
Findings of the Association for Computational Linguistics: EACL 2024, pages 1306–1321
March 17-22, 2024 c©2024 Association for Computational Linguistics

Improving Grounded Language Understanding in a Collaborative
Environment by Interacting with Agents Through Help Feedback

Nikhil Mehta1∗ Milagro Teruel2 Patricio Figueroa Sanz3 Xin Deng3

Ahmed Hassan Awadallah3 Julia Kiseleva3

1Purdue University
2Universidad Nacional de Córdoba

3Microsoft
mehta52@purdue.edu

Abstract

Many approaches to Natural Language Process-
ing tasks often treat them as single-step prob-
lems, where an agent receives an instruction,
executes it, and is evaluated based on the final
outcome. However, language is inherently in-
teractive, as evidenced by the back-and-forth
nature of human conversations. In light of this,
we posit that human-AI collaboration should
also be interactive, with humans monitoring the
work of AI agents and providing feedback that
the agent can understand and utilize. Further,
the AI agent should be able to detect when it
needs additional information and proactively
ask for help. Enabling this scenario would lead
to more natural, efficient, and engaging human-
AI collaboration. In this paper, we investigate
these directions using the challenging task es-
tablished by the IGLU competition, an interac-
tive grounded language understanding task in a
MineCraft-like world. We delve into multiple
types of help players can give to the AI to guide
it and analyze the impact of this help on behav-
ior, resulting in performance improvements and
an end-to-end interactive system.

1 Introduction

One of the long-lasting goals of AI agents (Wino-
grad, 1972) is the ability to seamlessly interact
with humans to assist in solving tasks. To achieve
this, the agent must be able to understand human
language and respond to it, so it can execute instruc-
tions (Skrynnik et al., 2022) or ask clarifying ques-
tions (Aliannejadi et al., 2021). Researchers have
proposed a large number of tasks aimed at tackling
this human-AI collaboration challenge, many based
on humans providing instructions to the agent to
solve a goal (Gluck and Laird, 2018; Shridhar et al.,
2020). An example is the blocks world task, where
the agent understands human instructions to move
blocks on a grid (Bisk et al., 2016).

∗ Work done during an internship at Microsoft Research.

Target Structure Chat Interface

Architect: in about the middle build a
column five tall
Architect: then two more to the left of
the top to make a 7
Architect: now a yellow 6
Architect: the long edge of the 6 aligns
with the stem of the 7 and faces right
Builder: Where does the 6 start?
Architect: Behind the 7

Figure 1: An example of the building IGLU task, collected
using all human data: Based on the Target Structure (left), the
Human Architect provides instructions to the Builder via the
Chat Interface (right). As shown, during data collection the
human Builder also responds.

A more recently proposed human-AI instruction-
based interaction task, is Interactive Grounded Lan-
guage Understanding in a Collaborative Environ-
ment (IGLU) (Mohanty et al., 2023), where agents
collaborate with humans to build a reference struc-
ture in the MineCraft 3D world, by placing blocks
on a grid. Fig. 1 illustrates the building task, where
the human Architect (Narayan-Chen et al., 2019;
Jayannavar et al., 2020) provides instructions to
the AI Builder agent, via a Chat Interface, to build
the Target Structure. The IGLU task is particularly
challenging since human architect instructions are
complex, often referring to broad spatial concepts
in the 3D world, such as “in about the middle build
a column five tall”. Understanding these concepts
and executing the instructions successfully, even
for state-of-the-art systems, is challenging and well
below human performance (Kiseleva et al., 2022b).

Typically, tasks such as IGLU are evaluated
single-step, where an agent is given an instruction,
executes it, and is evaluated to obtain final results.
However, language is inherently interactive, where
humans converse back and forth with each other. In
this paper, inspired by previous work (Mehta and
Goldwasser, 2019), we adopt a different approach,
and propose multiple ways in which the AI agent
can interact with humans to solve the IGLU task.
Specifically, we propose ways in which humans can
interact with AI agents to correct their mistakes,

1306

(a) Architect: Place green blocks
underneath the yellow structure
and one more on both sides of it.

(b) Builder mistake, only places
blocks on the left side instead of

both sides.

(c) Top: Builder receives help.
Bottom: Builder asks a clarification
question, human responds via help.

(d) Based on the response, the
builder places the correct block.

