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Abstract

Large Vision Language Models (VLMs) like
GPT-4, LLaVA, and InstructBLIP exhibit ex-
traordinary capabilities for both knowledge un-
derstanding and reasoning. However, the rea-
soning capabilities of such models on sophis-
ticated problems that require external knowl-
edge of a specific domain have not been as-
sessed well, due to the unavailability of neces-
sary datasets. In this work, we release a first-
of-its-kind dataset called IndiFoodVQA with
around 16.7k data samples, consisting of ex-
plicit knowledge-infused questions, answers,
and reasons. We also release IndiFoodKG, a re-
lated Knowledge Graph (KG) with 79k triples.
The data has been created with minimal human
intervention via an automated pipeline based
on InstructBlip and GPT-3.5. We also present
a methodology to extract knowledge from the
KG and use it to both answer and reason upon
the questions. We employ different models to
report baseline zero-shot and fine-tuned results.
Fine-tuned VLMs on our data showed an im-
provement of ∼ 25% over the corresponding
base model, highlighting the fact that current
VLMs need domain-specific fine-tuning to ex-
cel in specialized settings 1. Our findings re-
veal that (1) explicit knowledge infusion during
question generation helps in making questions
that have more grounded knowledge, and (2)
proper knowledge retrieval can often lead to
better-answering potential in such cases.

1 Introduction

Visual Question Answering (VQA) was initially
introduced as a mechanism to compare the ability
of machines to behave like a human (Malinowski
and Fritz, 2014b). Since the advent of chatbots
like ChatGPT that show a high degree of under-
standing, they have become a common interface
for human-machine interaction, where humans fre-
quently ask questions based on specific domains to
solve various problems. For instance, a restaurant

1Data and code are available at IndiFoodVQA.

chatbot should excel in food-related queries and
images, while fashion chatbots should specialize in
recognizing delivered clothing items within images.
While humans are extremely efficient at answering
questions involving a single domain both before
and after undergoing proper training, the same can-
not always be said about language models. To
develop such models, substantial domain-specific
data is essential.

The primary necessity here is to get datasets
that enable VLMs to show capabilities to under-
stand and reason based on both prevalent and exter-
nal knowledge. There have been numerous works
pertaining to the requirement of commonsense
knowledge (Johnson et al., 2017; Shah et al., 2019;
Schwenk et al., 2022; Gao et al., 2022) in VQA,
most using day-to-day images from datasets such
as MS-COCO (Lin et al., 2014) and knowledge
entities from generic KGs like ConceptNet (Speer
et al., 2017). Only recently has attention grown
towards a higher degree of reasoning according to
knowledge in a particular area of interest (Lu et al.,
2022; Wang et al., 2023). However, a big subset of
curated datasets have been made by crowdsourcing
efforts, which albeit being of high quality, are not
easy to scale. With most state-of-the-art (SOTA)
LLMs trained on huge chunks of data, this can be
a big bottleneck.

In this work, we present a framework that lever-
ages domain-specific knowledge and the superior
capabilities of LLMs in text generation to create a
reasoning benchmark with minimal human effort.
Our contributions are:

1. IndiFoodKG: A Knowledge Graph based on
recipes, ingredients, nutrients, and other mis-
cellaneous data about Indian food dishes.

2. IndiFoodVQA: A multiple-choice visual
question answering and reasoning dataset, cre-
ated with IndiFoodKG as the underlying KG.
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Figure 1: Examples from our dataset IndiFoodVQA, that require multiple reasoning steps. The second example
shows a situation where the externally infused triples were used to reason on the generated question and answer.

3. A knowledge-infused pipeline to automati-
cally generate questions from images; qual-
ity of the pipeline and effects of knowledge-
infusion are discussed in Sections 3.3 and 4.5.

4. A comprehensive evaluation of IndiFood-
VQA with various VLMs, performed for both
zero-shot and fine-tuned models, with and
without knowledge infusion.

The selection of the food domain, specifically In-
dian cuisine, is driven by its extraordinary diversity
and daily significance. Present object detectors and
vision encoders encounter challenges when tasked
with identifying these food items, often confusing
them with Western food dishes. This inherent bias
also gets incorporated into the SOTA VLMs, which
serves as additional motivation for choosing the
niche domain of Indian food.

2 Related Work

VQA Dataset Generation. Approaches for Vi-
sual Question Generation (VQG) can be split into
2 buckets: human gold-standard datasets, and
machine-generated datasets. We present different
works from both approaches, along with their mer-
its and shortcomings.

Human Annotated Datasets. The biggest
drawback of this approach is quite evident - scal-
ability issues, although it has still been the most

popular method (Mostafazadeh et al., 2016; Antol
et al., 2015; Goyal et al., 2016; Krishna et al., 2017;
Wang et al., 2017b; Marino et al., 2019). Another
common idea here is to create human-annotated
fixed question templates and simply replace cer-
tain words while making questions (Malinowski
and Fritz, 2014a; Zhu et al., 2016; Yu et al., 2015).
Although this could help increase the size of the
dataset, it leads to a big decrease in the variability
in questions and is not indicative of the real world
where models should be able to answer a diverse
set of questions.

Machine Generated Datasets. In Multitask
iQAN Network (Li et al., 2018), the authors utilized
the dual nature of VQA and VQG, by fusing the
embeddings of the two modalities in an encoder-
fusion-decoder module. Other important bench-
marks in the visual reasoning space are CLEVR
(Johnson et al., 2017), GQA (Hudson and Man-
ning, 2019), and CRIC (Gao et al., 2022), created
via automatic functional programs, which require
reasoning over visual facts grounded in the image
and facts found in external knowledge bases.

Multimodal Reasoning Benchmarks. The cur-
rent benchmark in the space of reasoning is widely
considered to be ScienceQA (Lu et al., 2022), con-
sisting of multiple choice questions on various sci-
entific topics along with corresponding answers,
contexts, and explanations, created using heuristic
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rules from open resources on science problems. A
significant change in data generation methods was
seen after LLaVA (Liu et al., 2023b) was released,
which created multi-modal datasets using LLMs
like GPT-3.5, with manually annotated captions
and bounding boxes used to describe the image.

Knowledge-Based VQA. VQA based on exter-
nal knowledge has been an important task, both
to understand the capability that existing models
have in terms of knowledge understanding and the
limitations of using only inherent knowledge of
the LLMs (Wu et al., 2016; Wang et al., 2017a;
Narasimhan and Schwing, 2018; Cao et al., 2019;
Gardères et al., 2020; Yu et al., 2020; Zhu et al.,
2021; Shevchenko et al., 2021). Recent works have
focused on external knowledge infusion, without
changing the model weights. The KAPING frame-
work (Baek et al., 2023) was developed to show
that LLMs like T0 & GPT-3 injected with rele-
vant knowledge triples through prompts attain su-
perior zero-shot performance as compared to mod-
els using only internalized knowledge. Similarly,
the Prophet framework (Shao et al., 2023) enabled
GPT-3 to better comprehend the task of knowledge-
based VQA by prompting with answer heuristics.

