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Abstract

Keyphrase extraction is the task of identify-
ing a set of keyphrases present in a document
that captures its most salient topics. Scientific
domain-specific pre-training has led to achiev-
ing state-of-the-art keyphrase extraction perfor-
mance with a majority of benchmarks being
within the domain. In this work, we explore
how to effectively enable the cross-domain gen-
eralization capabilities of such models without
requiring the same scale of data. We primarily
focus on the few-shot setting in non-scientific
domain datasets such as OpenKP from the Web
domain & StackEx from the StackExchange
forum. We propose to leverage topic informa-
tion intrinsically available in the data, to build a
novel clustering-based sampling approach that
facilitates selecting a few samples to label from
the target domain facilitating building robust
and performant models. This approach leads
to large gains in performance of up to 26.35
points in F1 when compared to selecting few-
shot samples uniformly at random. We also
explore the setting where we have access to la-
beled data from the model’s pretraining domain
corpora and perform gradual training which in-
volves slowly folding in target domain data
to the source domain data. Here we demon-
strate further improvements in the model per-
formance by up to 12.76 F1 points.

1 Introduction

Keyphrases are a set of words that convey the
most salient topics of an article or a document,
and identification of such keyphrases can be very
useful in extracting key information from the long
documents through summarization (Zhang et al.,
2004; Qazvinian et al., 2010), semantic and faceted
search (Gutwin et al., 1999; Sanyal et al., 2019)
and document retrieval (Jones and Staveley, 1999).
Recently, a lot of work has been done in using
language models (LMs) for extracting keyphrases

∗Indicates equal contribution

using generative models through keyphrase genera-
tion (Zhang et al., 2017; Meng et al., 2017; Chen
et al., 2018; Ye and Wang, 2018; Chen et al., 2019;
Yuan et al., 2020; Ye et al., 2021). However, in
this work we focus on encoder-only keyphrase
extraction (Alzaidy et al., 2019; Sahrawat et al.,
2020; Martinc et al., 2020; Tokala et al., 2020),
specifically framing the task as a sequence tag-
ging in the BIO schema format (Sahrawat et al.,
2020; Kulkarni et al., 2022). KBIR (Kulkarni
et al., 2022) showed that the task and domain-
specific pre-training helps in learning rich rep-
resentations of the keyphrases and leads to bet-
ter downstream keyphrase extraction performance
compared to models that are pre-trained using
a task-agnostic objective like Masked Language
Modeling. Task-specific pre-training of LMs for
keyphrase extraction requires abundance of super-
vised data with documents and their corresponding
keyphrases. Obtaining human annotated data can
be a very expensive, error-prone and an inefficient
process, hence a majority of the labelled datasets
for keyphrase extraction are from the scientific do-
main (Hulth, 2003; Krapivin and Marchese, 2009;
Kim et al., 2010; Augenstein et al., 2017; Meng
et al., 2017), as authors provide keywords with their
scientific article to improve discoverability. How-
ever, pre-training on domain-specific data often
results in poor downstream keyphrase extraction
performance on out of domain data.

Fine-tuning with a sufficiently large dataset typ-
ically allows the model to generalize well be-
yond the pre-training domain. However, for low-
resource domains, such data can be difficult to ob-
tain at scale. Few-shot learning is a setup exten-
sively explored with very large language models
and typically in-context (Brown et al., 2020; Lin
et al., 2022; Srivastava et al., 2022), however we fo-
cus on the more niche setup of few-shot learning us-
ing fine-tuning for sequence tagging with encoder-
only models. Keyphrase-aware PLMs are trained
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to build strong representations for keyphrases in
text and we hypothesize that we are able to lever-
age these embeddings to bootstrap a model by fine-
tuning it only a few-samples from the target domain
in order to obtain satisfactory performance.

In this work we investigate what sampling strat-
egy, given a limited budget of up to 100 annota-
tions, allows us to select data points from a low-
resource target domain for annotation that would be
the most effective few-shot samples for fine-tuning.
We further explore if we can leverage access to
scientific-domain pre-training data OAGKx (Çano
and Bojar, 2020) used by the present state-of-the-
art keyphrase extraction model, KBIR (Kulkarni
et al., 2022) to bootstrap model performance. The
main contributions of this work are summarised
below:

• We explore the generalization capabilities of
the KBIR model on two datasets simulated as
low-resource target domains, OpenKP (Xiong
et al., 2019) & StackEx (Yuan et al., 2020), us-
ing few-shot learning through fine-tuning with
a sequence tagging training objective with
encoder-only models.

• We propose a novel clustering-based few-shot
sampling approach that leverages intrinsically
available sub-domain information as topics
from the dataset to extract few-shot samples
to be labelled from the target domains and be
used for fine-tuning. This leads to significant
gain in performance across two different train-
ing regimes compared to sampling few-shot
datapoints uniformly at random.

• We also demonstrate through a case study of
several variants of Clustering-based sampling
using Jaccard similarity, Cosine similarity and
ChatGPT (OpenAI, 2023) prompting to im-
prove diversity in the few-shot samples and
show this does not correlate with model per-
formance.

2 Related Work

Keyphrase Extraction We focus on encoder-
only models that perform keyphrase extraction
as a sequence tagging task (Alzaidy et al., 2019;
Sahrawat et al., 2020; Martinc et al., 2020; Tokala
et al., 2020) that require fine-tuning with labelled
data for a given domain. Unsupervised keyphrase
extraction (Mihalcea and Tarau, 2004; Rose et al.,

2010; Campos et al., 2020; Schopf et al., 2022) is
an area of research that focuses on scaling to multi-
ple domains without the need for retraining models
(Zero-Shot) but rather focusing on language struc-
ture to identify keyphrases. However, Unsuper-
vised methods typically underperform their Fine-
tuned counterparts for a given domain. We aim
to bridge the gap between these two methods by
using as little data as possible (Few-shot). The
KBIR model (Kulkarni et al., 2022) demonstrates
that using only 130 training samples from SemEval
2010 (Kim et al., 2010) where the domain aligns
with pre-training domain, is sufficient to obtain
state-of-the-art results despite seeing very few data
points. This serves as our motivation to further ex-
plore few-shot fine-tuning as sequence labeling for
keyphrases and also propose methods to bootstrap
performance for different domains.

