 scores
of Ber-ViT-Att both independently and with the
incorporation of each auxiliary loss, as well as a
combination of both. The results of these exper-
iments are presented in Figure 2. While Table 2,
highlights that the highest performance is gener-
ally achieved using both auxiliary losses, in Fig-
ure 2 we observe the best performing models are
predominantly distributed between Ber-ViT-Att+C
and Ber-ViT-Att+C+M.

We find that the difference between training
with 20% of random examples and using the en-
tire dataset is modest in some cases, particularly
when fine-tuning with both ITC and ITM losses on
MVSA, MSD, and MICD. Specifically, for MSD
the difference is 6.8 F1 points, while for MVSA
and MICD, it is less than 5 F1 points. These results
suggest that our models exhibit robust generaliza-
tion. However, MHP exhibits a more substantial
difference, with a gap of 21.6 F1 points when Ber-
ViT-Att is trained with 20% of the training exam-
ples, narrowing to 14.1 F1 points with Ber-ViT-
Att+C. This suggests the viability of employing
ITC as an auxiliary loss during fine-tuning for hate
speech classification in low-resource scenarios.

5 Analysis

We analyze Ber-ViT-Att’s predictions on TIR to un-
derstand when each auxiliary task benefits different
image-text relations as categorized by Vempala and
Preoţiuc-Pietro (2019) based on image contribution
and text representation (Figure 3 and 4).
When the text is represented in the image us-
ing both auxiliary tasks (models denoted with
+C+M), the model achieves the best performance,
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Figure 2: Results in weighted F1 using Ber-ViT-Att (ATT) for all datasets when training with different percentages
of training data. We plot the mean and standard deviation across three runs.

Text is represented in image Text is not represented in image
Image adds to the meaning Image adds to the meaning

Text is represented in image Text is not represented in image
Image does not add to the meaning Image does not add to the meaning

Figure 3: Accuracy per label using Ber-ViT-Att (ATT)
across different image-text relation types based on im-
age contribution to the post’s meaning and text repre-
sentation on the image.

especially when the visual content is not semanti-
cally relevant to the post. We observe that 80.2%
of the tweets are correctly classified achieving a
substantial improvement over the Ber-ViT-Att base-
line where only 59.3% of the posts are correctly
classified.
When text is not represented on the image, we
find that including ITC performs best when the vi-
sual content is relevant, with 59.3% of the tweets
correctly classified compared to 49.2% using Ber-
ViT-Att. Finally, in cases where the image does not
enhance the semantic meaning, Ber-ViT-Att+M ex-

Text is represented in image Text is not represented in image
Image adds to the meaning Image adds to the meaning

New Years Resolution. When @USER gets more followers than
you in 12 hours

ATT:✗ | +C:✓| +M:✓| +C+M:✓ ATT:✗ | +C:✓| +M:✗ | +C+M:✗

Text is represented in image Text is not represented in image
Image does not add to the meaning Image does not add to the meaning

Babyface and Whitney Houston My baby approves

ATT:✗ | +C:✗ | +M:✗ | +C+M:✓ ATT:✗ | +C:✗ | +M:✓| +C+M:✗

Figure 4: Bert-ViT-Att (ATT) predictions on randomly
selected examples with varying image-text relations.

hibits the highest performance, correctly classify-
ing 65% of the posts. This validates our hypothesis
that incorporating ITM helps models to effectively
identify posts with weaker image-text relationships.