3 Knowledge Graph and Dataset

3.1 IndiFoodKG
We created a new KG called IndiFoodKG, with
varied information about Indian food dishes. The
KG has been compiled from three different sources:

• IndianFood101 (Prabhavalkar, 2020) - Infor-
mation about 255 Indian dishes, their ingredi-
ents, place of origin, flavor profile, preparation
time, and course of meal (2800 triples).

• CulinaryDB (Singh and Bagler, 2018) -
Recipe to ingredient mapping of nearly 4k
Indian food items (35k triples).

• Indian Food Composition Tables (Longvah
et al., 2017) - Provides nutritional values for
528 key ingredients (42k triples).

Our curated knowledge graph has a total of 79, 934
unique triples, either accessing one of the 11 differ-
ent relations or giving nutrient information about
some ingredient. Each relation acts as a different
specifier for a 1-hop triple. For example, the rela-
tion has_ingredient is a 1-hop triple between a
dish and an ingredient. Details about the relations
present in IndiFoodKG are given in Table 6.

3.2 IndiFoodVQA

We release IndiFoodVQA, a new benchmark in
the field of knowledge-based VQA and reasoning.
Each sample of IndiFoodVQA has 5 different parts:
An image, a question based on the image, 4 possi-
ble answer choices, a correct answer out of the 4,
and a reason for why the answer choice is correct.

Statistic Number
Size of dataset 16, 716
Unique questions 13, 426
Question types 12
Number of images 414

Average question length 13.76
Average answer length 4.43
Average rationale length 59.23

Option A Option B Option C Option D
5610 3929 3955 3222

Table 1: Important statistics for IndiFoodVQA - The
second table represents the number of questions with
the given option (A, B, C, or D) as the correct answer.

3.3 Quality Verification

To determine the extent of hallucination in the
generated questions, we take 224 randomly cho-
sen questions from the dataset, distributed equally
across the different types of questions, and get them
scored over 4 different aspects by human subjects.
The task was divided among 20 people, with each
data sample verified by 3 independent subjects
to ensure inter-rater agreement. Every aspect is
scored on a scale of 1− 4, with a higher score indi-
cating a better response. Specific instructions can
be found in Appendix A.2. We obtained majority
agreement (≥ 2 evaluators) across the 4 different
questions asked to the subjects in 75% to 90% of
the 224 data samples. The average scores are listed
in Table 2. The human ratings are analyzed in detail
in Appendix A.3.

Question
relevance

Relevant
choices

Correct
answer

Correct
reason

3.89 3.78 3.32 3.42

Table 2: Average scores on manual verification of 224
randomly chosen data samples on a scale of 1− 4, con-
sidering only scores agreed upon by a majority.
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Figure 2: A 4-stage pipeline to automatically generate knowledge-based visual question reasoning dataset.

4 Question Generation Pipeline

4.1 Stage I: Question Type Templates
To ensure that questions generated by GPT-3.5 are
related to our chosen domain, we create templates
for different types of questions. The 12 templates
were also created using ChatGPT and can be modi-
fied to fit any other domain. A detailed description
of each type is given in Table 7. The prompt used
to get the types can be found in Appendix C.1.

4.2 Stage II: Image Description
We first extract information from the images in
natural language form. Unlike LLaVa (Liu et al.,
2023b), which provides human-annotated captions
and bounding boxes from MS-COCO (Lin et al.,
2014) to GPT-3.5 for generating multi-modal data,
we use machine-generated descriptions with hu-
man supervision. However, as we explain below,
based on the domain being chosen this step can be
performed without human intervention as well.

Human Annotation. We asked human annota-
tors (details in Appendix A.1) to choose platter
images from the IndianFood20 dataset (Goel et al.,
2023) which have more than 3 items present in
them. For each of the chosen 414 images, the an-
notators were asked to list down all the food dishes
F present in the image. This helped in guiding
the description generation model to a relevant de-
scription of the image, which covers more visual

aspects. Note that this is a low-effort task, and is
not an essential step in making the description.

Description Generation. We used the Instruct-
Blip Vicuna-7B model (Dai et al., 2023) to cre-
ate descriptions with the settings given in Ap-
pendix C.2. The model was prompted with the
annotated food items F and was asked to give a
description D of the color and relative location of
those items. The description acts as an indicator of
visual information in the image, which can not be
inferred from knowing the food items alone.

4.3 Stage III: Knowledge Infusion
Before calling GPT-3.5 to generate questions, we
also want to ensure that the questions will require
knowledge from the KG to answer. We create
a methodology for knowledge extraction to get
triples T from IndiFoodKG which are relevant to
the image and the type of question. The triples are
explicitly mentioned in the prompt given to GPT-
3.5, without any verbalization, since past works
(Moiseev et al., 2022; Baek et al., 2023) have
shown that LLMs are capable of understanding
these triples even if not in natural language form.

1-Hop Triples. We use embedding similarity to
retrieve relevant triples, a technique that has been
employed through graph embeddings in earlier
works (Wang et al., 2014; Ma et al., 2019; Park
et al., 2019; Nayyeri et al., 2023). Similar to KAP-
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ING (Baek et al., 2023), the triples are linearly
verbalized (subject, relation, and object joined via
semi-colons as "s; r; o") to form elements of the
corpora C. The query sentence q is made using the
annotated food items and the question type, again
appended together with semi-colons. We use MP-
Net (Song et al., 2020) as our sentence embedding
model for both q and the triples from C, with cosine
similarity as the metric for semantic distance.

To extract a more diverse range of triples, we
retrieve separate triples from all the 3 knowledge
sources mentioned in Section 3.1. The division of
IndiFoodKG into the 3 knowledge bases can be
done with the help of its relations, as described in
Table 6. The top N triples which have the highest
cosine similarity scores with the embedding of the
query sentence, i.e. cos_sim(q, C, top_N), are
the final retrieved triples T1-hop, where the hyper-
parameter N is chosen nearly in ratio with the size
of each knowledge base. Thus, we take the top 5
triples from CulinaryDB (Singh and Bagler, 2018),
the top 4 triples from the IFCT nutritional database
(Longvah et al., 2017), and the top triple corre-
sponding to IndianFood101 (Prabhavalkar, 2020),
for a total of N = 10 triples.

2-Hop Triples. We utilize the structure of Indi-
FoodKG here, by which any 2-hop knowledge K2

about recipe-nutrient relation can be broken down
into 1-hop relations about recipe-ingredient (Kr2i)
and ingredient-nutrient (Ki2n) data. This idea is
based on the inherent ability of LLMs like GPT-3.5
to combine two 1-hop triples and infer the corre-
sponding 2-hop information, commonly enforced
as chain-of-thought reasoning (Wei et al., 2022).
Thus, instead of retrieving 2-hop knowledge, we
simply find triples from IndiFoodKG with a com-
mon entity e (the ingredient).