Help: You should have placed 5
blocks

Clarification Question: How
many blocks should I place?

Figure 2: Our framework overview: Improving Grounded Language Understanding in a Collaborative Environment by
Interacting with Agents using Help Feedback: Based on the initial architect instruction (a), the Builder Agent places blocks
(b). Noticing a mistake has been made, the human can interact to provide help (c top), in this case telling the model how many
blocks to place. This easy to provide help enables the Builder to solve the task better, leading to a correct prediction (d). Further,
the Builder can self-detect confusion and realize it may make a mistake, asking a Clarifying Question (c bottom), which the
human can respond to via help (c top), leading to a better prediction (d).

by offering four different forms of help, a form
of online feedback. Following Mehta and Gold-
wasser, we define help as a high level feedback to
the model, that allows it to solve the current task
better and learn knowledge for the future. For ex-
ample, after the agent makes a mistake and places
too many blocks on the grid, one form of help in-
forms the agent how many blocks it should have
placed. While not solving the task directly, this
help makes the task easier, which has multiple ben-
efits: (1) Help enables the agent to make a better
prediction on the current instruction (i.e. the model
knows how many blocks to place). (2) Help pro-
vided at training enables the agent to learn better
for the future. For example, once the agent knows
how many blocks to place, it can focus on learning
other aspects of the instruction (such as where to
place the blocks), which can generalize to future
instructions, where similar concepts may apply. (3)
Help is simple for humans to provide, as humans
don’t need to solve the final task, allowing humans
to interact with agents easily.

Each form of help we propose is based on a
high-level concept that is useful for the IGLU task.
Through it, the agent is able to understand and take
advantage of interactions from humans beyond the
initial instruction, to do better. However, in a true
interactive scenario the agent should also be able to
speak to the human, even unprovoked. To enable
this, we propose a method based on help in which
the agent can self-identify confusion, and use it
to ask an appropriate clarification question to the
human. This is done by the agent first providing it-
self several different forms of help (which needs no
human interaction and can be done using a separate
ML model) until it identifies a concept it doesn’t
understand. Then, it asks a clarification question
based on that concept. Combined with understand-
ing and following help from above, this enables

the agent to be fully interactive. It can detect when
it’s confused, ask for help, and then utilize that
help effectively. Experiments show performance
improvements. Fig. 2 shows an overview.

In summary, we make the following contribu-
tions: C1: A framework to tackle tasks like IGLU
in an interactive manner, where human Architects
can have a back and forth interaction with AI
agents. C2: Four different forms of help, based on
relevant IGLU concepts, that humans can use to
help AI agents, specifically when they make mis-
takes. C3: A method for agents to self-generate
this help, so human interaction is not necessary.
C4: A novel method to take advantage of help for
the agent to detect when it’s confused, and ask a
relevant clarification question. C5: Performance
improvements in these settings, enabling a true in-
teractive agent for solving tasks like IGLU.

Sec. 3 describes our basline, Sec. 4 discusses the
help we propose and how we use it. Finally, Sec. 5
presents results, and Sec. 6 analyzes them.

2 Related Work

Human-AI Interaction Tasks The task of humans
interacting with AI agents to solve real-world tasks
is a long-standing problem (Winograd, 1972; Clark,
1996; Koller et al., 2010; Narayan-Chen et al.,
2017; Padmakumar et al., 2022). Among other
challenges, the embodied AI agent needs to under-
stand complex human language (Kiseleva et al.,
2016), spatial world orientation, and unseen con-
cepts (Wang et al., 2023). As this problem is still
challenging, datasets like IGLU (Kiseleva et al.,
2022a; Mohanty et al., 2023), BASALT (Shah et al.,
2021; Milani et al., 2023) and MineDojo (Fan et al.,
2022) have been recently proposed. In this work,
we focus on building an agent that understands
instructions to place blocks on a grid.