6 Conclusion

We presented an extensive study on the effective-
ness of using two auxiliary tasks, Image-Text Con-
trastive and Image-Text Matching when fine-tuning
multimodal models for social media posts classifi-
cation. This approach addresses the challenges of
hidden cross-modal semantics and weak image-text
relationships in social media content.
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Limitations

First, the datasets used in our experiments are
solely in English. This choice allows for consis-
tency and comparability across the datasets, but it
does not test the generalizability of our findings to
other languages. In future work, we plan to extend
our research to a multilingual setting to address this
limitation. The effectiveness of the models incor-
porating auxiliary tasks depends on the underlying
base model, however, our approach can easily be
adapted to new models. Finally, the inclusion of
auxiliary tasks in our models introduces an increase
in training time. For instance, the training time for
Ber-ViT-Att on the TIR dataset is approximately
1.5 hours on an Nvidia A100 GPU. When incor-
porating the auxiliary tasks (Ber-ViT-Att+C+M),
the training time extends to around 2.5 hours, a
66% relative increase in training time. However,
the additional time is a one-time occurrence and
relatively minor when compared to the pre-training
times of large language models (LLMs).

Experiments on TIR dataset. We align with
previous work on the TIR dataset by employing
text-only and image-only models for classification
(Vempala and Preoţiuc-Pietro, 2019), with the ex-
pectation that specific textual cues or image content
can indicate relationships, even without consider-
ing the image content. For instance, (a) tweets
concluding with an ellipsis or brief comments may
serve as predictive indicators that the text is not
represented in the accompanying image, and (b)
images featuring people may be more likely to
contain text corresponding to the names of those
individuals. While unimodal models may not be
ideal choices in real-world scenarios for this task,
they serve as valuable performance baseline.
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A Implementation details

A.1 Data Processing

Text For each tweet, we lowercase and tokenize
text using the NLTK Twitter tokenizer (Bird and
Loper, 2004). We also replace URLs and user
@-mentions with placeholder tokens. Emojis are
replaced with their corresponding text string, e.g
thumbs_up following Nguyen et al. (2020).

Image Images are resized to (224× 224) pixels
representing a value for the red, green and blue
color in [0, 255]. The pixel values are normalized
to [0−1]. For LXMERT (Tan and Bansal, 2019) in
Section 3.3, we extract object-level features using
Faster-RCNN (Ren et al., 2016) as in Anderson
et al. (2018) and keep 36 objects for each image as
in Tan and Bansal (2019).

A.2 Data Splits

We use the same data splits for MVSA, MHP, MSD,
and MICD as in the original papers. For TIR, in-
stead of a 10-fold cross-validation, we randomly
split the data in 80%, 10%, and 10% for train-
ing, validation, and testing for consistency with
the other tasks.

A.3 Hyperparameters

We select the hyperparameters for all models using
early stopping by monitoring the validation loss.
We use the Adam optimizer (Kingma and Ba, 2014).
We estimate the class weights using the ‘balanced’
heuristic (King and Zeng, 2001). All experiments
are performed using an Nvidia A100 GPU with a
batch size of 8 for TIR and MHP and 16 for MVSA
and MSD datasets. For prompting implementation
details see Appx. B.

Image-only For ResNet152 (He et al., 2016), we
fine-tune for 1, 5, 8, 6 and 1 epochs for TIR, MVSA,
MHP, MSD and MICD datasets respectively, with
learning rate η = 1e−5 and dropout δ = 0.05
before passing the image representation through the
classification layer. We fine-tune ViT (Dosovitskiy
et al., 2020) for 3 epochs for TIR, MSD and MICD
and 10 epochs for MVSA and MHP datasets with
learning rate η = 1e−5 and dropout δ = 0.05.
η ∈ {1e−3, 1e−4, 1e−5} and δ in [0, 0.5], random
search.

Text-only Transformers We fine-tune BERT
and Bernice for 20 epochs and choose the epoch
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with the lowest validation loss. We use the pre-
trained base-uncased model for BERT (Vaswani
et al., 2017; Devlin et al., 2019) from the Hugging
Face library (12-layer, 768-dimensional) (Wolf
et al., 2019), and the base model for Bernice (DeLu-
cia et al., 2022) with a maximal sequence length of
128. We fine-tune BERT for 3, 9, 5, 2 and 1 epochs
for TIR, MVSA, MHP, MSD and MICD with learn-
ing rate η = 1e−5 and dropout δ = 0.05; and Ber-
nice for 3, 4, 7, 3 and 3 epochs for TIR, MVSA,
MHP, MSD and MICD datasets, η = 1e−5 and
δ = 0.05. For all models η ∈ {2e−5, 1e−4, 1e−5}
and δ ∈ [0, 0.5], random search.