To accomplish this, we first find all ingredi-
ents Ir2i in IndiFoodKG which are from the
CulinaryDB database (corresponding to recipe-
ingredient relation). For each of these ingredients,
we take its vector embedding (again with MPNet)
as our query vector qi. Similarly, we find all ingre-
dients Ii2n from the IFCT tables (corresponding
to ingredient-nutrient data) and get their embed-
dings to create our corpus Ci. The ingredient in
the corpus with the highest cosine similarity score
cos_sim (qi, Ci, top_1) with a query ingredient
is taken as the corresponding related entity Irel.
To get our final top 10 triples, we again extract the
top 1 and top 5 triples from IndianFood101 and

CulinaryDB respectively. Following this, for all
the ingredients in the triples extracted so far, we
find their related ingredient Irel. The nutrient
information triples for these ingredients from the
IFCT data are taken as our new corpus, and finally,
we extract the top 4 triples only from these related
triples. This ensures a higher degree of relation be-
tween the recipe-ingredient and ingredient-nutrient
triples, and thus also gives a higher percentage of
2-hop information.

4.4 Stage IV: GPT-3.5 and Post-processing

We use the model gpt-3.5-turbo and provide it
with the information sources from the previous 3
stages to influence its output - question type, im-
age description, and the 2-hop extracted knowledge
triples. The prompt and post-processing steps are
given in Appendix C.3.

4.5 Impact of Knowledge Infusion

To comprehend the impact of KG infusion during
question generation on the pipeline and its role in
diversifying the question distribution, we quantify
the number of questions influenced by the provided
knowledge triples. For this, we first extract all noun
words present in question or answer choices with
the help of the spaCy library (Honnibal and Mon-
tani, 2017), and remove those words that were also
present in the annotated food items. Finally, we
check if any of these nouns are also present as a
subject/object in the knowledge triples, or as one of
the nutrients mentioned in the triples (for example
words like "iron", "protein", "magnesium", etc.).
4050 questions in the dataset (∼ 24%) were found
to have added information from the knowledge
graph, with the highest concentration in questions
about health & nutritional aspects (649) and ingre-
dients (608), and the least amount of knowledge
infused into questions on the topics of cooking tech-
nique (91) and presentation & plating (56). This is
in line with the kind of knowledge that IndiFoodKG
has, showing that the knowledge infusion step was
indeed successful in a large fraction of questions.

5 Experimental Setup

In this section, we describe the experimental setup
used to establish the baselines. The dataset has
been split into the train, validation, and test sets in
a ratio of 70 : 10 : 20, thus consisting of 11, 709,
1661, and 3346 questions. The split into the test set
has been done maintaining a roughly equal number
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Model Knowledge Accuracy Rouge-L BLEU-1 BLEU-4 METEOR Similarity
random — 26.69 0.23 0.247 0.031 0.207 0.368
mplug-

owl
llama-7b

(I)

No KG 34.13 0.302 0.33 0.095 0.325 0.824
1-hop 32.22 0.291 0.313 0.09 0.325 0.807
2-hop 32.82 0.289 0.31 0.089 0.325 0.806

Original 33.32 0.29 0.31 0.091 0.34 0.811

open
flamingo
mpt-9b

No KG 25.46 0.093 0.034 0.0 0.06 0.517
1-hop 31.05 0.078 0.023 0.0 0.047 0.497
2-hop 28.06 0.076 0.022 0.0 0.045 0.488

Original 29.23 0.075 0.023 0.0 0.045 0.483

instructblip
flant5xxl-
11b (I)

No KG 52.06 0.172 0.022 0.006 0.089 0.715
1-hop 50.57 0.217 0.044 0.014 0.123 0.738
2-hop 50.75 0.212 0.035 0.012 0.118 0.732

Original 54.15 0.217 0.033 0.013 0.121 0.747

llava
llama2-
13b (I)

No KG 42.59 0.324 0.354 0.106 0.367 0.822
1-hop 41.33 0.323 0.354 0.102 0.352 0.815
2-hop 41.54 0.323 0.356 0.104 0.354 0.815

Original 43.78 0.326 0.359 0.108 0.357 0.821

Table 3: Zero-shot evaluation on IndiFoodVQA. Accuracy is for the correct answer (in %). All other metrics are for
the generated reason. Similarity refers to cosine similarity with the original reason using the Sentence-BERT model.
The random model gives a random answer and a random reason from questions belonging to the same type in the
train set, and I under the model name stands for VLMs with an instruction-tuned base LLM. Knowledge refers to
the type of triples presented to the models during inference, as explained in Section 5.1. No KG means inference
without any external knowledge, 1-hop and 2-hop are for inference with the triples extracted by the corresponding
method, and Original refers to inference with the triples given to GPT-3.5 during question generation. The bold
values are the best accuracy scores by the 4 models and the best metric on reason generation across different models.

of questions of each question type. All results are
reported for a single run of experiments.

5.1 Zero-Shot (ZS) Baselines
We benchmarked ZS baselines on VLMs ranging
from sizes of 7B to 13B parameters: mplug-owl-
llama-7b (Ye et al., 2023), openflamingo-mpt-9b
(Awadalla et al., 2023), instructblip-flant5xxl-11b
(Dai et al., 2023) and llava-llama2-13b (Liu et al.,
2023b) as they have shown SOTA performance on
various benchmarks. We also perform four types
of evaluations on each model: no knowledge infu-
sion, with extracted 1-hop knowledge triples, with
extracted 2-hop knowledge triples, and when pre-
sented with the original knowledge triples given to
GPT-3.5 during question generation.

• Without knowledge infusion: The model
is given an image, a question, and 4 answer
choices to predict and explain the answer.

• With k-hop knowledge triples infusion: In
this method, the model again gets the image,
question, and answer choices as input, along
with knowledge triples up to k-hop (k = 1, 2)

added as a hint, with the aim of predicting the
correct answer and a reason supporting the
answer. The main idea is to exploit the fact
that adding knowledge during LLM inference
helps in improving understanding of the task
(Liu et al., 2020; Zhang et al., 2022). To ex-
tract triples from IndiFoodKG corresponding
to a given data sample, we use the same tech-
nique as given in Section 4.3 with a different
query. The query sentence is made by extract-
ing all noun chunks from the question, using
spaCy (Honnibal and Montani, 2017) to ex-
tract these chunks. We ignore answer choices
when finding the relevant triples since most
of them will act as detractors, often leading to
triples unrelated to the ones we desire.

• With original GPT triples: In this method,
we evaluate the models if they are provided
with the original triples given to GPT-3.5
(from Section 4.3). This is an ideal situation,
where the exact same triples can be extracted.