1307

IGLU Task Since the IGLU task was proposed
(Kiseleva et al., 2022a,b; Mohanty et al., 2022),
it has been the subject of multiple competitions,
such as a RL task (building a RL-based first-person
agent to place blocks) (Skrynnik et al., 2022; Zho-
lus et al., 2022) and a NLP task (determining when
and what clarification questions to ask) (Mohanty
et al., 2023). In contrast, as we are interested in
building a fully interactive agent, we focus on a
dialogue only IGLU task setup, where an instruc-
tion is provided and a model predicts the blocks
to be placed. As we do not focus on building a
RL agent and we do not use a vision component
(the 3D world space is encoded as language in our
setup), our work is not directly comparable to the
existing IGLU baselines. However, we use similar
metrics when applicable. Further, we hypothesize
that our interactive framework can be applied to
other IGLU-based tasks, by adding a language com-
ponent that understands help similar to this paper,
and leave it for future work.

User-Feedback As tasks like IGLU are difficult,
a crucial component of human-AI interactive sys-
tems is the ability of the agent to receive direct
feedback from humans, to improve performance.
This has been studied in active learning (Ren
et al., 2021), LLM feedback (Madaan et al., 2023;
Akyurek et al., 2023), robotics (Ren et al., 2023),
summarization (Shapira et al., 2021), and others
(see Appendix A). Closest to us, Mehta and Gold-
wasser show how hints can be provided to the
model. We build upon their regional (“top right”)
and directional (“move left”) hints, to enable more
forms of user feedback, by proposing additional
types of hints. Further, compared to Mehta and
Goldwasser, we evaluate on a significantly more
challenging task and use a stronger baseline model
(LLMs). We also propose a novel approach for
the agent to identify when it is confused, and then
enable it to ask relevant clarification questions.

Clarifying Questions As instructions may be
vague or unclear, the AI agent should be able to
ask clarification questions (Aliannejadi et al., 2020,
2021; Arabzadeh et al., 2022), to solve the task
better. This is often studied, especially in dialogue
systems, and is still challenging (White et al., 2021;
Kim et al., 2021; Shi et al., 2022; Manggala and
Monz, 2023). We use our “help” to determine when
the model is confused and should ask a clarification
question, and the question is based on what “help”
the model needs.

3 Task-Specific Models

In this section, we first discuss the specific formula-
tion of IGLU we use, which is different from other
IGLU setups (Kiseleva et al., 2022b), and unique
to us. We then briefly explain the model we use for
it.
Task Formulation: The IGLU task (Kiseleva et al.,
2022a) involves two players, a Builder and an
Architect, that collaborate to build a target struc-
ture in the 3-D Minecraft world (Fig. 1). The
Builder places blocks based on Architect’s instruc-
tions. In our version of this task, the Architect is
a human, while the Builder is an AI agent. Thus,
the Builder places blocks and subsequently makes
mistakes/needs to ask for clarification, while the
human Architect (which we simulate) helps the
Builder. Further, our task formulation is fully
language-based, and there is no vision component.
This is because we are primarily interested in how
to make agents more interactive, and interactions
typically happen via language. Hence, we chose
this setup for simplicity. Thus, our task formula-
tion is as follows: Given the Architect and Builder
history complete with the last instruction, and a
dialogue representation of the current Minecraft
World State, predict the coordinate locations of the
blocks to place.
Model Architecture We now briefly discuss the
baseline system we train for the Builder model,
based on Zholus et al.. Later, we will incorporate
help into this model. Our baseline model is a stan-
dard BART-base Transformer (Lewis et al., 2019),
trained for Conditional Generation using the Hug-
ging Face package (Wolf et al., 2020). As this is a
language model, all of its’ inputs and outputs are in
natural language. Thus, we now discuss the method
we used to convert (x, y, z) coordinate block loca-
tions in the Minecraft World Grid to language, so
they can be passed into the model as textual input.
We first determine how far the coordinate is from
the origin of the grid (0, 0, 0), for each axis. In lan-
guage, we define the x-axis as ‘left/right’, y-axis as
‘up/down’, and z-axis as ‘higher/lower’. We then
combine the distance and direction into a sentence,
e.g. an x location of −2 would be “2 left” and a
z location of 3 would be “3 higher”. We ignore
model outputs that do not follow this format, as
they are invalid. Input grids with multiple blocks
can also be encoded into language the same way,
just with multiple sentences such as “2 left 1 up 3
higher. 4 right 2 down 4 lower.”.