Domain Adaptation Teaching a model to max-
imize performance on a single low-resource
(target) domain, by leveraging a single high-
resource (source) domain is a well studied area in
NLP (Chelba and Acero, 2004; Florian et al., 2004;
Blitzer et al., 2006; Daumé III, 2007; Blitzer et al.,
2007; Peng and Dredze, 2017). Wang et al., 2020
propose an effective learning procedure, Meta Fine-
Tuning (MFT) that learns the embeddings of class
prototypes from multi-domain training sets and as-
signs topicality scores using the kNN-augmented
Example Selection (KATE) (Liu et al., 2022b).
However, our setup differs from traditional domain
adaptation in that we want to adapt from the pre-
training source domain rather than a fine-tuned
source domain to a fine-tuned target domain.

Few-Shot Learning With the advent of larger
generative models few-shot learning has become
a popular paradigm where the samples are pro-
vided in the prompt and in-context learning is lever-
aged to improve performance (Brown et al., 2020;
Lin et al., 2022; Srivastava et al., 2022). An ex-
tension of this work demonstrates that fine-tuning
such large generative models (Liu et al., 2022a)
and encoder-based models (Logan IV et al., 2022)
results in better performance by recasting classifi-
cation tasks as generation tasks, with contemporary
work making a fair comparison between both these
approaches (Mosbach et al., 2023). Cross-Domain
Few-Shot fine-tuning has been explored for Named
Entity Recognition (NER) in an N-way K-shot set-
ting, where multiple (N) domains trained on large
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Figure 1: Demonstration of few-shot sample selection from a target domain document embedding space using
several sampling approaches.

amounts of source domain NER data and few-shot
(K) samples are used for target training (Fang et al.,
2023; Das et al., 2022; Hou et al., 2020). However,
to the best of our knowledge these techniques have
not been explored to conduct few-shot fine-tuning
when using critically few samples.

3 Few-shot Keyphrase Extraction

In this work, we investigate if we can effectively
sample data from target domains Dt having N doc-
uments, to be annotated and used for fine-tuning
in a few-shot setting. In line with prior work
(Sahrawat et al., 2020; Kulkarni et al., 2022), we
setup keyphrase extraction as a sequence tagging
task using the BIO schema (B-KEY, I-KEY, O)
using HuggingFace (Wolf et al., 2020). Given a
sequence of tokens xi = {x1i , ..., xni }, the model
is trained to predict a sequence of labels yi ={y1i , ..., yni }, where each y

j
i ∈ {B-KEY, I-KEY,

O} label represents whether the j
th input token

of the i
th document in Dt is either a beginning of

the keyphrase (B-KEY), inside of the keyphrase (I-
KEY), or outside of the keyphrase (O). We further
quantify the impact of obtaining labeled data in the
source (pre-training) domain Ds having M docu-
ments. As our sampling strategies do not rely on
labels we simulate low-resource domains in large-
scale labelled data allowing us to train on a few
data points but evaluate on a large number of high-
quality test points. The use of the labeled data is
considered the equivalent of an annotation and we
don’t conduct any annotation ourselves.

3.1 Access to only Target Domain Data

For keyphrase extraction in a cross-domain setting
where there is no availability of labelled data from
the source domain (pre-training data Ds), few-shot
fine-tuning of the pre-trained model is done using
a small number of k samples X∗ = {x∗i , .., x∗k}
only from the target domain Dt, in order to adapt
the source domain model to the new domain. Here
sampling approaches can play a major role in con-
tributing to the cross-domain model performance.
In this section, we explore sampling approaches
to improve few-shot model performance in cross-
domain settings where there is no availability of
labelled data from the source domain.

3.1.1 Random Sampling
One of the most common and widely used methods
for extracting samples for few-shot learning is Ran-
dom Sampling (Lin et al., 2022; Cong et al., 2021).
We used random sampling to establish a baseline
for the few-shot keyphrase extraction, where a
small number of samples k are selected uniformly
at random (X∗ ∶ {x∗i , ..., x∗k} ← U(Dt, k))1 from
Dt to fine-tune the KBIR model and its vanilla
counterpart RoBERTa in a few-shot setting. The
algorithm for random sampling is shown in App.
F.

Random sampling is easy to implement and does
not add any computational overhead to the sam-
pling process. One of the limitations of such a sam-
pling approach is that it is a lottery-based approach

1
U(Dt, k) samples k documents from Dt uniformly at

random.
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where it is equally like to select high-quality as
well as low-quality samples, resulting in high varia-
tion in the performance of the model (Zhang et al.,
2020; Schick and Schütze, 2020). For example, Fig.
1 illustrates how different subsets of samples can be
selected using few-shot random sampling based on
different data seeds. As shown in the figure, in the
case of random sampling, both the data seeds (seed
for random sampling) select samples that belong to
the different topical segments (upper & lower hemi-
sphere of the target domain document embedding
space) of the target domain datasets, which might
lead to high variation in the few-shot training data
distribution with respect to the fixed target domain
data distribution in the few-shot setting.

3.1.2 Clustering-based Sampling
Random Sampling on the other hand leads to high
variance in sample selection and also might results
in low diversity in selected samples w.r.t target do-
main causing poor domain adaption in the models
trained in few-shot cross-domain settings.

In this work, we propose a clustering-based sam-
pling approach that leverages topic information
intrinsically available in the target domain data for
selecting high-quality few-shot samples for robust
domain adaption in cross-domain settings.

Given just Dt, we hypothesize that there exist
a set of k samples X∗ = {x∗1 , ..., x∗k} in the target
domain dataset that can be used to train a model in
a few-shot cross-domain setting that can maximize
its generalization capabilities, robustness, and per-
formance on the downstream task. A target domain
can consist of several subdomain topics as shown
in Fig. 1, and in order to train a model to general-
ize on the target domain using X∗ from the target
domain, each x

∗
i should have the maximum cover-

age over all these sub-domain topics and should be
representative of Dt.

In the clustering-based sampling approach, we
first identify these sub-domains and documents be-
longing to these subdomains using KMeans clus-
tering. We extract d-dimensional sentence em-
beddings Et = {ex1 , ...exN} of all the xi in D

t us-
ing Sentence Transformer (Reimers and Gurevych,
2019), and use KMeans clustering on top of Et

to create c sub-domain clusters C = {C1, ...Cc}
of Dt. We use C to generate d-dimensional sub-
domain embeddings EC = {eC1 , ...eCc } for each
of the c sub-domains (sub-domain centers), which
will represent the topic of the corresponding sub-
domain. Here the sub-domain embeddings eCi em-

beds information about the sub-domain topic cor-
responding to Ci, and are computed by taking the
mean over ∀e

x
i corresponding to xi ∈ Ci. We

use EC to give a score to each xi in D
t, represent-

ing a relevance score of xi to all the sub-domain
topics corresponding to the clusters in C. In or-
der to identify high-quality representative samples
X∗, we use a cosine-similarity-based scoring func-
tion that would give a higher score to a sample
that has high relevance with all the sub-domain
topics. Given a document xi ∈ Dt having an em-
bedding e

x
i , we score xi using the scoring func-

tion defined in equation 1, where δ represents the
cosine-similarity between two d-dimensional em-
beddings. The documents are then ranked based on
their scores (si) and the top-scoring k documents
are selected as the few-shot samples represented by
X∗ = {x∗1 , ..., x∗k}, as shown in equation 2. The
algorithm for clustering-based sampling is shown
in App. F.