For each model, we get the answer first, and the
reason next after providing the generated answer
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Paradigm Knowledge Accuracy Rouge-L BLEU-1 BLEU-4 METEOR Similarity

No
external
triples

No KG 69.22 0.506 0.497 0.297 0.481 0.883
1-hop 65.72 0.494 0.476 0.28 0.461 0.878
2-hop 66.11 0.49 0.471 0.274 0.455 0.875

Original 67.84 0.495 0.479 0.282 0.461 0.879
1-hop

extracted
triples

No KG 65.09 0.51 0.503 0.303 0.486 0.884
1-hop 67.15 0.521 0.508 0.317 0.495 0.886

Original 65.09 0.519 0.509 0.315 0.494 0.888
2-hop

extracted
triples

No KG 64.26 0.507 0.499 0.299 0.482 0.883
2-hop 66.59 0.524 0.512 0.321 0.496 0.888

Original 63.81 0.521 0.509 0.318 0.495 0.887

Table 4: Fine-tuned evaluation on IndiFoodVQA with llava-llama2-13b model. The model is fine-tuned under
different paradigms as given in Section 5.2. The other details are the same as the ones explained in Table 3. For
models fine-tuned along with 1/2-hop triples, we only perform inference with the corresponding triples.

to the model. The prompts and the technique used
for all 4 models can be found in Appendix C.4. We
also compare our scores with a random baseline,
where we find all questions corresponding to the
same question type from the train set, and choose a
random answer and a random reason from this set,

5.2 Fine-Tuning (FT) Baselines
We benchmark FT baselines on llava-llama2-13b
model fine-tuned on the train set. We perform three
different types of fine-tuning setups, i.e. without
any knowledge infusion, with 1-hop knowledge
triples, and with 2-hop knowledge triples. When
fine-tuning, both the answer and rationale are con-
sidered for the output. FT baselines are trained for
3 epochs on the existing instruction-tuned check-
point of the model, with a learning rate of 2e−5 and
a global batch size of 128 (exact parameters are in
Appendix D). The fine-tuned models are evaluated
under the same 4 knowledge infusion paradigms as
the ZS baselines.

5.3 Evaluation Metrics
For answer selection, we assess the top-1 accu-
racy, indicating the correctness of the chosen out-
put among options A, B, C, and D. To evaluate
the generated reasoning, we employ several met-
rics. These include the Rouge-L score (Lin, 2004),
BLEU-1 and BLEU-4 (Papineni et al., 2002), and
METEOR (Banerjee and Lavie, 2005) scores, mea-
sured against the reasoning provided in the Indi-
FoodVQA dataset. Additionally, we include the
sentence similarity score using Sentence-BERT
(Reimers and Gurevych, 2019).

All experiments were performed on 2 NVIDIA
A-100 GPUs. All models take 3 − 4 hours for

inference per task depending on the specific model
being used, and 1 hour per epoch for training.

6 Results and Analysis

6.1 Baseline Scores
We report all results on the test set. The results
for zero-shot evaluation and fine-tuned models are
given in Table 3 and Table 4 respectively, for both
answer selection and reason generation tasks. We
also discuss a few other baselines (Yu et al., 2022;
Liu et al., 2023a) in Appendix E. Several important
points are evident from the results that we raise
here, with discussions about improvements and
future work deferred to Section 7:

• Across various models in zero-shot evalua-
tion, a consistent observation is a slight dip
in scores (approximately 2%) when incorpo-
rating extracted knowledge compared to infer-
ence without any knowledge. However, scores
typically witness an improvement when the
original triples are supplied to the model for
answering. This underscores the potential
for enhancing extraction methods that don’t
solely rely on the question and involve image-
level tokens and answer choices, potentially
leading to improved performance.

• Instruction-tuned models such as mPLUG-
Owl and LLaVA exhibit notable proficiency in
reasoning. However, InstructBlip achieves the
highest accuracy due to its training paradigm’s
effective support for classification tasks (Wei
et al., 2021), even though it struggles with
verbalizing reasons. Conversely, models like
OpenFlamingo, which possess a decoder-style
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Figure 3: Qualitative comparison of ground truth vs. generated zero-shot and fine-tuned answer and reason.

underlying LLM, demonstrate scores akin
to near-random, reinforcing our inclination
towards instruction-following models in the
zero-shot context.

• Fine-tuning the base model on our dataset
yields considerable enhancements in both gen-
erated answers and the quality of reasoning.
This improvement signifies a better under-
standing of the domain when supplemented
with relevant knowledge while training.

• Since we are testing the VLMs on a noisy
machine-generated test set, we also create a
clean test set (similar to Qasemi et al., 2023).
For this, we used instances from the 224 veri-
fied samples which are from the test set and
have a majority score of 4 (i.e. a majority
of the raters claimed the sample is correct).
There were a total of 98 such samples, and the
best accuracy achieved by LLaVA zero-shot
and fine-tuned models on this clean test set
was 50.00% and 73.08% respectively, show-
ing a similar improvement as the scores on the
full test set.

6.2 Variation with Question Types

We also present the performance of different knowl-
edge infusion techniques during inference with the
12 question types in Figure 4. In questions related
to nutritional aspects, dietary restrictions, and ingre-
dients, that saw the highest amount of knowledge
infusion (Section 4.5), giving the correct knowl-
edge is generally beneficial, highlighting the impor-
tance of extraction of appropriate triples. However,
when considering open-ended questions about fla-
vor profiles and presentation & plating, external
unrelated knowledge can lead to a significant drop

in performance. This is mainly due to the tendency
of these models to get influenced by the irrelevant
triples, instead of being able to ignore them.

Figure 4: Accuracy scores (in %) for llava-llama2-13b
model (zero-shot) across different question types.

6.3 Zero-Shot vs. Fine-Tuned

We qualitatively analyzed a few generated zero-
shot and fine-tuned LLaVA outputs. A representa-
tive example, with both training and inference done
using 2-hop triples, is given in Figure 3. The ex-
ample serves as a clear indicator of how zero-shot
modeling techniques are not enough when focusing
on a specific domain. The base model gets affected
by the distracting answer choices and incorrectly
claims that coriander is present in the image. How-
ever, the fine-tuned checkpoint retrieves the cor-
rect information from the knowledge triples (which
are the same for both the base and the fine-tuned
model) and is able to output the right answer.
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6.4 Object Detection Quality

We also analyze the extent to which model failures
can be attributed to inaccuracies in detecting food
items in the images. For the best-performing model
(fine-tuned llava-llama2-13b), the output of 2972
samples from 3346 test set samples contains either
the food items or the subject/object of the original
triples that we provided to GPT-3.5, even though
they were not provided in the question or answer
choices. This establishes the fact that the VLM is
generally able to detect the food items, implying
that the low accuracies are majorly due to their in-
ability to perform domain-specific reasoning based
on external knowledge. As per our understanding,
this is also influenced by the involvement of cues
specific to the Indian cuisine in the question and an-
swer choices, which help the model to focus along
those directions.