1308

4 Help-Specific Models

While the Builder model introduced in Sec. 3
achieves competitive IGLU performance (Sec. 5.3),
it still makes a large number of mistakes. Thus, in
this paper, we propose an interactive setup, where
a human can interact to “help” the model when it
makes a mistake. Rather than telling the model
where to place the blocks, which would be difficult
to provide and learn from, we propose that humans
“help” the model by assisting it with a high-level
concept necessary to solve the final task, making
it easier. While not only being simpler to provide
than solving the final task, this “help” enables the
model to learn the task better, to perform better
when no help is provided (it can focus on other
aspects of the task, different from the concept pro-
vided by the help; for results see Sec 5.3). For
example, through one form of help, “length help”,
humans assist the model by telling it how many
blocks to place. Once the model understands this,
it can focus and better learn other aspects of the task
instruction, such as where actually to place each
block. In this paper, we experiment with humans
providing help via a natural language sentence.

We first introduce 4 different forms of help feed-
back humans can provide agents, all based on dif-
ferent high-level concepts relevant to the IGLU
task (Sec. 4.1). Two were introduced by Mehta and
Goldwasser, and others are novel to this work. De-
tailed ex. of help are in App. B. Then, in Sec. 4.3,
we discuss how this help can be learned and effec-
tively incorporated into the task-specific baseline
from Sec. 3 (Raffel et al., 2020). Finally, in Sec. 4.4,
we explain how agents can leverage their compre-
hension of various forms of help to aid their own
performance, effectively identifying when they are
confused and then asking clarification questions.
This final step culminates in a genuine interactive
scenario, where the agent can receive interactions
in the form of help and reciprocate by seeking clar-
ifications. Notably, when agents help themselves,
they can exhibit improved performance without
requiring any human interactions.

4.1 Help Types

Restrictive: Similar to Mehta and Goldwasser, re-
strictive help restricts the search space of the agent
to a general region, such as top left or lower right.
The regions are determined by dividing the grid
based on the number of regions desired and then
choosing the appropriate one based on the true

block location (if multiple blocks are placed by a
single instruction, we choose the region randomly
from the set of valid ones). Restrictive help signifi-
cantly simplifies the challenging task of determin-
ing where to place blocks, allowing the agent to
perform better and learn better for the future when
it is provided. An example: “Place the block in
the top left region.”. We experimented with two
ways of forming the regions. The first divides the
grid equally, leading to 4 regions total. The second
divides the center equally (center divided into 4 or
8 regions) and then the rest of the grid equally (di-
vided into 4 regions) for a total of 8 or 12 regions
(4 or 8 from the center and 4 from the non-center).

Length-based: Length-based help informs the
agent how many blocks to place, and if they should
be placed together, e.g. a tower. This help is espe-
cially useful for instructions involving length-based
keywords. Ex: “You should place 3 blocks.”.

Corrective: Also similar to Mehta and Goldwasser,
corrective help is provided after observing the
agent’s initial prediction, and then determining
which direction (up, down, left, right) to adjust
it so it is closer to the target. This enables the agent
to improve on its prediction while also restricting
the search space by one direction (like the agent
only having to look ‘left’). Ex: “Look left”

Mistake-based: Mistake-based help is also pro-
vided after the agent’s initial prediction. How-
ever, rather than adjusting the prediction’s direction,
mistake-based help is count-based. Specifically,
it makes it easier for the agent to recover from
mistakes, by telling it exactly how many blocks it
placed incorrectly. Ex: “2 blocks are wrong.”

4.2 Forming Help in Language

To generate help utterances without having humans
provide it (which would be costly), we use syn-
thetic utterances, generated via slot filling. We
have utterances with placeholders such as Place
the block in the _ region (for restrictive help) and
then the slot can be filled in with the appropriate
region based on where the block should be placed
(which can be determined based on the gold data).
We use different language at train and test time, to
simulate real humans. Detailed examples in App. B.
To account for even more language variety than pre-
defined utterances, we also use LLMs to simulate
real humans providing help in Sec. 6.

1309

(a) Model makes initial
prediction.

(b) We train a Classification
Model to Self Generate each

form of Help.

(c) Model Provides Itself Each
Help, Length Help Leads to a

Major Prediction Change

IGLU
Instruction

Classification
Prediction Self-Generated

Corrective Help

Self-Generated
Length Help

Self-Generated
Mistake Help

Self-Generated
Restrictive Help

BERT
Model

Clarification Question: How
many blocks should I place?