Multimodal Predictive Models We train
MMBT (Kiela et al., 2019), ViLT (Kim et al.,
2021), LXMERT (Tan and Bansal, 2019) and
Bernice-ViT models with λ1, λ2, λ3; λ2 and
λ3 ∈ [0, 1.5] (as explained in Section 2), and
number of fine-tuning epochs (E) for each model
as shown in Table 4. For ViLT models we keep the
vision layers frozen and we use a learning rate of
η = 1e−4, dropout δ = 0.05 and weight decay of
0.0002. For all other multimodal models we use a
learning rate of η = 1e−5, dropout δ = 0.05 and
weight decay of 0.00025.

B Prompting

For each dataset, we construct a prompt to include
two randomly selected training examples for each
class (GPT-3, FLAN-T5, IDEFICS) as follows:

• TIR (GPT-3 & FLAN-T5)

Label the next text as ‘image adds and text
is represented’, ’image adds and text is not
represented’, ’image does not add and text
is represented’, ’image does not add and
text is not represented’. Text: <TWEET-
TRAIN> // <LABEL-TRAIN> ×8
Label the next text as ‘image adds and text
is represented’, ’image adds and text is not
represented’, ’image does not add and text
is represented’, ’image does not add and
text is not represented’. Text: <TWEET> //

• TIR (IDEFICS)

User: <IMAGE-TRAIN> Label the image
as ‘image adds and text is represented’, ‘im-
age adds and text is not represented’, ‘im-
age does not add and text is represented’,

‘image does not add and text is not repre-
sented’. Assistant:<LABEL-TRAIN> ×8
User: <IMAGE-TEST> Label the image as
‘image adds and text is represented’, ‘im-
age adds and text is not represented’, ‘im-
age does not add and text is represented’,

‘image does not add and text is not repre-
sented’. Assistant:

• TIR (InstructBLIP)

– Prompt: Label the image as ‘image adds and
text is represented’, ‘image adds and text is not
represented’, ‘image does not add and text is rep-
resented’, ‘image does not add and text is not
represented’

– Image: <IMAGE-TEST>

• MVSA (GPT-3 & FLAN-T5)

Label the next text as ‘positive’ or ‘negative’
or ‘neutral’. Text: <TWEET-TRAIN> //
<LABEL-TRAIN> ×6
Label the next text as ‘positive’ or ‘negative’
or ‘neutral’. Text: <TWEET> //

• MVSA (IDEFICS)
User: <IMAGE-TRAIN> Is the sentiment
of the image ‘positive’ or ‘negative’ or ‘neu-
tral’?. Assistant:<LABEL-TRAIN> ×6
User: <IMAGE-TEST> Is the sentiment of
the image ‘positive’ or ‘negative’ or ‘neu-
tral’?. Assistant:

• MVSA (InstructBLIP)

– Prompt: Is the sentiment of the image ‘positive’
or ‘negative’ or ‘neutral’?

– Image: <IMAGE-TEST>

• MHP

Label the next text as ‘hateful’, ‘coun-
terspeech’, ‘reclaimed’ or ‘none’. Text:
<TWEET-TRAIN> // <LABEL-TRAIN> ×8
Label the next text as ‘hateful’, ‘coun-
terspeech’, ‘reclaimed’ or ‘none’. Text:
<TWEET> //

• MHP (IDEFICS)
User: <IMAGE-TRAIN> Is the image

‘hateful’, ‘counterspeech’, ‘reclaimed’ or
‘none’?. Assistant:<LABEL-TRAIN> ×8
User: <IMAGE-TEST> Is the image
‘hateful’, ‘counterspeech’, ‘reclaimed’ or
‘none’?. Assistant:

• MHP (InstructBLIP)

– Prompt: Is the image ‘hateful’, ‘counterspeech’,
‘reclaimed’ or ‘none’?