7 Conclusion

We developed a novel domain-specific VQA gener-
ation pipeline using the existing large models and
domain-specific knowledge from our curated KG
IndiFoodKG. To the best of our knowledge, this
is the first synthetic data generation pipeline that
uses both external knowledge and the model’s in-
ternalized knowledge for creating VQA data. We
have evaluated the performance of various base-
lines to establish the quality of the proposed dataset
and showed how existing LLMs generally do not
demonstrate good zero-shot performance when con-
strained to a domain. Our results showed a 15%
improvement in accuracy with a fine-tuned LLaVA
model over the best-performing zero-shot VLM.

Through this endeavor, our aim is to expedite
multimodal research in fields where generating data
at scale is a costly and labor-intensive task. Given
the extensive training datasets used by contempo-
rary LLMs, evaluating their effectiveness when in-
corporating external knowledge not present during
training becomes increasingly critical. Assessing
these models with knowledge pertaining to less-
explored fields offers an optimal approach for such
evaluation. Additionally, these datasets can serve
as crucial benchmarks for detecting biases in SOTA
VLMs. The architecture of our pipeline allows
for seamless replacement of its components with
elements from other domains, facilitating the cre-
ation of benchmarks and conducting studies in low-
resource domains. Detailed insights into the gener-
alizability of our model to diverse domains are dis-

cussed in Appendix F. Our research also prompts
potential modifications in both retrieval and model-
ing techniques to enhance the off-the-shelf domain-
relevant performance of versatile LLMs.

8 Limitations

One clear limitation of the IndiFoodVQA dataset
and the knowledge-infused pipeline is the exclu-
sive use of the English language, which limits its
accessibility and usability for non-English speakers
and in regions where English is not widely spoken,
that can become important when restricting the en-
vironment to a specific domain. Another limitation
is the requirement of OpenAI API access (as we
have used GPT-3.5 as a major component of the
data generation pipeline). However, this can be
overcome by replacing GPT-3.5 with any openly
available large foundational models like Llama 2
(Touvron et al., 2023) or Falcon-180b (Almazrouei
et al., 2023).

We also note that the KG covers only a subset
of the topics that are used for creating the ques-
tions. For example, there are very few knowledge
triples on ‘cultural significance’ in IndiFoodKG
(Table 6), so any questions that GPT-3.5 comes up
with from that category are neither grounded in
KG nor can be answered completely using the KG.
This is not necessarily a drawback of the dataset,
but it cannot be expected that models will improve
dramatically simply with the infusion of our KG.
To show large improvements, the pretrained knowl-
edge of the model itself will need to be greatly
expanded and that’s simply not the case with most
open-source LLMs today. Alternatively, models
need to get access to the relevant knowledge, so the
source of external knowledge cannot be just the In-
diFoodKG knowledge base. We further discuss this
issue by using the generate-then-read method (Yu
et al., 2022) in Appendix E.1. When generalizing to
a different domain, this can be mitigated by choos-
ing question categories that are highly grounded in
the knowledge available.

Ethics Statement

This research was conducted in accordance with
the ACL Ethics Policy. The ethical considerations
during both the human annotation and verification
process are discussed in Appendix A.
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A Human Annotation & Evaluation

A.1 Annotation

To choose our initial set of images, as well as to get
annotated food items present in those images, we
procured the help of 2 annotators with sufficient
knowledge of Indian food dishes. From the Indian-
Food20 dataset (Goel et al., 2023), the annotators
were assigned 10 dish classes each and asked to
select 21 images from each dish class. The only
constraint during image selection was to search for
images with at least 3 food items present in them.
Then each image was annotated by the correspond-
ing annotator, and the annotated food dishes were
verified by the other annotator. We removed any
images where there was a disagreement between
the 2 annotators. The final image set consisted of
414 images. The annotations were performed in-
dependently, and each annotator received 0.5 USD
for each sample they annotated.

A.2 Manual Verification

We consulted 20 human subjects for the verifica-
tion of a random subset of our data, with all sub-
jects highly qualified, either having completed or
currently pursuing a bachelor’s degree in their fi-
nal or pre-final year. The evaluators were asked
4 different questions about the dataset, as shown
in Figure 5, and were supposed to give a score
from 1 to 4 for the same. Each participant was
adequately compensated for the task, being paid up
to 0.15 USD for each evaluated question. During
the final average score calculations, we swapped
the scores of 1 and 2, to give more weightage to
the confidence of the participants in their scores.

Each question was scored independently by 3
different evaluators, without access to the scores
provided by each other, and majority agreement
was considered before determining the scores. Out
of the 224 samples chosen for manual verification,
the 4 questions had an inter-rater agreement for 198,
198, 174, and 166 data samples respectively. For
the final scores, as provided in Table 2, we found
the average over these majority-agreed samples.

A.3 Analysis of Human Ratings

We performed a more detailed error analysis to
understand the reason why some samples were pro-
vided with low scores by the human evaluators.
This is presented in Table 5, for the 224 human-
rated samples.

Error type % of samples
Hallucination due to incorrect
visual features in description

8.57

Hallucination by GPT-3.5 18.09
Presence of closely related food
items or answer choices

3.81

Presence of a question with a
highly subjective answer

15.24

Table 5: Analysis of human-rated samples.

Here, we have classified the samples on which a
majority of human raters gave a score lower than
3 for one of the questions asked to them. The
remaining 54.29% of evaluated samples received
a high majority score across all the four questions
asked to the evaluators. We notice that the last
two reasons for low ratings in Table 5 are highly
dependent on the human subject, which means that
only around 26% of the samples had a low rating
in some aspect due to hallucination by the pipeline.

The inter-rater agreement during the manual
evaluation was low for metrics like ‘correct answer’
and ‘correct reason’ (Table 2). We noticed that
while calculating the agreement scores for these
aspects, we did not filter the samples that received
low scores in Q1 and Q2 (Figure 5). Therefore the
error gets accumulated for the scores of Q3 and Q4.
If we only consider those ratings that correspond to
a correct question and correct choices (i.e. 4 in the
first two questions – there are 204 such instances
out of the 224 manually verified samples), then
the scores for ‘correct answer’ and ‘correct reason’
become 3.55 and 3.53 respectively.

B KG and Dataset

B.1 IndiFoodKG Relations

We present all the relations from IndiFoodKG in
Table 6, along with their source knowledge base,
and the number of triples corresponding to each
relation.

B.2 Question Types

We list down all 12 types of questions that have
been considered in the dataset in Table 7.