Help: You should have placed 5
blocks

(d) Model asks Clarification
Question based on Length

Help, Human Responds

(e) Based on the response,
the builder places the correct

block.

Figure 3: Framework to Detect Confusion and Ask Clarification Questions: After a model’s initial prediction (a), we train a
separate classification model (b) to self-generate each form of help. The model takes in the IGLU Architect instruction, and
trains a BART Model to predict the appropriate help. For example, for length help, it predicts how many blocks to place (0-6).
The agent then provides itself each help, and determines if any help leads to a significant prediction change (c). If it does, the
model detects that it is confused and asks a clarification question based on that help (d). Based on the response, the builder places
the correct block (e).

4.3 Incorporating Help

Incorporating help into the task-specific Builder
model from Sec. 3 is important as accurately under-
standing help is a critical part of being able to use
it effectively. To successfully do this, we provide
the help as an input to the BART dialogue model,
appended as a natural language sentence to the end
of the IGLU instruction. For example, the input to
BART could be: “INSTRUCTION:..., HELP: ...”

We additionally experimented with pre-training
a model to learn help as in Mehta and Goldwasser,
but that led to worse results as BART couldn’t suc-
cessfully incorporate the pre-trained layers.

4.4 Using Help for Clarifying Questions

In addition to receiving interactions from humans,
end-to-end interactive agents should be able to com-
municate with humans, even unprovoked. One way
to do this, which we explore in this paper, is for the
agent to self-identify confusion and ask intelligent
clarifying questions, when confused. This is partic-
ularly important as without it, agents would make
predictions even when they are confused, and thus
those predictions are likely to be incorrect. Further,
agents that ask intelligent questions to humans are
more likely to receive better responses than ones
that don’t, and thus will perform better, particularly
if they can understand the responses.

Inspired by these ideas, in this paper, we propose
to use help feedback to identify confusion and ask
clarification questions. First, we focus on identi-
fying confusion. We hypothesize that an agent is
confused if it significantly changes its predictions
after receiving help, as this means the help greatly
benefited/hurt the initial prediction. Thus, the agent
likely didn’t understand the initial instruction well,
and was probably confused by it. In this case, we
believe the agent should ask a clarification question,
based on the concept (or help type) that caused the
significant prediction change, to avoid making an

incorrect prediction.
As the agent must identify confusion itself, it

cannot receive help from humans. However, based
on our methodology, the agent determines that its
confused if its predictions change significantly after
receiving help. Thus, the agent needs to be able to
provide itself help, make predictions based on that
help, and then ask clarifying questions.

To enable agents to provide themselves help,
which is an interesting task, we are inspired by
Mehta and Goldwasser, who propose model self-
generated advice, which is a way to generate help
without human intervention. The broad idea is to
build a classification model and train it to predict
the help the agent needs to provide itself. For ex-
ample, for restrictive help and the IGLU task, the
model takes in the IGLU specific dialogue input
and predicts what region to place the block in (4
regions → 4 way classification problem). Then,
based on the region predicted, we can automati-
cally generate the help. For example, if the model
predicted region 3, the top left region, the gener-
ated help sentence would be: ‘Place the block in
the top left”. Intuitively, in this self-generated help
setup, the agent is solving a simpler classification
task first, using that to generate help, and providing
that as input for the more complicated final task
of placing blocks. We explain more details of our
self-generated help models, including classification
objectives for each help type, in Sec. 4.4.1.

Once the agent is able to self-generate all forms
of help discussed in Sec. 4.1, it can provide itself
all of them iteratively, and see where its output pre-
diction changes the most compared to the model
that doesn’t receive any help (we look at the num-
ber of blocks placed). If it is over a threshold (i.e.
the number of blocks placed by the agent with self-
generated help is significantly more than the agent
without the help), we hypothesize that the agent is
confused. Then, for that help, the agent can ask

1310

a clarification question based on the help, such as
“What quadrant should the block be placed in?” if
restrictive help was chosen, and the human can re-
spond by providing help, as in Sec 4.1. Assuming
we have learned the model to incorporate help from
Sec 4.3, the agent will be able to understand the
human help and take advantage of it for the final
IGLU block prediction task. Below, we discuss
the models we use to self-generate the help. Algo-
rithm 1 and Fig. 3 detail the above process for how
an agent can take advantage of self-generated help
to detect confusion and ask clarification questions.