S ∶ {s1, ..., sN}; si = ( c

∑
j=1

δ(eCj , exi ))/c (1)

X∗ = {x∗1 , ..., x∗k} = arg topkxi∈Dt
(S) (2)

As shown in Fig. 1, such a clustering-based sam-
pling approach in a few-shot cross-domain setting
would generate samples that are not only represen-
tative of the target domain, i.e., are relevant to the
majority of sub-domain topics, but are also rela-
tively robust to different KMeans seeds.

Although the clustering-based few-shot sam-
pling approach will select high-quality represen-
tative samples from the target domain, they still
might lack diversity as most of these samples can
come from only the sub-domain clusters that are
more general in nature. This might lead to missing
samples from highly localized sub-domain topics,
which in turn results in compromising the optimal
representational capacity of selected few-shot sam-
ples w.r.t to the target domain.

In order to select samples evenly from such
localized sub-domains, we propose another vari-
ant of clustering-based sampling called Stratified
Clustering-based sampling. In this variant of
clustering-based sampling, the few-shot samples
are first ranked based on the scoring function de-
fined in equation 2, and then a proportionately
equal number of top-scoring samples within each
cluster are selected to create a set of k few-shot
samples. Here the proportion of samples (w.r.t sub-
domains) in the few-shot samples is consistent with
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their corresponding proportions in the target do-
main. The stratified variant of the clustering-based
sampling approach slightly compromises on select-
ing top-scoring samples in order to increase diver-
sity and representativeness in the samples by even
incorporating samples from localized sub-domains
(App. D.2).

3.2 Access to Source Domain Data

In the cross-domain setting where we also have
access to the source-domain data Ds (pre-training
domain), along with Dt, it is beneficial to use both
of them together to better fine-tune a pre-trained
model for domain adaption (Xu et al., 2021). In this
section, we explore the gradual training setup (Xu
et al., 2021), and how we incorporate clustering-
based sampling in it.

3.2.1 Gradual Training
Both the random and clustering-based sampling ap-
proaches only sample data from Dt which can have
a significant drift in distribution from Ds. Fine-
tuning a pre-trained model in such a setting using
only the Dt can limit its domain adaption on a new
domain with significant distribution drift. So in this
work, we also explore the gradual training setup
for smoother domain adaption in a cross-domain
few-shot setting.

In the gradual training setup, we iteratively re-
train a pre-trained model using k few-shot sam-
ples having different concentrations (k1:k2) of both
the target domain as well as the source domain re-
spectively, chosen uniformly at random. In each
iteration, the model is initialized with the trained
weights from the previous iteration. In the first iter-
ation, we start with the pre-trained weights, and in
the later iterations, we increase the concentration of
target domain few-shot samples by increasing the
number of target domain samples and differently
from the original work, decreasing the number of
source domain samples for smoother domain adap-
tation from source to the target domain. In such
a few-shot training setup, the model is iteratively
re-trained on a set of few-shot samples whose dis-
tribution gradually shifts from the source domain
to the target domain leading to smoother data dis-
tribution shift compared to direct fine-tuning on the
target, resulting in smoother domain adaption.

While such a training setup leads to a smoother
domain adaption, it also comes with an increase in
the computational cost by a factor of the number
of iterations involved.

3.2.2 Gradual Training + Clustering-based
Sampling

In section 3.1.2 we explained how using clustering-
based few-shot sampling approaches leads to a rel-
atively higher-quality representative (w.r.t target
domain) sample selection from the target domain
data compared to random sampling, resulting in bet-
ter domain adaption in the few-shot cross-domain
setting. So in this work, we also explore a grad-
ual training setup where instead of sampling target
domain samples uniformly at random, we select
few-shot samples using clustering-based sampling
approaches. Doing so would not only lead to a
smoother data distribution shift in the few-shot
samples because of gradual training but also will
use relatively higher-quality representative samples
from the target domain for few-shot cross-domain
iterative training.

4 Experimental Setup

In this work, we investigate the generalization ca-
pability of the KBIR model and its vanilla counter-
part RoBERTa, on the keyphrase extraction task
on out-of-domain datasets with respect to the sci-
entific domain-specific OAGKx (Çano and Bojar,
2020) dataset on which KBIR was pre-trained.

Train Validation Test
OpenKP 134K 6.6K 6.6K
StackEx 300K 16K 16K

Table 1: Dataset statistics for OpenKP & StackEx

4.1 Data

We conduct our cross-domain experiments on the
OpenKP (Xiong et al., 2019) dataset that consists
of documents from a collection of Bing search
web pages and the StackEx (Yuan et al., 2020)
dataset that consists of question-answer pair arti-
cles from Stack Exchange website2. Both these
datasets are from non-scientific domain consisting
of documents from various sub-domains like news,
politics, healthcare, movies, programming, music
and so on. Dataset statistics are provided in Ta-
ble 1. We uniformly sample the train set down to
22k for computational efficiency. We use OpenKP
and StackEx datasets as target domains and use
OAGKx as the source domain.

2https://stackexchange.com/
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4.2 Implementation Details

We conduct our experiments over multiple exem-
plars and models and multiple weight initialization,
data sampling, and clustering center seeds to ensure
statistical significance. Details on hyperparameters,
clustering setup and evaluation are available in Ap-
pendix A, B and C respectively.

4.3 Baselines & Upperbounds

Random: We randomly initialize the classifica-
tion head weights for KBIR and RoBERTa to per-
form inference.

PatternRank: We use the current state-of-the-art
unsupervised keyphrase extraction in PatternRank
(Schopf et al., 2022) that leverages part-of-speech
tag matching and BERT-based models to gener-
ate candidate keyphrases and serves as our strong
baseline.

