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Abstract
Certified defense methods have identified their
effectiveness against textual adversarial exam-
ples, which train models on the worst-case
text generated by substituting words in orig-
inal texts with synonyms. However, due to the
discrete word embedding representations, the
large search space hinders the robust training ef-
ficiency, resulting in significant time consump-
tion. To overcome this challenge, motivated by
the observation that synonym embedding has
a small distance, we propose to treat the word
substitution as a continuous perturbation on
the word embedding representation. The pro-
posed method Text-RS applies random smooth
techniques to approximate the word substitu-
tion operation, offering a computationally ef-
ficient solution that outperforms conventional
discrete methods and improves the robustness
in training. The evaluation results demonstrate
its effectiveness in defending against multiple
textual adversarial attacks.

1 Introduction

Language models are powerful tools for natural
language processing; however, they have been
found to be vulnerable to textual adversarial ex-
amples (Jia and Liang, 2017), which are care-
fully crafted through human-imperceptible changes.
These textual adversarial examples pose a signif-
icant threat to real-world applications, such as
text classification (Song et al., 2021; Kwon and
Lee, 2022), text translation (Zhang et al., 2021;
Sadrizadeh et al., 2023), question answering (Wal-
lace et al., 2019; Sheng et al., 2021), text-driven
image generation (Liu et al., 2023; Millière, 2022),
etc. Textual adversarial attacks can be categorized
into three types, namely character-level perturba-
tion (Ebrahimi et al., 2018; Eger and Benz, 2020),
word-level substitution (Ren et al., 2019; Zang
et al., 2020; Wang et al., 2021b), and sentence-
level rephrasing (Pei and Yue, 2022). Among these,

* Equal contribution. Listing order is random.

Fig. 1: By adding continuous permutations on word
embeddings, our method maps one word to both real
words and virtual words, which potentially broadens the
optimized region and improves the training efficiency.

word-level substitution attracts most of the research
interest due to its preservation of sentence struc-
ture and transferability across various models (Ren
et al., 2019). Therefore, our work focuses on de-
fending against word-level substitution adversarial
attacks.

Various defense approaches have been proposed
to mitigate the impact of word-level text perturba-
tions, such as input transformations (Wang et al.,
2021a), adversarial training (Morris et al., 2020),
and certified defense (Jia et al., 2019). For exam-
ple, Wang et al. (2021a) insert a synonym encoder
before the input layer to eliminate adversarial sub-
stitutions by mapping various synonyms into the
same tokens. Adversarial training methods train
models on adversarial examples to improve robust-
ness (Wang et al., 2021b; Ke et al., 2022; Zheng
et al., 2022). Certified defense methods provide a
provable defense radius that theoretically blocks
all adversarial examples within that radius (Wang
et al., 2021a; Atmakuri et al., 2022). Among these
defense methods, certified defense methods achieve
a strong defense performance with a theoretical ro-
bustness guarantee. However, it is time-consuming
because of the construction of a word substitution-
based candidate set for the worst-case optimization
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for training.
The aforementioned defense methods, especially

certified defense methods, mainly perform word
substitution in the discrete token space, which has
an enormous search space and usually results in
low efficiency during optimization due to the enu-
meration and substitution operations for each word.
However, for modern language models, input to-
kens are commonly projected into continuous word
embeddings before being fed into subsequent neu-
ral networks. The L2 distance between synonyms
in the embedding space approximately follows a
compact exponential distribution (Sec. 2.2). This
observation naturally motivates us to continuously
treat text manipulation and design efficient adver-
sarial defense techniques.

In this work, we propose manipulating texts in
the continuous embedding space to approximate
the word substitution operation for certified de-
fense. Fig. 1 shows an intuitive example of our
approach. For the word “adversarial”, conventional
methods that operate on the word level would map
the “adversarial” to the real word “adverse” as an
adversarial example, while our method can map
the “adversarial” to both real and virtual words by
adding permutations on embedding representations.
Besides, such a continuous assumption allows us
to perturb multiple words in parallel, which signifi-
cantly broadens the optimized region for compact
text representation and improves the training effi-
ciency for certified defense.

On top of continuous perturbation, we further
propose a random smooth-based certified adversar-
ial defense framework Text-RS. We integrate the
continuous perturbation for word substitution into
the certified defense, thus achieving smooth text
representation for better model robustness against
the text adversarial attack. Extensive results of ex-
periments on popular datasets using different mod-
els demonstrate the effectiveness of our method
against advanced adversarial text attacks.

2 Method

2.1 Notations

For the text classification task, we define X as
the input text space, Xe as the embedding space,
and Y as the output category space. Given a text
x = (w1, w2, . . . , wn) ∈ X , an embedding net-
work fe projects the discrete x to the continuous
xe ∈ Xe. Subsequently, a text encoder fp predicts
x’s category y ∈ Y based on xe. The embedding

Fig. 2: Statistics of the L2 distance of GloVe embedding
between each word and its i-th synonym, i = 1, 2, 3, 4.
Results are from the IMDB dataset.

network fe and the text encoder fp are combined
as a text classifier f = fp ◦ fe.

In this work, our main focus is on synonym
substitution-based attacks and their defense. We
denote the synonyms of a word w as S(w), which
typically consists of the top-k nearest words to
w within the Euclidean distance δ in the third-
party GloVe embedding space (Pennington et al.,
2014) and are post-processed by counter-fitting.
Synonym substitution-based attacks commonly re-
place words wi ∈ x with their synonyms S(wi)
to create an adversarial example xadv such that
f(xadv) = yadv ̸= y, s.t. d(x, xadv) ≤ ϵ, where
ϵ is a small constant constraining the maximum
magnitude of perturbation added to x, and d mea-
sures the distance between two texts by counting
their differing words. The adversarial defense is to
ensure robust estimation against such adversarial
samples xadv.

2.2 Motivation

We calculate the L2 distance between each word
and its corresponding i-th synonym, i = 1, 2, 3, 4.
As depicted in Fig. 2, the distance between one
word and its i-th synonym approximately follows
an exponential family distribution, with the ma-
jority of distance values concentrating around the
mean value. Additionally, mean values of differ-
ent synonyms are close to each other. Based on
these two observations, we make an assumption
that discrete word substitutions can be approxi-
mated through continuous perturbations in word
embedding representations. Consequently, we pro-
pose Text-RS, which incorporates continuous per-
turbation into the model training for certified de-
fense, leading to a broader optimized region and
improved training efficiency.