Algorithm 1 Detecting Confusion and Asking Clar-
ification Questions
Overview: The IGLU task model first generates an initial pre-
diction without help. Then, we iterate through all forms of
help, self-generating and feeding them into the IGLU model.
The help that leads to the biggest difference in model predic-
tion, if it is bigger than a hyper-parameter threshold, is used
to generate a clarification question. The clarification question
list is pre-defined and slot-filled based on the help chosen.

1: Input: D (IGLU Architect Dialogue), G (Current Grid
State), H (All Help Types)

2: Output: Qs (clarification questions)
3: o0 = m(d0, g0) Run IGLU Model

4: om = 0 PlaceHolder for Max Difference from

Initial Prediction

5: hm = 0 PlaceHolder for Most Impactful Help

6: for all i = 1, . . . , n do {loop over all help}
7: hi = fhi(di, gi) Generate Help

8: oi = m(di, gi, hi) Run IGLU Model with Help

9: if oi − o0 > om then {If Difference to Initial is More
than Max Difference So Far}

10: om = oi Store as New Output

11: hm = i Store as Max Help

12: end if
13: end for
14: if om < threshold then {Max Different Below Threshold

No Clarification Question}
15: return 0
16: end if
17: Choose Question q = qm(hm) Choose Clarification

Question From Help

18: return q (Clarification Question)

4.4.1 Self-Generated Help Models
We now discuss more details of the self-generated
help models, which are used to generate help that
the model provides to itself to determine confu-
sion and generate clarification questions. The
self-generated help models are classification based
BART-base models. As in the BART for condi-
tional generation model used for the IGLU Builder
Task in Sec. 3, they take in the architect history
complete with the last instruction, and a dialogue
representation of the current grid. Below, we detail
the specific classification goal of each model:
Restrictive Help The model is trained to output

one of the regions the block must be placed in.
Length-Based The model is trained to predict one
of 7 classes, corresponding to how many blocks
must be placed. There are 6 classes referring to 0-5
blocks, and the 7th refers to more than 5 blocks.
Corrective Help The model must output one of 4
directions the predictions must be adjusted towards.
In addition to the original input, this model also
takes in a grid with the blocks placed based on the
most recent Architect instruction, as that is what it
needs to adjust its prediction based off of.
Mistake-Based The model learns how many
blocks must be adjusted. There are 7 classes, cor-
responding to how many blocks must be adjusted,
and None. This model also takes in an additional
input grid with the blocks placed based on the most
recent Architect instruction.

5 Experiments

5.1 Data

We use the IGLU Multi-Turn Dataset (Mohanty
et al., 2023), which breaks down the complicated
IGLU task of building a target structure into steps.
We train and evaluate our models at each step. The
input to our model is the most recent Architect in-
struction and language context (prior instructions),
while the output is a sentence describing where
blocks should be placed (parsing this output is dis-
cussed in Sec. 3). Data split details: App. D.

Note that our single-step dialogue-only setup
is different from the general IGLU task, which is
why we establish our own baselines. Our models
are not comparable to the reinforcement learning
or clarification question IGLU sub-tasks (Kiseleva
et al., 2022b), as we do not train a first-person 3D
RL agent and we ask clarification questions based
on confusion to improve final task performance.
Thus, we use some different metrics, explained
below.

5.2 Evaluation Metrics

Our evaluation framework incorporates four dis-
tinct metrics, one of which is used by other IGLU
models, while the others are tailored to our unique
approach. We evaluate both mean and standard
deviation (STD), but prioritize mean, as a higher
STD likely results from outliers due to a sub-par
baseline model (we discuss this in detail in Sec. 6).

The first, IGLU Reward, determines the invari-
ant intersection between the predicted grid and the
target grid (Zholus et al., 2022), which is a pri-

1311

Model Distance Reward # Blocks
Placed

% Help
Followed

M1 : BART Language Model 12.64 (51.75) 1.26 (1.49) 2.56 (2.10) 86.78 (33.86)

M2 : Restrictive Help Model Add. Input 11.64 (53.01) 1.39 (1.60) 2.84 (2.32) 84.48 (36.20)

M3 : Correct Help Model Add. Input 11.66 (58.17) 1.66 (1.85) 2.80 (2.35) 61.78 (48.59)