The short description (keywords) are used when
making the query sentence for KG triple extraction
as described in Section 4.3. The long description
is used in the prompt for GPT-3.5 given in Ap-
pendix C.3.
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Figure 5: Questions asked to the human subjects for manual verification of IndiFoodVQA.

Relation Meaning Source # Triples
preparation_time Time needed to prepare a dish IndianFood101 225
cooking_time Time needed to cook the dish IndianFood101 227

flavor_profile Spicy, sweet, sour, etc. IndianFood101 226
found_in_state Indian state where dish is found IndianFood101 231
course_of_meal Main course, snack, dessert, etc. IndianFood101 255
type_of_diet Vegetarian or non-vegetarian IndianFood101 255
from_region Region of India where dish is found IndianFood101 242

has_ingredient Ingredients present in a recipe CulinaryDB 34,020
category Ingredient types (poultry, seeds, etc.) CulinaryDB 1530
synonym Other names used for an ingredient CulinaryDB 600

has_constituent Constituent ingredients CulinaryDB 448
Others Nutrient information of ingredients IFCT 41,674

Table 6: Relations present in IndiFoodKG.

C Prompts

C.1 Question Type Templates
We prompted ChatGPT to get the different question
types along with a detailed description of each (a
total of 12 types have been considered).

The t a s k i s t o d e s i g n t e m p l a t e s f o r
d i f f e r e n t q u e s t i o n t y p e s t o be
p r e s e n t i n I n d i a n food VQA. S u g g e s t
some t e m p l a t e s f o r d i f f e r e n t
q u e s t i o n t y p e s . Also g i v e
d e s c r i p t i o n s f o r each t e m p l a t e .

We generated a few template types for the ques-
tions using ChatGPT, which provided us with 18
such unique question types over 3 runs. 12 were
chosen as relevant ones based on advice from do-
main experts as well as to avoid too much in-
tersection between questions of different types.
Other generated templates were identification (not
reasoning-based, more focused towards object de-
tection), spice level (discarded because it was cov-

ered through flavor profile), historical evolution
(discarded by nutritionist), sustainability (discarded
by nutritionist), regional variations (discarded by
nutritionist), and culinary influences (similar to fu-
sion and innovation).

C.2 Description Generation
The description for the image is generated using
InstructBlip Vicuna-7B model, with the following
prompt and settings:

The f o l l o w i n g food i t e m s a r e p r e s e n t i n
t h i s image : { a n n o t a t e d food i t e m s } .
D e s c r i b e t h e c o l o r and r e l a t i v e
l o c a t i o n o f each food i t em i n d e t a i l
.

• num_beams = 3
• max_length = 300
• min_length = 1
• top_p = 0.9
• repetition_penalty = 3.0
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Question type Keywords Detailed description
ingredients ingredients, overall flavor and

aroma of the dish
what are the key ingredients and their roles
in the food items, and how do they con-
tribute to the overall flavor and aroma of
the dish

cooking
technique

cooking technique, impact on
preparation time, color, texture
and flavor

how does the cooking technique differ
from other similar dishes, and how does it
impact preparation time, color, texture and
flavor of the dishes

cultural
significance

cultural significance, Indian fes-
tivals, seasonal produce

what is the cultural significance of the
dishes in Indian festivals, and how does
it reflect the celebration of seasonal pro-
duce

taste and flavor
profile

taste and flavor profile, balance
of sweet, savory, and spicy fla-
vors

how do these items create a balance of
sweet, savory, and spicy flavors, and how
does this diversity enhance the dining ex-
perience

health and
nutritional
aspects

health and nutritional benefits,
protein, fiber, nutrient and min-
eral content

how do the nutritional benefits compare
with other similar dishes, highlighting the
protein, fiber and other nutrient and min-
eral content in each food item

seasonality and
locality

seasonality and locality, re-
gional spices

what kind of regional spices and ingredi-
ents are generally used, and how it con-
nects to the local produce of the states in
which these dishes are generally consumed

ingredient
substitutions

ingredient substitutions, similar-
ities

the possibilities of substituting some ingre-
dient of the dishes with some other item,
and how it affects the texture, taste and
nutritional values

presentation and
plating

presentation, plating and gar-
nishing

the importance of garnishing and presenta-
tion in the dishes, and how it impacts the
overall dining experience

fusion and
innovation

fusion and blending with other
cuisines and innovation

how the given food items can be combined
with other cuisines, and how the blending
of ingredients from different cultures can
create a unique culinary experience

cooking science cooking science, scientific pro-
cesses

what scientific processes might be in-
volved in making these food items, and
how it affects the texture and taste of the
final product

allergens
and dietary
restrictions

allergens and dietary restric-
tions, alternative ingredients or
preparation methods to make it
allergen-free

what is the allergen content in the food
items, and alternative ingredients or prepa-
ration methods to make it allergen-free

food pairings traditional pairing of other com-
plementary food dishes

traditional pairing of other food dishes
with the food items shown, and how these
complement with each other

Table 7: The 12 different question types.
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• length_penalty = 1.2
• temperature = 1

C.3 Question Generation using GPT-3.5
The prompt given to GPT-3.5 for generating ques-
tions is inspired by the prompt used in (Liu et al.,
2023b), modified according to the domain of food
items, and keeping in mind our explicit knowledge
infusion step.

You a r e an I n d i a n food s p e c i a l i s t AI
v i s u a l a s s i s t a n t , and you a r e s e e i n g

a s i n g l e image . What you s e e a r e
p r o v i d e d wi th some s e n t e n c e s ,
d e s c r i b i n g t h e same image you a r e
l o o k i n g a t . Answer a l l q u e s t i o n s as
you a r e s e e i n g t h e image .

D e s c r i p t i o n : { image d e s c r i p t i o n }

Use t h e f o l l o w i n g f a c t s when g e n e r a t i n g
t h e q u e s t i o n s , g i v e n i n t h e form of
t r i p l e s :

{KG t r i p l e s }

Give an o u t p u t w i th 4 p a r t s , w i t h each
p a r t s e p a r a t e d by 2 b l a n k l i n e s : a
q u e s t i o n ( name i t Ques t ion , and g i v e

t h e q u e s t i o n i n t h e n e x t l i n e ) , 4
p o s s i b l e answer c h o i c e s ( name i t
Answer Choices , w i t h c h o i c e s A, B , C

and D i n s e p a r a t e l i n e s ) , t h e
c o r r e c t answer t o t h a t q u e s t i o n (
name i t C o r r e c t Answer , o u t o f A, B ,

C and D) , and a r e a s o n f o r t h a t
answer ( name i t Reason , l i m i t e d t o 1

p a r a g r a p h ) . Ask d i v e r s e q u e s t i o n s
and g i v e c o r r e s p o n d i n g answer s . Give

me 5 such q u e s t i o n s as o u t p u t . Only
i n c l u d e q u e s t i o n s t h a t have

d e f i n i t e answer s :
( 1 ) one can s e e t h e c o n t e n t i n t h e image

t h a t t h e q u e s t i o n a s k s a b o u t and
can answer c o n f i d e n t l y

( 2 ) one can d e t e r m i n e c o n f i d e n t l y from
t h e image t h a t i t i s n o t i n t h e
image . Do n o t ask any q u e s t i o n t h a t
c a n n o t be answered c o n f i d e n t l y .