MANNER: We use MANNER (Fang et al.,
2023), a Cross-Domain Few-Shot support and
query-based architecture in an N-way K-Shot se-
quence tagging framework as a strong baseline. We
conducted a thorough literature review of Cross-
Domain Few-Shot setups to find similar setups for
Named Entity Recognition in MANNER (Fang
et al., 2023) that we had to make minor adjustments
to serve as a strong baseline. Fang et al. (2023)
leverages a support and query based architecture
to setup an N-way K-shot cross-domain sequence
tagging framework that has demonstrated to be
very effective outperforming previous SoTA such
as CONTaiNER (Das et al., 2022) and L-TapNet
(Hou et al., 2020). A major caveat is that they use
significantly more data (> 1000 samples) in their
few-shot experiments and even more data to con-
duct source domain training. We recreated these
experiments by maintaining the number of data
points seen across the training as K=[5, 10, 50,
100] to be comparable with our best performing
model setting. We do so in both settings where
source domain data is and isn’t available for train-
ing.

Full-Fine Tune: We use the aforementioned 22k
uniformly sampled data points from a given target
dataset in order to fine-tune the model for upper
bound performance.

Dataset KBIR RoBERTa PatternRank
Zero-shot OpenKP 1.64 1.82 7.4

StackEx 1.00 0.07 15.38
Full OpenKP 48.43 50.62 N/A

Finetune StackEx 62.20 60.99 N/A

Table 2: Zero-shot and full fine-tuning exact match F1-
score performances

4.4 Few-shot Learning

4.4.1 Access to only Target Domain Data
Random Sampling (R): We select k few-shot
samples uniformly at random only from the target
domain as the few-shot samples (Section 3.1.1).

Clustering-based Sampling (C): We select k
top-scoring samples only from the target domain as
the few-shot samples, based on the scoring function
defined in the equation 2 (Section 3.1.2).

Stratified Clustering-based Sampling (SC):
We first score each sample in the target domain
using the scoring function defined in equation 2,
and then set select a proportionately equal num-
ber of top-scoring samples from each sub-domain
clusters, totaling to k few-shot samples (Section
3.1.2).

4.4.2 Access to Source Domain Data
We use 4 iterations to retrain the model sequentially
using different concentrations of the target dataset
[0.2, 0.4, 0.6, 1] in each iteration with the remain-
ing concentration filled in by the source datatset.

Gradual Training + Random Sampling (G+R):
We train the model iteratively using a total of k few-
shot samples consisting of different proportions (in
each iteration) of samples selected uniformly at
random from both the target domain as well as the
source domain (Section 3.2.1).

Gradual Training + Stratified Clustering-based
Sampling (G+SC): We train the model itera-
tively using a total of k few-shot samples consisting
of different proportions (in each iteration) of sam-
ples selected from source as well as target domain.
In this setting, the samples from the source domain
are selected uniformly at random, from the target
domain selected using stratified clustering-based
sampling (Section 3.2.2).

5 Results

Sampling strategy is important when only target
domain data is available We observe over in Ta-
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OpenKP Dataset
Source Data KBIR RoBERTa

Available 5 10 50 100 5 10 50 100
MANNER No 1.270.49 5.563.15 16.631.22 19.351.98 1.590.58 2.872.39 15.332.29 17.331.91

R No 0.030.01 0.800.05 1.380.01 1.360.02 0.330.28 1.140.24 6.345.65 7.807.28
C No 0.000.00 0.000.00 4.136.31 13.609.13 0.920.66 1.240.78 10.434.93 19.731.01

SC No 0.650.74 0.400.62 19.193.73 27.711.99 0.130.25 0.000.01 24.963.77 27.783.94
MANNER Yes 2.920.90 5.014.38 11.482.04 16.810.57 1.020.89 1.482.55 11.800.67 14.740.66

G + R Yes 2.492.75 11.917.82 29.352.62 31.651.64 1.460.29 6.131.97 27.241.07 27.891.62
G + SC Yes 8.014.63 16.780.88 31.951.29 33.780.81 8.420.72 16.750.96 29.580.76 30.960.93

StackEx Dataset
Source Data KBIR RoBERTa

Available 5 10 50 100 5 10 50 100
MANNER No 2.050.57 1.340.26 12.422.42 17.103.71 2.720.55 0.240.20 0.010.01 4.676.29

R No 0.000.00 0.640.09 10.118.88 2.470.00 0.000.00 0.000.00 14.419.09 29.912.01
C No 0.000.00 0.000.00 4.641.03 14.969.09 0.000.00 0.000.00 6.844.46 16.095.24

SC No 0.320.60 0.180.36 33.962.42 37.670.85 0.120.14 0.010.02 32.281.60 35.542.13
MANNER Yes 3.920.92 1.240.42 4.183.79 15.941.39 3.252.28 1.100.95 7.130.58 9.236.27

G + R Yes 9.939.96 23.9811.85 34.971.82 40.591.04 3.471.42 15.521.74 33.151.32 39.510.53
G + SC Yes 14.085.79 19.471.68 38.460.71 42.110.92 12.918.16 20.532.19 36.631.31 39.061.51

Table 3: Few-shot fine-tuning exact match F1-score performances for different number of exemplars. Here we bold
the highest F1-scores for all values of k. The values are averaged over 4 seed settings with variance as subscript.

5 10 50 100
G + SC 8.014.63 16.780.88 31.951.29 33.780.81

G + SC-J 2.051.46 12.691.64 26.190.82 31.031.06
G + SC-C 0.280.37 7.902.29 26.451.72 30.050.87

G + SC-ChatGPT 3.252.30 3.781.08 20.744.10 20.743.68

Table 4: Exact match F1-score performance of KBIR
model on the OpenKP test set for the G+SC variants.

ble 3, both the datasets that leverage the clustering-
based heuristics result in significant boosts in per-
formance (up to +26.35 F1). We see the gap be-
tween Random performance increase with num-
ber of exemplars as the model is able to train on
more diverse and representative data. We observe
that at times RoBERTa seems to outperform (up to
+6.3 F1) KBIR and this is expected since there is
no domain adaptation that KBIR can successfully
exploit and RoBERTa is trained on more diverse
pre-training data.

Access to source domain labelled data enhances
sampling strategy impacts We observe in Table
3, over both the datasets and models that leverag-
ing clustering over Random sampling when using
Gradual training (G+) consistently results in statis-
tically significant differences. As hypothesized, we
find that access to labelled source data allows the
KBIR model to learn from the few-shot samples
more effectively (up to +3.05 F1) than RoBERTa.
Further, it also outperforms (up to +12.76 F1) the
strategy with only access to target data.