– Image: <IMAGE-TEST>

• MSD (GPT-3 & FLAN-T5)

Label the next text as ‘sarcastic’ or ‘not
sarcastic’. Text: <TWEET-TRAIN> //
<LABEL-TRAIN> ×4
Label the next text as ‘sarcastic’ or ‘not
sarcastic’. Text: <TWEET> //

• MSD (IDEFICS)
User: <IMAGE-TRAIN> Is the im-
age ‘sarcastic’ or ‘not sarcastic’?
Assistant:<LABEL-TRAIN> ×4
User: <IMAGE-TEST> Is the image ‘sar-
castic’ or ‘not sarcastic’? Assistant:
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Dataset Text Image Label Outputs

MVSA So proud of these kids! Not
only talented, ENERGETIC
and hardworking, but re-
spectful and kind-hearted!

positive

GPT-3:positive
Flan-T5: positive
IDEFICS: positive
InstructBLIP: positive

MSD Text: it’s the insensitive
strikeouts at suntrust park.
#braves #chopchop

sarcastic

GPT-3: sarcastic
Flan-T5: sarcastic
IDEFICS: not sarcastic
InstructBLIP: not sarcastic

Table 3: Text-Image examples and corresponding labels assigned by each LLM model for MVSA (sentiment
analysis) and MSD (sarcasm detection) datasets. For each model we use the prompt templates included in Appendix
B.

Dataset TIR MVSA MHP MSD MICD
λ1 , λ2 , λ3 E λ1 , λ2 , λ3 E λ1 , λ2 , λ3 E λ1 , λ2 , λ3 E λ1 , λ2 , λ3 E

Ber-ViT-Conc - 3 - 7 - 7 - 1 - 2
Ber-ViT-Conc+C 0.9, 0.1, 0 3 0.9, 0.1, 0 5 0.9, 0.1, 0 7 0.9, 0.1,0 6 0.9,0.1,0 2
Ber-ViT-Conc+M 0.9, 0, 0.1 4 0.9, 0, 0.1 6 0.9, 0, 0.1 9 0.9, 0, 0.1 3 0.9,0,0.1 1
Ber-ViT-Conc+C+M 0.8, 0.1, 0.1 6 0.8, 0.1, 0.1 4 0.8, 0.1, 0.1 6 0.8, 0.1, 0.1 3 0.8,0.1,0.1 2
Ber-ViT-Att - 2 - 8 - 7 - 1 - 3
Ber-ViT-Att+C 0.9, 0.1,0 2 0.9, 0.1, 0 8 0.9,0.1,0 7 0.9, 0.1, 0 3 0.9,0.1,0 2
Ber-ViT-Att+M 0.92, 0, 0.08 3 0.9, 0, 0.1 6 0.9,0,0.1 6 0.9, 0, 0.1 3 0.9,0,0.1 1
Ber-ViT-Att+C+M 0.8, 0.1, 0.1 4 0.8, 0.1, 0.1 15 0.8,0.1,0.1 13 0.8, 0.1, 0.1 5 0.8,0.1,0.1 2
MMBT - 2 - 9 - 5 - 1 - 1
MMBT+C 0.9, 0.1, 0 4 0.9, 0.1, 0 5 0.9, 0.1, 0 9 0.9,0.1,0 3 0.9,0.1,0 2
MMBT+M 0.9, 0, 0.1 4 0.7, 0 ,0.3 6 0.9, 0, 0.1 9 0.82, 0, 0.08 4 0.9,0,0.1 2
MMBT+C+M 0.84, 0.08, 0.08 3 0.85, 0.1, 0.05 11 0.8, 0.1, 0.1 10 0.85,0.1,0.05 3 0.6,0.2,0.2 4
LXMERT - 2 - 5 - 5 - 2 - 3
LXMERT+C 0.9,0.1,0 2 0.9,0.1,0 8 0.9, 0.1, 0 5 0.9,0.1,0 2 0.9,0.1,0 2
LXMERT+M 0.85,0,0.15 1 0.9,0,0.1 6 0.8, 0, 0.1 12 0.85,0,0.15 2 0.9,0,0.1 3
LXMERT+C+M 0.9, 0.08, 0.02 2 0.83,0.02,0.15 7 0.8, 0.1, 0.1 11 0.85, 0.1, 0.05 2 0.8,0.1,0.1 3
ViLT - 6 - 5 - 4 - 1 - 4
ViLT+C 0.9, 0.1, 0 6 0.9, 0.1, 0 11 0.9, 0.1, 0 4 0.9, 0.1, 0 1 0.95,0.05,0 2
ViLT+M 0.85, 0, 0.15 5 0.9,0,0.1 3 0.9, 0, 0.1 7 0.9, 0, 0.1 2 0.92,0,0.08 2
ViLT+C+M 0.8, 0.1, 0.1 2 0.8, 0.1, 0.1 13 0.8, 0.1, 0.1 9 0.8, 0.1, 0.1 2 0.87,0.05,0.08 1