The q u e s t i o n s h o u l d be a b o u t { q u e s t i o n
t y p e } of t h e food i t e m s i n t h e image
. Th i s i n c l u d e s d e t a i l s a b o u t {
d e t a i l e d i n f o r m a t i o n a b o u t q u e s t i o n
t y p e } . The q u e s t i o n s h o u l d i n v o l v e
complex i d e a s l i k e r e l a t i v e
p o s i t i o n s o f t h e o b j e c t s , t h e s h a p e s

and c o l o r s o f t h e o b j e c t s , and so
on . The answer s s h o u l d be i n a t o n e
t h a t a v i s u a l AI a s s i s t a n t i s s e e i n g

t h e image and a n s w e r i n g t h e
q u e s t i o n . Nowhere s h o u l d i t be
ment ioned t h a t a d e s c r i p t i o n o r some

e x t e r n a l knowledge has been
p r o v i d e d . Act l i k e you can s e e t h e
image , and c r e a t e complex q u e s t i o n s
r e q u i r i n g m u l t i p l e s t e p s o f
r e a s o n i n g .

The knowledge t r i p l e s do n o t d e s c r i b e
t h e image . I f any of t h e g i v e n
knowledge t r i p l e s a r e used t o
g e n e r a t e t h e q u e s t i o n , t h e n do n o t
ment ion t h e e n t i t i e s g i v e n i n t h e
knowledge t r i p l e i n t h e Q u e s t i o n o r
Answer Cho ices . Ensure t h a t i n t h e
c a s e t h a t any knowledge t r i p l e i s
used , t h e q u e s t i o n i s n o t a n s w e r a b l e

w i t h o u t u s i n g t h i s e x t e r n a l
knowledge . The knowledge used t o
g e n e r a t e t h e q u e s t i o n can on ly be
ment ioned i n t h e Reason f i e l d .

Also , c r e a t e q u e s t i o n s a b o u t bo th t h e
main d i s h and t h e s i d e d i s h . Try t o
i n c l u d e t h e r e l a t i v e p o s i t i o n
between t h e i t e m s as a p a r t o f t h e
q u e s t i o n . But keep t h e main q u e s t i o n

a b o u t { q u e s t i o n t y p e } of t h e food
i t e m s . Do n o t bo ld a n y t h i n g ( keep
e v e r y t h i n g i n normal f o n t ) , and do
n o t number t h e q u e s t i o n s . The
q u e s t i o n and each answer c h o i c e
s h o u l d be i n a new l i n e . Make s u r e
t h e q u e s t i o n s i n v o l v e r e a s o n i n g t o
answer . The o u t p u t s h o u l d c o n t a i n 5
such d i v e r s e q u e s t i o n s (5 q u e s t i o n s
wi th g i v e n f o r m a t ) . Do n o t ment ion
t h e word " knowledge " o r " t r i p l e s " o r

" d e s c r i p t i o n " anywhere . Don ’ t
i n c l u d e any numbers anywhere .

To maximize the diversity of questions as well
as the utilization of the number of questions per
prompt, 5 questions are requested for each output.
We also experimented with 3 different temperature
settings - 0.2, 0.4, and 0.7. Based on qualitative
analysis of the generated questions, we chose the
final temperature as 0.4, due to its ability to give a
variety of questions.

After getting the output, we process the ques-
tions and replace words like "description", "knowl-
edge triples", and "mentioned" with "image",
"knowledge that I have been trained on", and
"shown". We also remove any questions whose
correct answer has been given as "Not answerable
by the image", instead of as one of the 4 answer
choices.

C.4 Zero-Shot Models

For all models, we use a 2-step answering
methodology. First, the model is prompted with
the question and the answer choices (along with
any triples to be provided). We consider the output
as the generated answer and again prompt the
model to create a rationale behind this answer.
All models are run with a limit on the maximum
number of new tokens to 256 during rationale
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Model Answer prompt Rationale prompt
mplug-owl-llama-7b Answer prompt #1 Rationale prompt #1
openflamingo-mpt-9b Answer prompt #2 Rationale prompt #2

instructblip-flant5xxl-11b Answer prompt #2 Rationale prompt #1
llava-llama2-13b Answer prompt #2 Rationale prompt #2

Table 8: Prompts used for inference by different models during zero-shot evaluation as given in Appendix C.4.

generation. We use the following prompts, which
are shared across the 4 models.

Answer prompt #1:

Below a r e f a c t s i n t h e form of t r i p l e s
t h a t might be m e a n i n g f u l t o answer
t h e q u e s t i o n −

{ e x t r a c t e d t r i p l e s }

{ q u e s t i o n }
{ answer c h o i c e s }
Choose one c o r r e c t answer f o r t h e

q u e s t i o n o u t o f t h e 4 answer c h o i c e s
above .

I s t h e answer A, B , C or D?

The model’s output starts with "The an-
swer is _" where _ is chosen out of A, B, C, and
D. Any output not of this form is taken as incorrect.

Answer prompt #2:

Below a r e f a c t s i n t h e form of t r i p l e s
t h a t might be m e a n i n g f u l t o answer
t h e q u e s t i o n −

{ e x t r a c t e d t r i p l e s }
Focus l e s s on t h e g i v e n t r i p l e s .

{ q u e s t i o n }
{ answer c h o i c e s }

Given t h e image , choose one answer o u t
o f A, B , C ,D. Answer :

The first letter is taken as the correct answer
(will be one of A, B, C, or D).

Rationale prompt #1:

Below a r e f a c t s i n t h e form of t r i p l e s
t h a t might be m e a n i n g f u l t o answer
t h e q u e s t i o n −

{ e x t r a c t e d t r i p l e s }

{ q u e s t i o n }
The c o r r e c t answer i s { g e n e r a t e d answer

} .
Why? E x p l a i n i n a s h o r t p a r a g r a p h .

We removed any unfinished sentences from the
rationale and extracted only the first paragraph as
the generated reason, to keep the output concise
(similar to the ground truth reason generated by

GPT-3.5).

Rationale prompt #2:
Below a r e f a c t s i n t h e form of t r i p l e s

t h a t might be m e a n i n g f u l t o answer
t h e q u e s t i o n −

{ e x t r a c t e d t r i p l e s }
Focus l e s s on t h e g i v e n t r i p l e s .

{ q u e s t i o n }
{ answer c h o i c e s }

The c o r r e c t answer i s { g e n e r a t e d answer
} .