Reasonable performance for a fraction of the
data We observe in Table 2 and 3 that we are
able to match up to 69.75% of OpenKP and up to

67.70% of StackEx full fine-tuning performance
while using only 0.45% of the data (K=100). This
is significant as we evaluate on sufficiently large
test sets as described in Section 4.1. Further, we
are able to outperform PatternRank and MANNER
consistently which Random sampling cannot. Inter-
estingly, MANNER regresses performance when
source data is included as it expects significant
source data in a source-training step which is un-
available at the same scale and thus serves to con-
fuse it. We observe no performance regression
when also evaluated in source domain on KP20k
(Meng et al., 2017) in Section 6.

Stratified clustering-based samplings leads to
relatively higher inter-sub-domain sample rel-
evance, but compromises on intra-sub-domain
semantic diversity Semantic similarity between
two document embeddings increases as the co-
sine distance between them decreases. Although
the few-shot samples using SC have higher di-
versity in terms of the number of samples from
each sub-domain compared to R (Fig. 8 in App.
D), cosine distance variation from the correspond-
ing sub-domain centers is relatively lower (lower
intra-sub-domain semantic diversity) whereas the
mean cosine distance is higher (Fig. 9 in App. D),
making them semantically closer, relevant to other
sub-domains (higher inter-sub-domain relevance),
and relatively distant from the corresponding sub-
domain center (sub-domain topic representation),
relative to R.
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Figure 2: Lexical diversity metrics values per iteration
for OpenKP samples in the gradual training setup.

5.1 Case Study: Optimizing G+SC

We observe from Table 3 that both SC and G+SC
lead to significantly better performance than their
Random counterparts in R and G+R. From the
few-shot sample analysis in Fig. 9 & Fig. 8 in
App. D, we observe that over various seeds, the
few-shot samples selected using R not only belong
to a diverse set of clusters from many sub-domains
with disproportionate contributions similar to SC
but are exhibit relatively varying cosine distance
from their corresponding sub-domain center em-
beddings, w.r.t SC as seen in Std. deviation of R &
SC in Fig. 9 from App. D ). SC exhibits samples
that are relatively distant from their corresponding
sub-domain centers resulting in relatively higher
relevance (selected based on equation 2) to all the
other sub-domains. Thus the samples are relatively
farther in cosine distance from their corresponding
sub-domain center embeddings with low variance.

We explore if improving the low intra-sub-
domain semantic diversity in G+SC while main-
taining high inter-sub-domain diversity results in
better performance. We propose the three variants
of G+SC which enforce higher intra-sub-domain
semantic diversity using greedy heuristics in the
stratified sampling approach from the target do-
main data. For each setup we start with the top-
scoring samples in each of the sub-domain cluster.

G+SC with Greedy Jaccard Similarity Selection
(G+SC-J): The subsequent set samples in the
corresponding sub-domains are selected, that has
the least token-level Jaccard similarity with the
previously selected samples in the corresponding
sub-domains till a total of k samples are selected

from the target domain.

G+SC with Greedy Cosine Similarity Selection
(G+SC-C): The subsequent set samples in the
corresponding sub-domains are selected, that has
the least sentence-level cosine similarity with sen-
tence embeddings of the previously selected sam-
ples in the corresponding sub-domains till a total
of k samples are selected from the target domain.

G+SC with Greedy ChatGPT prompting
(G+SC-ChatGPT): We prompt (App. E) Chat-
GPT (OpenAI, 2023) to generate a diverse set
of keyphrase extraction labelled data similar to
these top-scoring samples for the corresponding
sub-domains.

In all the above-mentioned variants the random
sampling from the source data and the gradual train-
ing approach is the same as that of G+R.

The quality of samples is dependent on the trade-
off between their degree of relevance to other
sub-domains (top-scoring samples) and their
intra-sub-domain semantic diversity We report
the performance of these variants of G+SC on the
experiments described in Section 4.4 in Table 4.
From Fig. 9 in App. D, we observe that although
the samples selected in G+SC-J and G+SC-C have
relatively higher diversity in terms of cosine dis-
tance from the corresponding sub-domain cluster
centers resulting in higher intra-sub-domain seman-
tic diversity. However, performance of these vari-
ants across both the datasets are poor compared to
G+SC. We believe the primary reason for this is
the steep decrease in the number of samples dis-
tant from the sub-domain cluster center due to such
strong heuristics resulting in a decrease in the rele-
vance of these samples to all the sub-domain topics,
and the overall sample quality (representativeness).

In order to further investigate intra-sub-domain
semantic diversity in the gradual training setup, we
use textual lexical diversity metrics (Shen, 2021)
such as MTLD (Measure of Textual Lexical Diver-
sity), vocD (Vocab Density), the number of terms
introduced, and TTR (Term Token Ratio) to an-
alyze textual lexical diversity over the iterations
of all the above mentioned gradual training-based
approaches as shown in Fig. 2. The higher the val-
ues of these metrics the higher the textual lexical
diversity (McCarthy and Jarvis, 2010).

Higher rate of increase of target domain sam-
ple diversity over the iterations result in bet-
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Configuration K=5 K=10 K=50 K=100 Full Fine-Tune
KBIR - - - - 33.57
KBIR-OpenKP as G+SC 6.390.55 11.198.75 24.336.16 25.871.55 -
KBIR-StackEx as G+SC 4.542.18 7.534.89 22.405.35 23.232.17 -
RoBERTa - - - - 33.45
RoBERTa-OpenKP as G+SC 3.852.37 13.142.81 23.750.58 24.051.21 -
RoBERTa-StackEx as G+SC 5.4911.42 8.714.87 20.698.32 20.339.72 -

Table 5: Cross-Domain Generalizability of Model evaluated on the Scientific Domain KP20k dataset

Configuration K=100 K=250 K=500
R 1.360.02 15.240.71 25.067.50

SC 27.711.99 31.030.82 37.084.24

Table 6: Exploring the value of K for Data Saturation
of the Stratified Clustering compared to Random

ter domain adaption From Fig. 2 and Table 3
we observe that the performance of the model in
the gradual training setting depends on both, the
diversity (higher MTLD, vocD, # of Terms with
lower TTR) in each iteration as well as the rate
of increase of diversity in subsequent interactions.
Although G+SC-J and G+SC-C maintain higher
overall MTLD & vocD (initial iterations) through-
out the iterations relative to G+R, G+R and G+SC
outperforms them as they have a higher rate of in-
crease in diversity over the iterations, despite G+R
having relatively lower diversity in each iteration.