M4 : Length Help Model Add. Input 18.93 (48.03) 1.32 (1.61) 2.80 (2.47) 61.31 (48.70)

M5 : Mistake Help Model Add. Input 16.18 (78.84) 1.46 (1.62) 2.68 (2.28) 93.24 (25.09)

Table 1: Results at the best test set for our different help models. Each cell shows the mean and standard deviation (std. in
parenthesis) for each metric. Gold blocks placed mean is 3.40 and STD is 3.53. All forms of help provided as additional model
input in natural language (M2− M5) improve model performance from the baseline M1 : on both mean distance (lower is better)
and mean reward (higher is better), showing how help can be useful for the IGLU task (std. worsens in some cases, but this is
due to outliers, see Sec. 6). Moreover, help is followed a majority of the time by the models, showing that they can successfully

incorporate it.

mary metric used for evaluation in the IGLU task.
(code1). We aim to achieve a high score on this.

The second, Distance (Euclidean squared), de-
termines how close on average each model block
prediction is to the closest block in the target (lower
= better). To account for the difference in # of
blocks placed, we multiply the distance by 1 plus
the difference between the # of blocks predicted
and the # of blocks in the gold grid. If no blocks
are predicted, distance is set to a high value of 100.

The third, # Blocks Placed evaluates how many
blocks the model places. This is important as not
only do most IGLU instructions require multiple
blocks to be placed, but also to make sure the model
is outputting valid block dialogue sentences (out-
puts must be of a certain format to be parsed into
coordinates, as discussed in Sec. 3).

Help Type Train Valid Test
Restrictive 65.88 66.56 62.35

Corrective 58.12 55.48 29.88

Length-based 99.28 52.12 40.22

Mistake-Based 98.35 82.08 70.40

Table 2: Accuracy of model self-generated help at training,
valdation, and test time.

The final, Help Followed, evaluates how often
on average the model correctly follows the help. i.e.
placing the block in the correct region (restrictive).

5.3 Help Feedback

Tab. 1 shows the results on the test set. We com-
pare our models to M1, which is our baseline BART
Language model from Sec. 3 that achieved Strong
IGLU performance and was used as a baseline
in the IGLU competition (Kiseleva et al., 2022b).
While we could use a stronger Language Model as

1argmax_intersection function: https://github.
com/iglu-contest/gridworld/

a baseline, it would require significantly more com-
pute and resources, which is why we chose BART-
base. Further, our focus in this work is developing
an interactive process for IGLU-style tasks, and
BART-base provides a reasonable baseline.

When incorporating help into BART as an addi-
tional language input, we see performance improve-
ments across all help types (M2−M5), showing that
the model can take advantage of all help. Notably,
mistake help improves average reward by ∼25%,
and corrective help also leads to large improve-
ments. Further, the model follows all help with
higher than random accuracy, showing that it can
successfully incorporate the help. This shows that
help can be a powerful form of human feedback
to significantly improve model performance, and a
good way for humans to interact with IGLU-style
frameworks. Moreover, it is simple to provide, as
it can be done in natural language and is based on
high-level concepts. We note that in some cases,
STD worsens, but this is due to outliers and our
weak baseline model, which we explain further in
Sec. 6.

5.4 Self-Generated Help and Clarification ?’s

Tab. 2 shows the results of our self-generated help
models from Sec. 4.4.1. We achieve high perfor-
mance for restrictive, corrective, and mistake-based
help. However, length-based help struggles, as the
BART model struggles to accurately quantify the
number of blocks to place.

When self-gen help is used at test time in Tab. 3
instead of fully accurate help in Tab. 1, we still
notice performance improvements in all settings,
except length help, without human intervention.
Corrective help performs the best, even achieving a
higher reward than when it is provided accurately,
leading to our best performing model in both
mean and STD. We hypothesize that this occurs

1312

https://github.com/iglu-contest/gridworld/
https://github.com/iglu-contest/gridworld/

Model Distance Reward # Blocks
Placed

% Help
Followed

A1 : BART Language Model 12.64 (51.75) 1.26 (1.49) 2.56 (2.10) 86.78 (33.86)

A2 : Restrictive Help Model Add. Input 10.62 (48.63) 1.38 (1.54) 2.90 (2.34) 81.60 (38.74)

A3 : Corrective Help Model Add. Input 5.10 (9.10) 1.74 (1.83) 3.28 (2.47) 71.98 (44.90)