2.3 Practical Algorithm

Specifically, we propose Text-RS to enhance the
robustness of a text classifier f when faced with
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continuous perturbation. Given a text x ∈ X and
its corresponding word embeddings xe ∈ Xe, we
simulate the perturbation by injecting random noise
ξ into the embeddings, resulting in fp(fe(x) + ξ).
Our objective is to train f to accurately predict the
category of x despite this perturbation. To achieve
this, we present two training objectives and intro-
duce an adaptive variable to control the magnitude
of the injected noise.
Perturbation loss: We first present a perturbation
loss function to smooth the classification surface:

Ls = ∥fp(fe(x))− fp(fe(x) + ξ)∥2. (1)

Ls supervises a text classifier to make consistent
estimations on noisy and noise-free texts, boosting
the classifier’s robustness (Peng et al., 2022).
Triplet loss: To achieve more compact text rep-
resentations for continuous word embeddings, we
employ the word-level triplet loss introduced in
Yang et al. (2022) to reduce the discrepancy be-
tween embedding values of synonyms and simul-
taneously increase the differentiation among other
words, which can be expressed as follows,

Ltr =
1

k

∑

w′∈Syn(w,k)

∥fe(w)− fe(w
′)∥2−

1

m

∑

ŵ /∈Syn(w,k)

∥fe(w)− fe(ŵ)∥2,
(2)

where we utilize top-k synonyms w′ ∈ Syn(w, k)
as positive words and randomly sample m non-
synonyms ŵ /∈ Syn(w, k) as negative words.
Adaptive variable: In this work, we instantiate ξ
as Gaussian noise N (0, σ2), where σ represents the
maximum Euclidean distance between the top-k
synonyms. We leave the exploration of other noise
types for future work. By assigning the maximum
synonym distance as the standard deviation of ξ,
we increase the certified robustness radius and en-
hance the robustness of the text classifier. However,
the considerable perturbation on feature representa-
tion caused by large k makes it difficult to optimize
the parameters and usually leads to substantial per-
formance degradation in the text classification task
as identified in Cohen et al. (2019).

Motivated by He et al. (2019) and Xiao et al.
(2022), we introduce an adaptive variable α to reg-
ulate the magnitude of noise injected into word em-
beddings ξ ∼ N

(
0, diag

({
αiσ

2
i I
}n
i=1

))
, where

αi ∈ [0, 1] and σi is the maximum distance be-
tween top-k synonyms. We initialize all αi to 1

and jointly optimize αi with all model parameters.
The introduction of adaptive variables facilitates
the optimization of a strongly robust classifier even
when k is large.
Overall training objective: In our training pro-
cess, we integrate perturbation loss (Eq. 1) and
triplet loss (Eq. 2) alongside the generally used
classification loss Lcls as follows,

L(x, y) = Lcls + λ1Ls + λ2Ltr, (3)

where λ1 and λ2 are two hyper-parameters used to
adjust the weight of each loss.
Certified Prediction: Once the text classifier f is
trained, we perform certified prediction. Given an
input x, we utilize the well-trained f to predict the
categories on multiple noisy copies, each crafted
with perturbations. We then select the two most
common categories as the observation list and em-
ploy Bernoulli hypothesis testing to determine their
distribution. Based on the significance level, we de-
cide whether to output the most common category
as the certified final prediction or reject the predic-
tion to ensure the certified robustness. An overview
of the proposed certified prediction is depicted in
Fig. A1 of Appendix A.

2.4 Robustness Guarantee
Let a word wi ∈ Rd, a sentence containing n
words: x = (w1, w2, ..., wn) and function f :
Rdn → Y . Let ξ ∼ N (0,Σ), where Σ =
diag({σ2

i Id×d}i∈[n]) ∈ Rnd×nd. Let g(x) =
argmaxc P(f(x + ξ) = c). Suppose that for
a specific x ∈ Rnd, there exist cA ∈ Y and
pA, pB ∈ [0, 1] such that: P(f(x + ξ) = cA) ≥
pA ≥ pB ≥ maxc ̸=cA P(f(x + ξ) = c). The fol-
lowing Theorem 1 investigates the noise added to
the word embedding to guarantee a successful de-
fense for one-word substitution.

Theorem 1 (One-word substitution) An at-
tacker replaces wi with w′

i ∈ syn(w, k), leading
to a perturbation δ = [0, · · · , δi, · · · , 0], where
δi = fe(wi)− fe(w

′
i). Then g(x+ δ) = cA for all

∥δi∥ < r, where

r =
σi
2
(Φ−1(pA)− Φ−1(pB)). (4)

The proof can be found in Appendix C. We can
enumerate the perturbations caused by word-level
attacks on each synonym and flexibly select an
appropriate Σ to meet our need. For example,
for the word wi to be substituted, we consider

1253



Table 1: Classification accuracy (%) on IMDB with various adversarial attack and defense methods.

Defense CNN Bi-LSTM

Clean GA PWWS PSO HLA FGPM Clean GA PWWS PSO HLA FGPM

Standard 88.8 7.3 5.3 6.8 14.5 4.4 89.2 4.9 3.6 4.3 12.3 4.3
ATFL 86.5 70.7 69.7 72.5 74.0 79.0 86.8 71.1 75.0 73.8 75.6 72.5
ASCC 84.7 79.0 77.2 77.9 78.3 80.9 86.5 73.5 77.8 78.2 80.2 71.7
SEM 86.9 69.2 70.4 70.3 72.2 77.3 87.1 77.4 79.0 79.2 79.9 75.9
ASCL 87.1 79.7 77.5 78.8 79.9 81.5 87.0 79.0 78.5 82.0 82.5 77.3
IBP 83.2 77.5 77.4 77.4 78.7 81.4 82.3 77.0 78.3 79.5 80.2 76.7

RanMASK 85.6 75.0 75.4 70.6 75.1 77.6 82.7 76.1 77.3 78.7 80.1 73.1
Text-RS 86.7 82.3 81.8 80.6 80.8 85.1 87.9 83.2 81.3 82.3 83.9 78.9

Table 2: Classification accuracy (%) on IMDB with various adversarial attack and defense methods.