Table 4: Hyperaprameter values for λ1, λ2, λ3 as explained in Section 2, and number of fine-tuning epochs (E) for
each model.

• MSD (InstructBLIP)

– Prompt: Is the image ‘sarcastic’ or ‘not sarcas-
tic’?

– Image: <IMAGE-TEST>

• MICD (GPT-3 & FLAN-T5)

Label the next text as ‘commercial’ or ‘not
commercial’. Text: <TWEET-TRAIN> //
<LABEL-TRAIN> ×4
Label the next text as ‘commercial’ or ‘not
commercial’. Text: <TWEET> //

• MICD (IDEFICS)

User: <IMAGE-TRAIN> Is the im-
age ‘commercial’ or ‘not commercial’?
Assistant:<LABEL-TRAIN> ×4
User: <IMAGE-TEST> Is the image ‘com-
mercial’ or ‘not commercial’? Assistant:

• MICD (InstructBLIP)

– Prompt: Is the image ‘commercial’ or ‘not com-
mercial’?

– Image: <IMAGE-TEST>

<Label-TRAIN> corresponds to the true label of the
<TWEET-TRAIN> training example, <TWEET> refers
to a testing example. We remove punctuation and
spaces and map the output of each model (FLAN-
T5 or GPT-3) to the corresponding label. Table 3
shows examples of outputs for each LLM model
for MVSA and MSD datasets.

B.1 Implementation Details

FLAN-T5 & IDEFICS We use one GPU T4 to
obtain the inference results from Flan-T5 (Chung
et al., 2022) and IDEFICS (Laurençon et al., 2023)
models. For Flan-T5 we use the large version from
the Hugging Face library (780M parameters) (Wolf
et al., 2019). For IDEFICS, we use the 9B pa-
rameters instruct version of the model (idefics-9b-
instruct) via Hugging Face library.

InstructBLIP We use one A100 GPU to ob-
tain inference results from InstructBLIP (Dai
et al., 2023). We use the 7B-parameters version
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(instructblip-vicuna-7b) from the Hugging Face
library.

GPT-3 For GPT-3 (Brown et al., 2020), we use
the text-davinci-003 model via the OpenAI4 Li-
brary.

Note on GPT-4 For this work, we opted not to
include GPT-4 due to (1) its nature as a black-box
model accessible only through a paid API; (2) the
lack of information regarding the pre-training data,
raising concerns about potential exposure to the
test sets and thus, information leakage.

4https://platform.openai.com/docs/api
-reference
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