Why? E x p l a i n wi th a d e t a i l e d r e a s o n
be h i nd t h e g i v e n answer . Do n o t
r e p e a t any words from t h e g i v e n
answer . Reason :

Prompts used by different models. Table 8
shows the different prompts used by each of the 4
models during the 2-step prompting process.

D Fine-tuned models

When fine-tuning the LLaVA model, we use a sin-
gle prompt for both answering and reasoning. The
prompt used is the same as Answer prompt #1 in
Appendix C.4. The training is done to get the an-
swer and the reason directly in separate lines, so we
don’t need to use a 2-step prompt. Below are the
hyperparameters used for fine-tuning the model:

• bf16 = True
• number_of_training_epochs = 3
• per_device_eval_batch_size = 4
• per_device_train_batch_size = 8
• gradient_accumulation_steps = 8
• learning_rate = 2e-5
• weight_decay = 0.
• warmup_ratio = 0.03
• lr_scheduler_type = "cosine"

E Other Baselines

A few days prior to the submission of this paper,
two additional versions of the LLaVA model were
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Model Accuracy Rouge-L BLEU-1 BLEU-4 METEOR Similarity
LLaVA (zero-shot)
without any KG

42.59 0.324 0.354 0.106 0.367 0.822

LLaVA fine-tuned
without any KG

69.22 0.506 0.497 0.297 0.481 0.883

LLaVA (zero-shot)
with GPT-3.5 knowl-
edge

59.379 0.426 0.447 0.212 0.432 0.862

LLaVA fine-tuned on
GPT-3.5 knowledge

70.233 0.510 0.500 0.302 0.485 0.886

Table 9: Comparative performance analysis of LLaVA models employing various approaches. The comparison
is done across both zero-shot and fine-tuned settings, when not using any knowledge vs. when the knowledge
generated by GPT-3.5 is used (Appendix E.1). The other details are the same as the ones explained in Table 3.

Question Type Accuracy (Fine-tuned w/o KG) Accuracy (Fine-tuned genread)
allergens and dietary
restrictions

60.70 60.0

cooking science 79.60 77.93
cooking technique 84.80 84.12
cultural significance 73.65 73.99
food pairings 55.87 62.86
fusion and innovation 67.23 68.94
health and nutritional
aspects

65.45 67.44

ingredient
substitutions

71.50 63.77

ingredients 71.18 67.71
presentation and plating 58.8 67.71
seasonality and locality 63.14 67.15
taste and flavor profile 75.45 77.54

Table 10: Accuracy scores (in %) for genread baseline across different types of questions.

introduced: LLaVA-1.6 with 34B parameters (Liu
et al., 2024) and LLaVA-RLHF (Sun et al., 2023).
Given the proximity of their release to our paper
submission, we had insufficient time to conduct
experiments with these models on our dataset. It
remains intriguing to examine their performance in
addressing the task at hand.

E.1 Generate-then-Read Baseline
We evaluated our dataset using the generate-then-
read method (Yu et al., 2022), with GPT-3.5 as
the generator, and our best LLaVA model (i.e.
the fine-tuned model) as the reader. We first
generated image descriptions using the fine-tuned
LLaVA model, which we provided to GPT-3.5
along with the question and answer choices. We
then prompted the model to generate relevant back-
ground knowledge that would be useful to answer

the question. We performed zero-shot inference
with this knowledge added to the prompt on the
fine-tuned LLaVA model. We also fine-tuned the
base LLaVA model along with this knowledge. The
results are reported in Table 9.

We observe that the generate-then-read (gen-
read) technique is able to outperform the best
score using knowledge from IndiFoodKG, when
the LLaVA model is fine-tuned along with the gen-
erated knowledge. However, a more detailed anal-
ysis of the change in accuracies across different
question categories (Table 10) shows that an in-
crease in accuracy is generally shown in question
types with highly subjective questions, such as pre-
sentation and plating. This is a result of the infusion
of external knowledge (from IndiFoodKG) in the
questions, as well as the fact that pre-trained LLMs
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do not have the necessary knowledge to answer
such domain-specific questions.

E.2 LLaVA-1.5

The newly introduced LLaVA-1.5 model (Liu et al.,
2023a) is purported to demonstrate SOTA perfor-
mance across 11 benchmarks despite being trained
on a relatively smaller dataset. Our evaluation in-
volved testing the model’s performance on Indi-
FoodVQA, and comparing it with the performance
by LLaVA-2. The results are provided in Table 11.

Triples LLaVA-2 LLaVA-1.5
No KG 42.59 33.21
1-hop 41.33 32.45
2-hop 41.54 32.00

Original 43.78 33.46

Table 11: Accuracy (in %) of zero-shot evaluation using
LLaVA-1.5 and LLaVA-2. The other details are the
same as the ones explained in Table 3.

We observe that, contrary to the claim made by
the authors for other benchmarks, LLaVA-1.5 is not
able to achieve similar zero-resource performance
as LLaVA-2 on the given dataset. This discrepancy
can be attributed to the presence of questions that
necessitate comprehensive inherent knowledge of
LLMs for accurate answering – specifically, ques-
tions for which IndiFoodKG lacks pertinent infor-
mation. Nevertheless, the trends shown in different
types of knowledge infusion remain the same, in-
dicating that effective knowledge retrieval can still
be beneficial.

F Generalizability of the Pipeline

Because of the way our pipeline has been struc-
tured, it has the potential to replace IndiFoodKG
with some other KG, while maintaining the qual-
ity of the pipeline. Our work shows one possible
application of the pipeline, along with experiments
on some models to understand its intricacies. We
also note that our pipeline can be extended to other
domains, with certain changes in the approach, that
we describe below:

1. Question types - Based on the domain, rel-
evant types will be required. This may be
done by human domain experts or using some
machine generation followed by manual veri-
fication (which is what we did).

2. Image description - This step may require hu-
man intervention based on the domain. In our
example, we used human annotators to find
the food items, so as to shift the description
along that direction. For a different domain,
either a similar approach can be used (i.e. giv-
ing some relevant entities from the image to a
description-generating model), or one can get
descriptions from human domain experts.

3. Knowledge infusion - This step requires the
presence of a KG pertaining to that domain
and a method to extract relevant triples from
the image description and question types.

4. Generation of data samples - This stage can
be easily done for any other domain using the
data generated in the previous stages, with
a similar prompt as used for IndiFoodVQA
(Appendix C.3).

Currently, we are providing 2-hop knowledge
from the KG while generating the questions to en-
sure that the model requires more than one step of
reasoning during inference. This can be adapted
or extended to other domains based on the way
knowledge is extracted from the relevant KG. Our
prompt and description also help make questions
that involve details about relative positions and
colors/shapes of the food items, requiring various
logical reasoning steps to answer. Similar tech-
niques can be used in other domains, by having
specific logical information in the description and
prompting GPT-3.5 towards using that information
during question generation.
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