Defense Bert RoBERTa

Clean BAE BERT-Attack CLARE Clean BAE BERT-Attack CLARE

Standard 91.4 13.1 10.5 7.3 93.7 12.9 12.6 10.1
ATFL 88.2 33.2 32.6 29.3 91.5 34.7 35.2 30.3
ASCC 87.5 33.9 34.5 35.2 91.1 38.6 39.2 35.5
SEM 90.2 34.8 36.2 37.0 92.4 41.5 41.3 36.7
ASCL 89.5 37.2 37.1 36.5 90.6 40.3 40.5 35.9

RanMASK 90.4 36.8 35.2 33.2 93.1 39.4 39.6 35.3
Text-RS 91.2 40.5 38.3 37.8 92.9 44.2 43.9 39.1

top-k synonyms of it and record the most seri-
ous perturbation ∥δmax

i ∥ = maxj∈[k] ∥fe (w) −
fe (Syn (w, j)) ∥2. To successfully defend such an
attack with top-k synonyms of wi, we may apply a
large σi to make sure r ≥ ∥δmax

i ∥, i.e.,

σi ≥
2∥δmax

i ∥
Φ−1(pA)− Φ−1(pB)

. (5)

Take the example of an attacker replacing only
one word in a sentence at a time. For a word w un-
der consideration, the sorted list of top-k synonym
substitution perturbation is

L = {∥δi∥2|i ∈ [k]},

where

∥δi∥2 = ∥fe(x)− fe(x
adv)∥2

= ∥fe (w)− fe (Syn (w, i)) ∥2.

If we require a successful defense with probability t
for that word, we can specify ∥δ⌈kt⌉∥2 as the radius
r. In other words, to meet our need, we should
select a σmin to let r ≥ ∥δ⌈kt⌉∥2, which means that

σmin ≥
2∥δ⌈kt⌉∥2

Φ−1(pA)− Φ−1(pB)
.

In summary, Theorem 1 indicates that the word
with a large ∥δi∥2 is easier to be attacked and
should be protected by adding a Gaussian noise
with large σ2

i . In practice, our adaptive algorithm
tends to select larger Gaussian noise for more vul-
nerable words, which is suggested in Figure A3 in
Appendix B.3. Next, we extend the above to the
case of multi-word substitution.

Theorem 2 (Multi-word substitution) Consider
an attacker that replaces multiple words at a
time. The list L = [L1, · · · , Ln] ∈ [0, 1]n records
the positions of all the replaced words. If wi is
replaced, then Li = 1. An attacker replaces wi

with its top-k synonyms w′
i ∈ syn(w, k). There

are d(x, x′) = 1
n

∑n
i=1 I(wi, w

′
i) words been

replaced. Denote the perturbation of each word
δi = fe(wi) − fe(w

′
i) and the overall perturba-

tion of this sentence δ = [Liδi]i∈[n] ∈ Rnd.
For each word wi to be substituted, we
record the most serious possible perturbation
∥δmax

i ∥ = maxj∈[k] ∥fe (w) − fe (Syn (w, j)) ∥2.
If ∀i ∈ [n], we have

σi ≥
2
√
d(x, x′)∥δmax

i ∥
Φ−1(pA)− Φ−1(pB)

. (6)

Then the attack is successfully defended, i.e.,
g(x+ δ) = cA.
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The full proof is in Appendix C. One-word sub-
stitution attack means d(x, x′) = 1. In this case,
the result of (6) recovers (5). Intuitively, if an at-
tacker can cause dramatic perturbation to the em-
bedding by replacing some words, then we should
add stronger noises to the embedding of such vul-
nerable words. To protect the model from being at-
tacked, one may add Gaussian noise with different
variance to the embedding of the words depending
on ∥δmax

i ∥. A word with large ∥δmax
i ∥ requires

gaussian noise with a large σ2
i , which is consistent

with (6).

3 Experiment

3.1 Experiment Setup

We evaluate our method Text-RS on the IMDB
dataset (Maas et al., 2011), which is a classifica-
tion dataset consisting of 25, 000 movie reviews
for training and 25, 000 for testing.

In our evaluation, we first use different defense
methods to train two classic architectures, namely
the Convolutional Neural Network (CNN) (Le-
Cun et al., 2015) and Bidirectional Long Short-
Term Memory (Bi-LSTM) network (Hochreiter
and Schmidhuber, 1997) on the IMDB dataset
to defend against various attacks. For defense
methods, we select ATFL (Wang et al., 2021b),
ASCC (Dong et al., 2021), SEM (Wang et al.,
2021a), ASCL (Shi et al., 2022), IBP (Jia et al.,
2019), and RanMASK (Zeng et al., 2021). For at-
tack methods, we select GA (Alzantot et al., 2018),
PWWS (Ren et al., 2019), PSO (Zang et al., 2020),
HLA (Maheshwary et al., 2021), and FGPM (Wang
et al., 2021b).

Then, we compare the effectiveness of differ-
ent defense methods on improving the robustness
of the advanced Bert architecture (BERT (Kenton
and Toutanova, 2019) and RoBERTa (Liu et al.,
2019)) against the Bert-related attacks (BAE (Garg
and Ramakrishnan, 2020), BERT-Attack (B.A.) (Li
et al., 2020b), and CLARE (Li et al., 2020a)). For
defense methods, we don’t consider the IBP, which
lacks the scalability of Bert.

For all experiments, we adopt the classification
accuracy as the performance metric. We mea-
sure the model’s performance on both the benign
and adversarial samples to assess whether defense
methods can achieve a balance between robustness
against adversarial attacks and stability on original,
non-adversarial data. A detailed experiment setup
can be found in Appendix B.1.

3.2 Numerical Results
Results on CNN and BiLSTM. We present the
classification results of CNN and BiLSTM on the
IMDB dataset in Table A1, where each row repre-
sents a defense method while each column cor-
responds to an attack method. Among various
defense methods, Text-RS demonstrates superior
defense performance against all attack methods.
Specifically, Text-RS outperforms the runner-up
defense method, achieving up to 3.2% and 3.4%
improvement for CNN and BiLSTM models, re-
spectively. When compared with certified defense
methods such as IBP and RanMask, Text-RS (1) en-
hances robustness against adversarial attacks with a
notable margin and (2) maintains the performance
on clean (unmodified) data, indicating Text-RS is a
generic framework for handling diverse data.
Results on Bert and RoBERTa. We present the
classification results of Bert and RoBERTa on the
IMDB dataset in Table 2. Our proposed Text-RS
method achieves consistent robustness improve-
ment under different advanced Bert-related attacks.
Compared with the runner-up certified defense ap-
proach RanMASK, Text-RS boosts a 3% accuracy
improvement on average.