6 Cross-domain Generalization

We evaluate model performance on the source do-
main data to analyze whether the model is able to
generalize across domains and not catastrophically
forget the source domain. We do so by evaluat-
ing against the KP20k (Meng et al., 2017) corpus
which consists of scientific articles as seen in Table
5.

We observe that both the model despite being
trained in a cross-domain setting remain fairly com-
petitive against a fully-fine tuned model on the
source domain data. Demonstrating that our pro-
posed framework does not degrade the model’s
generalization performance.

7 Data Saturation

We also explored if scaling up the value of K al-
lows us identify the point at which Random (R)
outperforms our proposed methods in Table 6. We
observe performance of R at K=500 is similar to
SC at K=100, suggesting that it might require sig-
nificantly more data and hypothesizing this data

saturation number may be well into the thousands.

8 Conclusion & Future Work

In this work, we explored the generalization capa-
bilities of the KBIR for keyphrase extraction across
different domains using few-shot fine-tuning. We
proposed a novel Clustering-based few-shot sam-
pling approach that uses sub-domain information
as topics for extracting high-quality few-shot sam-
ples in a cross-domain setting, which leads to a
significant gain in performance compared to ran-
domly sampling few-shot samples. We also demon-
strated that the gradual training regime in a few-
shot setting performs better than its counterparts.
We conducted a case study of similarity metrics
and prompts that could enhance clustering-based
sampling to quantify improvements to the Gradual
training regime. Further exploration is required
on heuristics that could further improve data diver-
sity and if these findings hold true for in-context
learning settings for keyphrase generation.

9 Limitations

This project involves a huge set of experiments with
multiple data seeds, model seeds, and KMeans clus-
tering seeds. We had initially planned to conduct
few-shot experiments for keyphrase generation as
well but owing to limited time and compute power
we later focused only on keyphrase extraction, that
too only on two particular datasets and models. On
the technical side, there is no comparable base-
line for few-shot keyphrase extraction so we had
to benchmark the baseline by Cross-Domain Few-
Shot Fine-tuning Named Entity Recognition litera-
ture, which is also sequence tagging based. Further,
we do not explore generalized domain adaptation
techniques such as DAPT (Gururangan et al., 2020),
as these require large amounts of data and compute
resources, whereas our focus is to maximize per-
formance when using minimal data and compute.
For clustering, we chose k-means as it is a sim-
ple method and worked reasonably well for our
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use case, however, other more sophisticated meth-
ods could help boost performance. Also, there are
no labeled sub-topics of the documents in these
keyphrase extraction datasets so it was a challenge
to judge the quality of sub-topics after clustering.
Further, the source domain experiments may be
slightly biased towards KBIR as the source do-
main is scientific data, however, the results and
trends still hold on the RoBERTa model albeit with
a slightly worse performance which is expected and
further strengthening our claims on the robustness
of our proposed method. Lastly, while our experi-
ments are most effective for low-resource domains
we conduct experiments on simulations of these in
high-resource domains, we do so primarily to test
on a large number of high quality samples but fur-
ther work is required to truly annotate low-resource
domain data.

Given the rapid development of large-scale mod-
els, coupled with their inherent robust few-shot
learning capabilities, it will be an interesting direc-
tion to use the proposed sampling strategy Large
Language Models (LLMs) for improving the diver-
sity in in-context examples. In our experiments, we
restricted the model size to be same as the KBIR
model (present SOTA for keyphrase extraction).
In future it would be interesting to see how much
downstream performance depends on the quality
of few-shot samples as we scale the model size.
Experimenting with much diverse datasets would
further help to establish the generalisability of the
proposed sampling approach.

10 Ethical Consideration

We didn’t find any significant harm in applying
fine-tuning on cross-domain few-shot training. The
methods we explore are general-purpose methods
for low-resource tasks and domain adaptation.
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A Hyperparameters

We experimented with different numbers of few-
shot samples (k), i.e., 5, 10, 50, 100. We specify
the hyperparameters used to reproduce our exper-
iments in Table 7. As KBIR was pre-trained on
the OAGKx dataset, we used a uniformly sampled
subset of 22k data points from 23 million OAGKx
dataset for our source domain.

For gradual training, we use 4 iterations to
retrain the model sequentially. Here we also
use different concentrations of the target dataset,
i.e., [0.2, 0,4, 0,6, 1] in each iteration. The first
iteration consists k few-shot samples having a
source-to-target domain ratio (K1:K2) of 80:20
respectively, the second iteration constitutes a
60:40 source-to-target split, and so on with the
final iteration constituting only target domain
samples. Samples from the previous iterations
remain and only new samples are added to meet

Full Fine-tune Few-shot
Number of epochs 5 50

Train batch size 32 32
Inference batch size 128 128

Gradient Accumulation 1 1
Learning rate 1e-5 1e-5

Learning rate scheduler LINEAR LINEAR
Early stopping used yes yes

Early Patience 3 3
Logging Steps 100 10

Adam ϵ 1e-6 1e-6
Warmup-proportion 0.01 0.01

Warmup-decay 0.00 0.00
Data seeds - [42, 67]

KMeans seeds - [27, 55]
Model seeds - [53, 80]

Target domain concentrations [0.2, 0.4, 0.6, 1]
Gradual training iterations 4

Max generation length 512 512
Sequence-tagging Tags "B", "I", "O" "B", "I", "O"

22k dataset subsampling seed 42

Table 7: Hyper-parameters for full fine-tuning & few-
shot experiments.

the appropriate ratios. We do so to avoid seeing
more data points than the budget under the guise
of new iterations.

We use 8 GeForce GTX 1080ti GPUs to run
these experiments. Regarding training times,
Roberta and KBIR models take nearly the same
time for both full fine-tuning and gradual training
on a particular dataset. Considering that we sub-
sample 22k instances from both datasets, so full
fine-tuning training takes 1 hr on average to train
for a particular seed. On the other hand, few-shot
training takes around 27 min on average across dif-
ferent seed values. In the case of gradual few-shot
training, each seed takes little more than 1.5 hrs on
average for 4 iterations for a particular k value.