In the supplementary material, we also provide
results on Ag-News and SST-2 datasets (see Ap-
pendix B.2) along with ablation studies of different
components in (3) (see Appendix B.3).

4 Conclusion

In our work, motivated by the compact exponential
distribution of word embedding space, we propose
approximating the discrete word substitution op-
eration as a continuous perturbation on the word
embedding representation, thus achieving efficient
certified defense training. Numeric results demon-
strate the effectiveness of our proposed method.

Limitations

In our work, we use continuous perturbation on
word embedding representations for certified ro-
bustness training. Although this method enables
efficient multi-word substitution in parallel, it in-
curs inevitable computational costs during noise
generation, making it impractical for processing
long sentences. Hence, it is worthwhile to explore
the possibility of identifying keywords for pertur-
bation. In contrast to perturbing all words in a text,
keyword perturbation can enhance both robustness
and efficiency.
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Appendix A Overview of Text-RS

We use Fig. A1 to present more details of our
method. Given a sentence x,

1. First, we transform x to the embedding repre-
sentation f(x);

2. Second, we generate N random noise from
the optimized distribution (see the adap-
tive variable in Section 2.3) to perturb f(x)
and generate N noisy embeddings f(x) +
ξ1, f(x) + ξ2, ..., f(x) + ξN , which corre-
sponds to the word replacement in sentence
level.

3. Next, we forward the N noisy inputs to model
and get N predictions {yn}Nn=1.

4. Last, use the Bernoulli hypothesis testing to
decide whether to predict the label with confi-
dence (see the certified prediction in Section
2.3).

Appendix B Experiment Details

B.1 Experiment Setup

Datasets: We evaluate Text-RS on three bench-
mark datasets, namely IMDB, Ag-News, and SST-
2 datasets. IMDB dataset is a binary classification
dataset that consists of 25, 000 movie reviews for
training and 25, 000 for testing. Ag-News dataset
is a topic classification dataset consisting of four
classes: World, Sports, Business, and Sci/Tech.
There are 30, 000 in news articles for training and
19, 000 for testing in each class. SST-2 dataset is a
binary classification dataset on sentiment analysis,
which contains 67, 000 movie reviews for training
and 1, 800 for testing.
Models: We use two generally used architectures
to conduct experiments, including the convolution
neural network (CNN) and bidirectional long short-
term memory (Bi-LSTM) network. Specifically,
we implement the CNN, which contains 3 layers
with the filter size 3, 4, and 5, respectively, fol-
lowed by a max pooling layer and a fully connected
layer for classification. We use a one-layer Bi-
LSTM, consisting of 128 LSTM units for forward
and reverse. We use the pre-trained Glove embed-
ding, which maps the words into a R300 vector.
Baselines: We adopt five advanced adversarial de-
fense techniques for our baselines, including ATFL,
ASCC, SEM, ASCL, IBP, and RanMASk. Besides,

we use five adversarial attacks to evaluate the per-
formance of the defense methods, including GA,
PWWS, PSO, HLA, and FGPM.
Hyper-parameter setting: We train 20 epochs for
CNN and BiLSTM on all three datasets to ensure
convergence. We follow the same hyper-parameter
setting in studied attack and defense methods. For
Text-RS, we set k = 5, λ1 = λ2 = 1, and n = 20.
Besides, due to the low efficiency of synonym
substitution-based attacks, we only evaluate the
defensive performance against attacks on 500 sam-
ples for each dataset. We use Pytorch to run our
experiments. We conduct our experiments on a
server which has two Intel(R) Xeon(R) Gold 5118
CPUs. Each of CPUs has 12 cores @2.30GHz
supporting 24 hardware threads. There is a Titan
RTX GPU which consists of 24 GB device memory.
There are 256 GB DDR4 memories on the server.
The mean training time of all models is 3.35 hours.

B.2 Evaluations on Ag-News and SST-2
Among various defense methods, Text-RS demon-
strates superior defense performance against differ-
ent attack methods. On the IMDB dataset, Text-RS
outperforms the runner-up defense method, achiev-
ing up to 3.2% and 3.4% improvement for CNN
and BiLSTM models, respectively. On Ag-News,
Text-RS shows 0.2% and 1.7% improvement over
the runner-up, and on SST-2, Text-RS demonstrates
4.1% and 5.0% improvement. While certified de-
fense methods such as IBP and RanMask fail to
deliver good results on BiLSTM with the three
datasets, Text-RS still performs well. It is worth
noting that Text-RS not only improves adversar-
ial robustness but also maintains the original task
performance (Clean), unlike certified defense meth-
ods.

B.3 Ablation Study
On the optimized noise: To evaluate the efficacy
of the proposed noise injection method in enhanc-
ing adversarial robustness, we established two base-
line models: the standard training model with noise
prediction (Standardr) and the random smoothing
training model with unoptimized noise (RSu). The
results, presented in Table A5, reveal that while
random smoothing during inference (Standardr)
provides a significant improvement in adversarial
robustness, it also impairs the performance on be-
nign samples. In contrast, the noise injection-based
training approach enhances both adversarial robust-
ness and task performance. These results affirm the
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Defense CNN BiLSTM

Clean GA PWWS PSO HLA FGPM Clean GA PWWS PSO HLA FGPM

Standard 88.8 7.3 5.3 6.8 14.5 4.4 89.2 4.9 3.6 4.3 12.3 4.3
ATFL 86.5 70.7 69.7 72.5 74.0 79.0 86.8 71.1 75.0 73.8 75.6 72.5
ASCC 84.7 79.0 77.2 77.9 78.3 80.9 86.5 73.5 77.8 78.2 80.2 71.7
SEM 86.9 69.2 70.4 70.3 72.2 77.3 87.1 77.4 79.0 79.2 79.9 75.9
ASCL 87.1 79.7 77.5 78.8 79.9 81.5 87.0 79.0 78.5 82.0 82.5 77.3
IBP 83.2 77.5 77.4 77.4 78.7 81.4 82.3 77.0 78.3 79.5 80.2 76.7

RanMASK 85.6 75.0 75.4 70.6 75.1 77.6 82.7 76.1 77.3 78.7 80.1 73.1
Text-RS 86.7 82.3 81.8 80.6 80.8 85.1 87.9 83.2 81.3 82.3 83.9 78.9

Table A1: Classification accuracy (%) on IMDB.

Defense CNN BiLSTM

Clean GA PWWS PSO HLA FGPM Clean GA PWWS PSO HLA FGPM

Standard 93.3 33.2 32.9 32.9 43.5 32.3 92.4 32.8 32.8 32.7 43.1 32.1
ATFL 92.7 87.9 88.0 86.8 90.3 89.5 91.6 88.2 87.1 87.4 90.1 88.2
ASCC 89.4 83.3 83.0 83.0 81.7 86.2 89.5 74.4 73.6 74.1 75.8 74.9
SEM 91.8 80.1 79.2 83.8 86.7 79.6 88.6 87.6 87.5 87.9 90.9 88.3
ASCL 90.9 85.0 85.1 84.8 83.9 85.4 88.7 68.6 86.9 86.2 88.6 87.1
IBP 89.4 84.2 87.6 86.2 87.0 87.2 87.9 76.3 74.0 73.5 77.1 74.6

RanMASK 88.9 83.7 84.5 86.2 86.4 87.6 88.2 72.6 69.4 69.3 75.4 74.4
Text-RS 90.4 88.5 89.8 87.6 88.5 89.1 92.3 90.5 89.1 90.5 91.5 89.5

Table A2: Classification accuracy (%) on Ag-News.

Defense CNN BiLSTM

Clean GA PWWS PSO HLA FGPM Clean GA PWWS PSO HLA FGPM

Standard 91.8 3.1 2.4 2.4 13.3 2.6 92.5 2.8 2.7 2.9 12.9 2.0
ATFL 91.2 64.2 62.7 62.1 72.1 65.8 92.3 63.1 62.8 63.6 74.2 64.6
ASCC 91.8 68.6 68.3 68.4 69.5 63.9 91.9 67.8 68.5 68.2 74.1 71.7
SEM 91.1 67.5 67.1 66.8 68.5 64.5 91.4 67.0 66.1 66.8 70.5 66.1
ASCL 91.1 69.5 69.9 70.5 70.5 65.2 92.0 69.8 69.0 69.2 75.4 73.1
IBP 90.4 69.8 69.6 69.7 72.0 64.3 91.0 69.0 67.9 69.3 71.4 66.7

RanMASK 91.5 67.9 68.7 67.1 69.7 61.9 90.7 67.3 66.5 67.6 68.3 64.8
Text-RS 91.8 73.5 72.1 72.8 75.7 72.3 91.9 74.8 74.2 75.3 78.6 74.8

Table A3: Classification accuracy (%) on SST-2.

Table A4: Classification accuracy (%) against various adversarial attacks on three datasets for CNN and BiLSTM.

Table A5: Classification accuracy (%) against various adversarial attacks on IMDB dataset for CNN. NI: Noise
Injection, SO: Scale Optimization, PLoss: Perturbation Loss, SLoss: Synonym Loss.

Method NI SO PLoss SLoss Clean GA PWWS PSO HLA FGPM

Standard ✗ ✗ ✗ ✗ 88.8 7.3 5.3 6.8 14.5 4.4
Standardr ✓ ✗ ✗ ✗ 78.4 65.3 66.8 68.5 75.0 62.4

RSu ✓ ✗ ✓ ✗ 85.1 67.2 67.2 68.6 74.8 65.5
RS-s ✓ ✓ ✓ ✗ 85.6 78.1 76.9 77.3 74.7 80.2

Text-RS ✓ ✓ ✓ ✓ 86.7 82.3 81.8 80.6 80.8 85.1
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Fig. A1: Overview of our proposed certified prediction method based on the assumption of continuous perturbation.

effectiveness of our proposed method.
On the synonym embedding: Text-RS narrows
the synonym and moves away from other words
to achieve the certified defense by introducing the
loss function (2) of SEM. Here, to study the influ-
ence of the synonym loss, we use Text-RS without
synonym loss (RS-s in Tab. A5) to train a model
and evaluate the performance to validate the per-
formance. From the result, the effectiveness of
the introduction of synonym loss can be verified.
On the other hand, randomized smoothing train-
ing compact with synonym loss contributes to im-
proving the adversarial transferability. Besides, as
discussed in Section, we visualize the mean dis-
tance of the top-k synonym. 2.2 again. Comparing
Fig. 2(a) and Fig. 2(b), it can be clearly identified
that the L2 distance of synonym has been reduced
compared with the baseline.
On the learning of σ: To guarantee the robustness
under the multi-word substitution, the learned σi
for word wi should be proportional to the mini-
mum distance between the synonyms, as analyzed
in (6). To further verify the robustness guarantee
theory, we collect the minimum distance d between
synonyms and corresponding σ for every world as
(d, σ) and present the distribution relationship in
Fig. A3. From the scatter plot, it can be noticed
that with an increasing magnitude of the minimum
distance between synonyms, the learned σ corre-
sponding increases in statistics. We also use a linear
model to fit the distribution, which is presented in
red. The slope ratio for the linear model is 0.17,
which shows the positive correlation between d and
σ, thus providing more evidence for (13).

Appendix C Proof

C.1 Theorems
Theorem 3 (Anisotropic Gaussians) Let
f : Rd → Y be any deterministic or ran-
dom function. Let ε ∼ N (0,Σ), where
Σ = diag{σ2

i }(i ∈ [d]), and mini∈[d] σi = σmin.

(a) The distribution of synonym embedding with standard
training process.

(b) The distribution of synonym embedding with Text-RS.

Fig. A2: Ablation study on Text-RS.

Let g(x) = argmaxc P(f(x + ε) = c). Suppose
that for a specific x ∈ Rd, there exist cA ∈ Y and
pA, pB ∈ [0, 1] such that:

P(f(x+ ε) = cA) ≥ pA ≥ pB ≥
max
c ̸=cA

P(f(x+ ε) = c) (7)

Then g(x+ δ) = cA for all ∥δ∥ < r, where

r =
σmin

2
(Φ−1(pA)− Φ−1(pB)) (8)
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Fig. A3: Visualization of the relationship between the
synonym distance and optimized σ for given words.