B Cluster Analysis

To generate the clusters in our proposed clustering-
based sampling approaches, we used all-MiniLM-
L6-v23 sentence transformer model for generating
sentence embeddings of the documents, where the
generated summaries were normalized. We used
silhouette score analysis to identify an optimal num-
ber of clusters in each of the datasets and later in-
vestigated them with qualitative analysis using the
word clouds generated from the cluster vocabulary.
From silhouette score analysis we identified the op-
timal number of clusters in OpenKP as 15 (which

3https://huggingface.co/sentence-transformers/all-
MiniLM-L6-v2
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(a) Healthcare (b) Sports (c) Automobile

Figure 3: Wordclouds consisting of most frequent words belonging to three clusters in the OpenKP dataset, where
the caption describes the corresponding sub-domain topics.

(a) Computer Science (Operating Sys-
tems)

(b) Quantum Theory (c) AI/ML

Figure 4: Wordclouds consisting of most frequent words belonging to three clusters in the StackEx dataset, where
the caption describes the corresponding sub-domain topics.

is also in line with (Xiong et al., 2019)) & 40 for
the StackEx dataset. The silhouette score plots
for OpenKP and StackEX are illustrated in Fig. 6.
We further analyzed the quality of the generated
clusters by investigating the inter-cluster similar-
ity, which we expected to be low if the clusters
are of good quality. Due to no access to the sub-
domain labels in the above-mentioned datasets, we
analyzed the inter-cluster similarity using Jaccard
similarity between the clusters. Fig. 5 illustrates
that on average the inter-cluster Jaccard similarity
between all the combinations of clusters in both
datasets was low, indicating less vocab similarity
resulting in decent clustering. To get more insight
into the vocabulary of these clusters, we also quali-
tatively analyzed the most common terms in these
clusters. Fig. 3 & Fig. 4 show the word clouds
for the most common terms in the OpenKP and
StackEx datasets respectively, where we observe
a clear distinction between the domains of these
clusters. For example in Fig. 3, we can easily say
by looking at the clusters (a), (b), and (c) consists
of documents from Healthcare, Sports, and Auto-
mobile domains respectively, similarly in Fig. 4

clusters (a), (b), and (c) consists of documents from
Computer Science (Operating Systems), Quantum
Theory, and AI/ML domains respectively.

(a) OpenKP (b) StackEx

Figure 5: Inter-cluster Jaccard similarity between all the
clusters in OpenKP and StackEx dataset.

C Evaluation Metric

In line with prior work (Sahrawat et al., 2020;
Kulkarni et al., 2022), we report Exact Match F1
score as our primary metric using seqeval4.
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(a) OpenKP (b) StackEx

Figure 6: Sillouette plot for the optimal number (15
& 40) of KMeans clusters in OpenKP and StackEx
dataset respectively.

D Few-shot Sample Analysis

For the few-shot cross-domain setting, we analyze
and compare the quality of few-shot samples us-
ing the proposed sampling approaches and study
their overall sub-domain cluster diversity, inter-sub-
domain sample relevance, and intra-sub-domain se-
mantic diversity. In this section, we dive deep into
analyzing these metrics and how they relate to the
overall performance of the model using different
sampling approaches in a few-shot cross-domain
setting.

D.1 Overall Sub-domain Cluster Diversity in
Few-shot Samples

We analyze the sub-domain diversity in a set of
samples by observing how uniform the distribution
is for the number of selected few-shot samples con-
tributed from each sub-domain cluster. The more
uniform this distribution, the more diverse the set
of samples is. If this distribution is skewed towards
a particular small set of clusters, the majority of the
few-shot samples are corresponding to those sub-
domain clusters resulting in a decrease in overall
sub-domain cluster diversity.

In a few-shot cross-domain setting, the higher
the overall sub-domain cluster diversity, the higher
the coverage over all the sub-domains given just
a small set of samples, resulting in higher repre-
sentativeness of the corresponding samples w.r.t
to the target domain data. From Fig. 7 & Fig. 8,
we observe that in the case of the samples gener-
ated using R & C, over all the seed settings, the

4
https://huggingface.co/spaces/

evaluate-metric/seqeval

Figure 7: Distributions for the number of few-shot sam-
ples (total 100 samples) per cluster selected using the
original cluster-based sampling approach (C) from the
OpenKP dataset, for all the KMeans seeds.

distribution of the number of selected few-shot sam-
ples contributed from each sub-domain cluster is
slightly skewed to a few set of clusters, whereas in
the case of SC, it is almost uniform as all the clus-
ters contribute the approximately same number of
samples (Section 3.1.2) resulting in better overall
sub-domain cluster diversity over R and C, leading
to performance improvements in SC over C and R
in Table 3.

D.2 Inter-sub-domain Few-shot Sample
Relevance

For clustering-based sampling approaches ex-
plained in Section 3.1.2, we use equation 1 & 2
to score each sample based on their relevance with
the other sub-domain cluster centers and pick the
top scoring k samples as the few-shot samples. We
illustrate the cosine distance distribution of such
samples chosen in SC & C from their correspond-
ing sub-domain cluster centers in Figure 9 over
different KMeans seed settings (cosine distance
calculated using the document embedding with
the corresponding sub-domain cluster embedding).
From the distribution plots for SC & C, we observe
that on average these samples are distant from their
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Figure 8: Distributions for the number of few-shot samples (total 100 samples) per cluster selected using the random
sampling approach (R) from the OpenKP dataset, for all the random data seed. Here random sampling few-shot
samples are assigned cluster ids using two sets of clusters based on two different KMeans seeds.

corresponding sub-domain cluster centers, while
from the scoring function in equation 1 we know
that these samples also have high relevance to other
sub-domains (Section 3.1.2). So it is safe to con-
clude that the more distant the samples are from
the corresponding cluster centers (in the direction
of increased scoring function value), the more rel-
evant they are to the other sub-domains, and vice
versa. In the case of R, this cosine distance dis-
tribution is slightly right-skewed indicating low
inter-sub-domain relevance resulting in poor per-
formance compared to SC & C, where the samples
have higher inter-sub-domain relevance inducing
easier domain adaption (Section 3.1.2).

D.3 Intra-sub-domain Few-shot Sample
Semantic Diversity

While the samples selected using C & SC are on
average distant from their corresponding center (in
the direction of increased scoring function value)
resulting in rsamples with high relevance to other
subdomains, the standard deviation of this distance
is relatively smaller compared to the samples se-
lected using R. As these cosine distances are calcu-
lated using embeddings from the Sentence Trans-
former, a smaller standard deviation of the cosine
distance from the corresponding sub-domain clus-
ters indicates higher semantical similarity, and vice
versa. From Fig. 9, we observe that since C &
SC have a smaller standard deviation in the corre-

sponding cosine distance distributions compared
to R indicates higher semantical similarity, sug-
gesting lower intra-sub-domain few-shot sample
semantic diversity.