Analysis The above theorem is appropriate for
images. We extend (Cohen et al., 2019) from
isotropic gaussian to anisotropic gaussian. The
only difference is σ and σmin. And σ = σmin will
recover the result in (Cohen et al., 2019).

However, considering the nature of word-level
substitution, only some specific part of x =
(w1, w2, ..., wn) will be affected. The following
theorem extends the result to one-word substitu-
tion.

Theorem 4 (One-word substitution) Let a word
wi ∈ Rd, a sentence containing n words: x =
(w1, w2, ..., wn) and function f : Rdn → Y . Let
ξ ∼ N (0,Σ), where Σ = diag({σ2

i Id×d}i∈[n]) ∈
Rnd×nd. Let g(x) = argmaxc P(f(x + ξ) = c).
Suppose that for a specific x ∈ Rnd, there exist
cA ∈ Y and pA, pB ∈ [0, 1] such that:

P(f(x+ ξ) = cA) ≥ pA ≥ pB ≥
max
c̸=cA

P(f(x+ ξ) = c). (9)

An attacker replaces wi with w′
i ∈ syn(w, k),

leading to a perturbation δ = [0, · · · , δi, · · · , 0] ,
where

δi = fe(wi)− fe(w
′
i).

Then g(x+ δ) = cA for all ∥δi∥ < r, where

r =
σi
2
(Φ−1(pA)− Φ−1(pB)) (10)

Analysis With Theorem 3 and the experiments,
we can enumerate the perturbations caused by
word-level attacks on each synonym and flexibly
select an appropriate Σ to meet our need. For exam-
ple, for the word wi to be substituted, we consider

top-k synonyms of it and record the most serious
perturbation

∥δmax
i ∥ = max

j∈[k]
∥fe (w)− fe (Syn (w, j)) ∥2.

To successfully defend such an attack with top-k
synonyms of wi, we may apply a large σi to make
sure r ≥ ∥δmax

i ∥, i.e.,

σi ≥
2∥δmax

i ∥
Φ−1(pA)− Φ−1(pB)

. (11)

Next, we extend the above to the case of multi-
word substitution.

Theorem 5 (Multi-word substitution) Let
a word wi ∈ Rd, a text containing n
words: x = (w1, w2, ..., wn) and function
f : Rdn → Y . Let ξ ∼ N (0,Σ), where
Σ = diag({σ2

i Id×d}i∈[n]) ∈ Rnd×nd. Let
g(x) = argmaxc P(f(x + ξ) = c). Suppose that
for a specific x ∈ Rnd, there exist cA ∈ Y and
pA, pB ∈ [0, 1] such that:

P(f(x+ ξ) = cA) ≥ pA ≥ pB ≥
max
c ̸=cA

P(f(x+ ξ) = c). (12)

Consider an attacker that replaces multiple
words at a time. The list L = [L1, · · · , Ln] ∈
[0, 1]n records the positions of all the replaced
words. If wi is replaced, then Li = 1. An at-
tacker replaces wi with its top-k synonyms w′

i ∈
syn(w, k). There are d(x, x′) = 1

n

∑n
i=1 I(wi, w

′
i)

words been replaced. Denote the perturbation of
each word δi = fe(wi) − fe(w

′
i) and the overall

perturbation of this sentence δ = [Liδi]i∈[n] ∈
Rnd.

For each word wi to be substituted, we record
the most serious possible perturbation

∥δmax
i ∥ = max

j∈[k]
∥fe (w)− fe (Syn (w, j)) ∥2.

If ∀i ∈ [n], we have

σi ≥
2
√
d(x, x′)∥δmax

i ∥
Φ−1(pA)− Φ−1(pB)

. (13)

Then the attack is successfully defended, i.e.,
g(x+ δ) = cA.
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Analysis One-word substitution attack means
d(x, x′) = 1. In this case, the result of (13) re-
covers (11). To protect the model from being at-
tacked, one may add Gaussian noise with different
variance to the embedding of the words depending
on ∥δmax

i ∥. A word with large ∥δmax
i ∥ requires a

large σ2
i . Intuitively, if an attacker can cause dra-

matic perturbation to the embedding by replacing
some words, then we should add a stronger noise
to the embedding of such vulnerable words.

C.2 Lemmas
Lemma 1 (Neyman-Pearson) Let X and Y be
random variables in Rd with densities µX and µY .
Let h : Rd → {0, 1} be a random or deterministic
function. Then:

1. If S =
{
z ∈ Rd : µY (z)

µX(z) ≤ t
}

for some t > 0

and P(h(X) = 1) ≥ P(X ∈ S), then
P(h(Y ) = 1) ≥ P(Y ∈ S).

2. If S =
{
z ∈ Rd : µY (z)

µX(z) ≥ t
}

for some t > 0

and P(h(X) = 1) ≤ P(X ∈ S), then
P(h(Y ) = 1) ≤ P(Y ∈ S).

The following is Neyman-Pearson lemma for
Anisotropic Gaussians with different means.

Lemma 2 (Neyman-Pearson (Anisotropic))
Let X ∼ N (x,Σ) and Y ∼ N (x + δ,Σ),
where Σ = diag{σ2

i }(i = 1, · · · , d). Let
h : Rd → {0, 1} be any deterministic or random
function. Then:

1. If S =
{
z ∈ Rd : (Σ− 1

2 δ)T z ≤ β
}

for some
β and P(h(X) = 1) ≥ P(X ∈ S), then
P(h(Y ) = 1) ≥ P(Y ∈ S)

2. If S =
{
z ∈ Rd : (Σ− 1

2 δ)T z ≥ β
}

for some
β and P(h(X) = 1) ≤ P(X ∈ S), then
P(h(Y ) = 1) ≤ P(Y ∈ S)

This lemma is the special case of Lemma 1 when
X and Y are anisotropic Gaussians with means x
and x+ δ.

By Lemma 1 it suffices to simply show that for
any β, there is some t > 0 for which:

{z : (Σ− 1
2 δ)T z ≤ β} =

{
z :

µY (z)

µX(z)
≤ t

}
and

{z : (Σ− 1
2 δ)T z ≥ β} =

{
z :

µY (z)

µX(z)
≥ t

}

(14)

The likelihood ratio for this choice of X and Y
turns out to be:

µY (z)

µX(z)
=

exp
(
−1

2

∑d
i=1

(zi−(xi+δi))
2

σ2
i

)
)

exp
(
−1

2

∑d
i=1

(zi−xi)2

σ2
i

)

= exp

(
1

2

d∑

i=1

2ziδi − δ2i − 2xiδi
σ2
i

)

= exp((Σ−1δ)T z + b)

where b = −(Σ−1δ)Tx− 1
2∥Σ−1δ∥22 is a constant

w.r.t z. Therefore, given any β =
∑d

i=1 βi, where
βi ≤ δi

σi
zi. we may take t = exp(

∑d
i=1

βi

σi
+ b),

noticing that

(Σ− 1
2 δ)T z ≤ β ⇐⇒ exp((Σ−1δ)T z + b) ≤ t

(Σ− 1
2 δ)T z ≥ β ⇐⇒ exp((Σ−1δ)T z + b) ≥ t

So the proof is complete.

C.3 Proof of Theorem 3
To show that g(x + δ) = cA, it follows from the
definition of g that we need to show that

P(f(x+ δ + ε) = cA) >

max
cB ̸=cA

P(f(x+ δ + ε) = cB) (15)

We will prove that P(f(x+δ+ε) = cA) > P(f(x+
δ + ε) = cB) for every class cB ̸= cA. Fix one
such class cB without loss of generality.

For brevity, define the random variables

X := x+ ε = N (x,Σ)

Y := x+ δ + ε = N (x+ δ,Σ)

In this notation, we know that

P(f(X) = cA) ≥ pA and

P(f(X) = cB) ≤ pB (16)

and our goal is to show that

P(f(Y ) = cA) > P(f(Y ) = cB) (17)

Define the half-spaces:

A := {z : (Σ− 1
2 δ)T (z − x) ≤ ∥δ∥Φ−1(pA)}

B := {z : (Σ− 1
2 δ)T (z − x) ≥ ∥δ∥Φ−1(1− pB)}

Algebra (deferred to C.6) shows that P(X ∈ A) =
pA. Therefore, by (16) we know that P(f(X) =
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cA) ≥ P(X ∈ A). Hence we may apply Lemma 2
with h(z) := 1[f(z) = cA] to conclude:

P(f(Y ) = cA) ≥ P(Y ∈ A) (18)

Similarly, algebra shows that P(X ∈ B) = pB .
Therefore, by (16) we know that P(f(X) = cB) ≤
P(X ∈ B). Hence we may apply Lemma 2 with
h(z) := 1[f(z) = cB] to conclude:

P(f(Y ) = cB) ≤ P(Y ∈ B) (19)

To guarantee (17), we see from (18, 19) that it
suffices to show that P(Y ∈ A) > P(Y ∈ B), as
this step completes the chain of inequalities

P(f(Y ) = cA) ≥ P(Y ∈ A) >

P(Y ∈ B) ≥ P(f(Y ) = cB) (20)

Let R(A, x) = xTAx
xT x

be the Rayleigh quotient
for symmetric matrix A and vector x. In our setting,
Σ is a symmetric and positive-definite matrix, so
its eigenvalues are all greater than zero. Based
on the deferred derivation in C.6, we know that
R(Σ− 1

2 , δ) > 0.
We can compute the following:

P(Y ∈ A) = Φ
(
Φ−1(pA)− ∥δ∥R(Σ− 1

2 , δ)
)

(21)

P(Y ∈ B) = Φ
(
Φ−1(pB) + ∥δ∥R(Σ− 1

2 , δ)
)

(22)

Finally, P(Y ∈ A) > P(Y ∈ B) holds if and
only if:

∥δ∥ <
1

2R(Σ− 1
2 , δ)

(Φ−1(pA)− Φ−1(pB)) (23)

Furthermore, we just need to let the Rayleigh
quotient takes the maximum. We know that

maxR(Σ− 1
2 , δ) = λmax(Σ

− 1
2 ) =

1

σmin

Therefore, we have R(Σ− 1
2 , δ) ≥ σmin, which

means that

∥δ∥ <
σmin

2
(Φ−1(pA)− Φ−1(pB))

≤ 1

2R(Σ− 1
2 , δ)

(Φ−1(pA)− Φ−1(pB)) (24)

The proof is complete.

C.4 Proof of Theorem 4
Before (23), the proof for Theorem 3 and 4 are the
same. Recall that δ = [0, · · · , δi, · · · , 0], so we
have

R(Σ− 1
2 , δ) =

δTΣ− 1
2 δ

δT δ
=

δTi (
1
σi
I)δi

δTi δi
=

1

σi
.

Finally, Combining it with (23) and we obtain:

∥δ∥ <
σi
2
(Φ−1(pA)− Φ−1(pB)) (25)

The proof is complete.

C.5 Proof of Theorem 5
Before (23), the proof for Theorem 3 and 5 are the
same. Recall that the list L = [L1, · · · , Ln] ∈
[0, 1]n records the positions of all the replaced
words. An attacker replaces wi with w′

i, where
Li = 1. The perturbation of each word δi =
fe(wi)− fe(w

′
i). The overall perturbation of this

sentence satisfies: ∥δ∥ =
√∑

i∈[n],Li=1 ∥δi∥2.
Therefore, for multi-word substitution, we have

R(Σ− 1
2 , δ) =

δTΣ− 1
2 δ

δT δ

=

∑
i∈[n],Li=1

1
σi
∥δi∥2∑

i∈[n],Li=1 ∥δi∥2

=
∑

i∈[n],Li=1

1

σi

∥δi∥2
∥δ∥2 . (26)

If ∀i ∈ [n], we have

σi ≥
2
√
d(x, x′)∥δmax

i ∥
Φ−1(pA)− Φ−1(pB)

.

Then

R(Σ− 1
2 , δ) =

∑

i∈[n],Li=1

1

σi

∥δi∥2
∥δ∥2

≤
∑

i∈[n],Li=1

∥δi∥2
∥δ∥2 ·

Φ−1(pA)− Φ−1(pB)

2
√
d(x, x′)∥δmax

i ∥

≤
∑

i∈[n],Li=1

∥δi∥
2∥δ∥2 ·

Φ−1(pA)− Φ−1(pB)√
d(x, x′)

=
Φ−1(pA)− Φ−1(pB)

2∥δ∥

·


 1√

d(x, x′)

∑

i∈[n],Li=1

∥δi∥
∥δ∥


 (27)
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Notice that
∑

i∈[n],Li=1 1 = d(x, x′). Accord-
ing to AM-QM Inequality mentioned in C.6, we
have

1√
d(x, x′)

∑

i∈[n],Li=1

∥δi∥
∥δ∥ ≤

∑

i∈[n],Li=1

∥δi∥2
∥δ∥2 = 1.