D.4 Variants & Trade-off

From the discussion in Appendix D.1,D.2, and D.3,
we conclude that while the samples selected using
C & SC have high overall sub-domain cluster di-
versity and high inter-sub-domain relevance, they
lack in intra-sub-domain semantic diversity. In
order to improve upon the intra-sub-domain seman-
tic diversity, we proposed G+SC-J, G+SC-C, and
G+SC-ChatGPT that use greedy heuristic-based
sample selection methods (Section 5.1) for increas-
ing intra-sub-domain semantic diversity. From Fig.
9, we observe that these variants indeed increase
intra-sub-domain semantical diversity, but while
compromising on the inter-sub-domain relevance
as the cosine distance distribution shifts toward
the left indicating samples with lower relevance to
other domains were selected (as explained in App.
D.2). From Table 4, we also observe that although
these variations generate samples with higher intra-
sub-domain semantic diversity, they still end up
performing poorly compared to G+SC as they also
compromise on the relevance factor and the overall
representativeness.

Summary of our findings from Appendix
D.1,D.2,D.3, and D.4:
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Figure 9: Distributions for the number of target domain few-shot samples (total 100 samples) selected from the
OpenKP dataset vs their cosine similarity distances from the cluster centers of their corresponding cluster, for all
the KMeans & random data seeds. Different colors represent different sampling strategies.

• Using clustering-based sampling approaches
increases inter-sub-domain few-shot sample
relevance while adding stratification in the
sample selection further improves overall sub-
domain cluster diversity.

• Higher inter-sub-domain sample relevance
leads to lower intra-sub-domain semantic di-
versity.

• The overall performance of a model depends
on the trade-off between the overall sub-
domain cluster diversity, inter-sub-domain
sample relevance, and intra-sub-domain se-
mantic diversity in the samples selected using
the sampling approach.

E ChatGPT Prompting

For few-shot gradual training, we also evaluated
using samples generated by ChatGPT. For each
dataset - OpenKP and StackEx, we used the
top-scoring samples from the clusters as examples
to ChatGPT API and asked it to generate 10
input-output examples for keyphrase extraction
similar to the top-scoring sample in the cluster.
Here is one example of prompt: ’I want to be

able to generate data points to train a keyphrase
extraction model. Here is a sample. document: 1
27 Overview Amenities Reviews Map Availability
Lovely Remodeled Studio W Fireplace No
cleaning Fee Park City UT USA Condo 394 sq
ft Sleeps 4 Bedrooms Studio Bathrooms.....Our
building has a bus stop right out the front door to
the free Park City bus service with access to Main
Street all ski areas outlet malls theaters shopping
and restaurants Photos Treelined street A bus
stop is right in front of the building Availability.
keyphrases: lovely remodeled studio, home. Can
you generate 10 similar data points in the domains
similar to samples?’

F Sampling Algorithm
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Algorithm 1 Random Sampling Algorithms
Source Dataset: Ds:{xs1, ..., xsM}
Target Dataset: Dt:{xt1, ..., xtN}
# Few-shot Samples: k
# Gradual Iterations: I
Pre-trained Model: π
Fine-tuned Model: π∗

Uniform Sampling Function: U : D → D
”, where ∥D”∥ = k

# Few-shot Source Domain Samples at ith Iteration: ki1
# Few-shot Target Domain Samples at ith Iteration: ki2

Function Rsample(D,k):
/* Random Sampling (R) */

X
∗ ∶ {x∗i , ..., x∗k} ← U(D, k) ▷ U(D, k) samples k documents from D uniformly at random

return X∗
w/o Gradual Training
X∗ ←Rsample(Dt,k) ▷ Few-shot samples
π
∗ ← π(X∗) ▷ Fine-tune π

with Gradual Training
for i = 1 to I do

X
∗
source ∶ {x∗1 , ..., x∗ki1} ←Rsample(Ds,ki1)

X
∗
target ∶ {x∗1 , ..., x∗ki2} ←Rsample(Dt,k

i
2)

X
∗ ← X

∗
source +X

∗
target ▷ Few-shot samples

π
∗ ← π(X∗) ▷ Fine-tune π

π ← π
∗ ▷ Update π weights with π

∗ weights
end
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Algorithm 2 Clustering-based Sampling Algorithms
Source Dataset: Ds:{xs1, ..., xsM}
Target Dataset: Dt:{xt1, ..., xtN}
# Few-shot Samples: k
# Gradual Iterations: I
Pre-trained Model: π
Fine-tuned Model: π∗

Sentence Transformer Embedding Model: M st

# Few-shot Source Domain Samples at ith Iteration: ki1
# Few-shot Target Domain Samples at ith Iteration: ki2

Function Rsample(D,k):
/* Random Sampling (R) */

X
∗ ∶ {x∗i , ..., x∗k} ← U(D, k) ▷ U(D, k) samples k documents from D uniformly at random

return X∗
Function Csample(D,k):

/* Clustering-based Sampling (C) */

Et ∶ {ex1 , ..., ex∥D∥} ← M
st({xt1, ..., xt∥D∥});xti ∈ D ▷ Sentence Embedding Generation

C ∶ {C1, ..., Cc} ← KMeans(Et) ▷ Document Clustering
for i = 1 to c do

e
C
i ←

∑∥Ci∥
j=1 e

x
j∥Ci∥ ; where e

x
j ← M

st(xtj),∀x
t
j ∈ Ci ▷ Sub-domain Embedding Generation

end
EC ← {eC1 , ..., eCc }

for i = 1 to ∥D∥ do

si =
∑c

j=1 δ(eCj ,e
x
i )

c
▷ Cosine Similarity Score (δ) between document embedding and sub-domain

embeddings
end
S ← {s1, ..., s∥D∥}
X∗ = {x∗1 , ..., x∗k} = arg topkxt

i∈D(S)
return X∗

w/o Gradual Training:
X∗ ←Csample(Dt,k) ▷ Few-shot samples
π
∗ ← π(X∗) ▷ Fine-tune π

with Gradual Training:
for i = 1 to I do

X
∗
source ∶ {x∗1 , ..., x∗ki1} ←Rsample(Ds,ki1)

X
∗
target ∶ {x∗1 , ..., x∗ki2} ←Csample(Dt,k

i
2)

X
∗ ← X

∗
source +X

∗
target ▷ Few-shot samples

π
∗ ← π(X∗) ▷ Fine-tune π

π ← π
∗ ▷ Update π weights with π

∗ weights
end
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