In other words,

R(Σ− 1
2 , δ) ≤

Φ−1(pA)− Φ−1(pB)

2∥δ∥ ,

which is consistent with (23), i.e., P(Y ∈ A) >
P(Y ∈ B). So the attack is defended successfully.
The proof is complete.

C.6 Deferred Algebra

C.6.1 The properties of Rayleigh quotient

R(A, x) =
xTAx

xTx
∈ [λmin, λmax] ,

where R(A, x) is the Rayleigh quotient for sym-
metric matrix A and vector x. And λmax, λmin are
the maximum and minimum eigenvalues of A.

We introduce Lagrange multiplier λ ≥ 0. With-
out loss of generality, we set ∥x∥22 = 1 to obtain
the extreme value of R(A, x). So

L(x, λ) = xTAx− λ(∥x∥22 − 1).

Taking the derivative w.r.t. x and set it to zero:

∂L(x, λ)

∂x
= Ax− λx = 0.

So λ is one of the eigenvalues of A when L(x, λ)
takes an extreme value. Based on such result, when
R(A, x) takes an extreme value, there holds:

R(A, x) =
xTλx

xTx
= λ ∈ [λmin, λmax] .

Further, in our setting, Σ is a symmetric and
positive-definite matrix, so its eigenvalues are all
greater than zero, which means that R(Σ−1, x) >
0.

C.6.2 Others
A frequently used derivation.

(Σ− 1
2 δ)TN (0,Σ) = ∥δ∥Z,

where Z ∼ N (0, 1).

Let T = (t1, t2, · · · , td)T ∼ N (0,Σ). So we
have ti ∼ N (0, σ2

i ), where i = 1, · · · , d.

(Σ− 1
2 δ)TN (0,Σ)

=(Σ− 1
2 δ)T (t1, t2, · · · , td)T

=

d∑

i=1

δi
σi
ti

=N (0,

d∑

i=1

δ2i ) (ti ∼ N (0, σ2
i ))

=N (0, ∥δ∥2)
=∥δ∥N (0, 1)

=∥δ∥Z (Z ∼ N (0, 1))

Claim. P(X ∈ A) = pA
Recall that X ∼ N (x,Σ) and A = {z :

(Σ− 1
2 δ)T (z − x) ≤ ∥δ∥Φ−1(pA)}.

P(X ∈ A) = P((Σ− 1
2 δ)T (X − x)

≤ ∥δ∥Φ−1(pA))

= P((Σ− 1
2 δ)TN (0,Σ)

≤ ∥δ∥Φ−1(pA))

= P(∥δ∥Z ≤ ∥δ∥Φ−1(pA))

(Z ∼ N (0, 1))

= Φ(Φ−1(pA))

= pA

Claim. P(X ∈ B) = pB
Recall that X ∼ N (x,Σ) and B = {z :

(Σ− 1
2 δ)T (z − x) ≤ ∥δ∥Φ−1(1− pB)}.

P(X ∈ A)

= P((Σ− 1
2 δ)T (X − x) ≥ ∥δ∥Φ−1(1− pB))

= P((Σ− 1
2 δ)TN (0,Σ) ≥ ∥δ∥Φ−1(1− pB))

= P(∥δ∥Z ≥ ∥δ∥Φ−1(1− pB))
(Z ∼ N (0, 1))

= P(Z ≥ Φ−1(1− pB))

= 1− Φ(Φ−1(1− pB))

= pB

Claim.

P(Y ∈ A) = Φ
(
Φ−1(pA)− ∥δ∥R(Σ− 1

2 , δ)
)

Recall that Y ∼ N (x + δ,Σ) and A = {z :
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(Σ− 1
2 δ)T (z − x) ≤ ∥δ∥Φ−1(pA)}.

P(Y ∈ A)

= P((Σ− 1
2 δ)T (Y − x)

≤ ∥δ∥Φ−1(pA))

= P((Σ− 1
2 δ)TN (0,Σ) + δTΣ− 1

2 δ

≤ ∥δ∥Φ−1(pA))

= P(∥δ∥Z ≤ ∥δ∥Φ−1(pA)− δTΣ− 1
2 δ)

(Z ∼ N (0, 1))

= P

(
Z ≤ Φ−1(pA)−

δTΣ− 1
2 δ

∥δ∥

)

= Φ
(
Φ−1(pA)− ∥δ∥R(Σ− 1

2 , δ)
)
.

Claim.

P(Y ∈ B) = Φ
(
Φ−1(pB) + ∥δ∥R(Σ− 1

2 , δ)
)

Recall that Y ∼ N (x + δ,Σ) and B = {z :

(Σ− 1
2 δ)T (z − x) ≥ ∥δ∥Φ−1(1− pB)}.

P(Y ∈ B)

= P((Σ− 1
2 δ)T (Y − x)

≥ ∥δ∥Φ−1(1− pB))

= P((Σ− 1
2 δ)TN (0,Σ) + δTΣ− 1

2 δ

≥ ∥δ∥Φ−1(1− pB))

= P(∥δ∥Z + δTΣ− 1
2 δ

≥ ∥δ∥Φ−1(1− pB)) (Z ∼ N (0, 1))

= P

(
Z ≥ Φ−1(1− pB)−

δTΣ− 1
2 δ

∥δ∥

)

= P

(
Z ≤ Φ−1(pB) +

δTΣ− 1
2 δ

∥δ∥

)

= Φ
(
Φ−1(pB) + ∥δ∥R(Σ− 1

2 , δ)
)

C.6.3 AM-QM Inequality
For x1, · · · , xn ∈ R+, we have

∑n
i=1 xi
n

≤
√∑n

i=1 x
2
i

n
. (28)

According to the Jensen’s inequality,

f

(∑n
i=1 xi
n

)
≤
∑n

i=1 f(xi)

n
.

For a convex function f(x) = x2, (28) holds. So
the proof is complete.

Furthermore, it is obvious that

1√
n

n∑

i=1

xi ≤

√√√√
n∑

i=1

x2i ,

which will be used in our proof.
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