A4 : Length Help Model Add. Input 29.13 (103.22) 0.92 (1.07) 2.04 (1.50) 46.26 (49.86)

A5 : Mistake Help Model Add. Input 11.39 (75.17) 1.67 (1.73) 3.09 (2.51) 95.11 (21.55)

A6 : Clarification Questions 13.07 (63.06) 1.29 (1.56) 2.62 (2.07) 67.52 (46.86)

Table 3: Results at the best test set for our different help models using self-generated help. Gold blocks placed mean is 3.40 and
STD is 3.53. Except for length help, which also has low help prediction accuracy, all forms of self-generated help achieve

performance improvements over baselines. This shows that even without any human interactions, help can improve performance,
as the model learns to predict and then incorporate the help. Further, generating clarification questions based on model
confusion, and then providing accurate help in response to the question also increases performance over the baseline.

as whenever the self-generated help is incorrect, it
doesn’t significantly affect the model’s predictions,
as the initial prediction was also likely incorrect
(note that both help and the initial prediction are
coming from the same model). However, when
self-gen help is correct, it likely narrows down the
model’s initial prediction. In contrast, for fully
accurate help, some of the help can confuse the
model. For example, for restrictive help, if the
model doesn’t know how to properly search the re-
gion provided by the help, the prediction could be
much worse, and likely even random in that region.
We hypothesize a better baseline model would lead
to improvements in both self-gen and accurate help,
but due to compute, leave this for future work.

Tab. 3 A6 shows results when the model receives
accurate help from clarification questions, once
it determines which one it needs (if any) by pro-
viding itself all forms of self-generated help, and
using it to self-identify confusion. Results show
performance improvements over baselines, show-
ing the promise of this approach for the model to
accurately identify confusion. However, results are
worse than some self-generated help models, as
the model can’t always identify when it needs help.
We leave the investigation of this to future work.

6 Discussion

In this section, we analyze our IGLU models with
help feedback, by asking the following questions:
(1) How many regions is best for restrictive help?
(2) How do we do when help is not accurate?
(3) What happens if we vary the help language?
(4) Why does STD worsen sometimes?
Restrictive Help – Number of Regions Tab. 4
shows an ablation study, where we evaluated the
number of regions we used for restrictive help on
the test set, and chose 8 regions.

Handling Inaccurate Help Help may not always
be accurate, especially if provided by humans or
someone trying to confuse the model, but the model
should be able to adapt. Tab. 2 shows the perfor-
mance of self-generated help that was provided at
test time, and it still leads to improvements (Tab. 3).

Varying Help Utterances To simulate the large
language variety of humans providing help (specif-
ically restrictive), we first generate a variety of
help by prompting LLM’s to write it, and then
ask LLM’s to determine which region each help
corresponds to (details: App. F). Once the region
is known, we can provide help to the models as
normal. Results in Tab. 6 show that LLMs can
effectively determine help regions, showing our
approach can handle real human help.

Improving Mean, but sometimes worsening
Standard Deviation: While our models always
improve mean performance, in some of our experi-
ments (but not all), we see results do not improve
on STD. We hypothesize that this occurs due to
our weak baseline model, not because our proto-
cols are ineffective. A stronger baseline should
lead to more consistent results. In short, whenever
STD worsens, it is due to outliers. These are cases
where although the help was accurate, the model
did not understand the initial IGLU instruction, and
thus the help confused it, making the initial predic-
tion worse. For example, for restrictive help, if
the BART model can’t properly search the region
provided because it doesn’t understand the initial
instruction, it may randomly place the block in the
region, worsening the prediction. Thus, these cases
that lead to a worse STD are already failure cases,
and in fact help does improve performance overall.
We discuss this further in Sec. H

1313

7 Conclusion and Future Work

In this paper, we proposed an interactive frame-
work for grounded language understanding tasks,
specifically inspired by the IGLU task (Kiseleva
et al., 2022a,b). Our framework enables humans
to interact with AI agents through four distinct
forms of help feedback, to provide high-level tips
based on concepts relevant for the final task. This
high-level help is easy to provide and proves bene-
ficial for the AI agent. Additionally, we proposed
a mechanism for the AI agent to autonomously de-
tect confusion and ask clarification questions. To
do this, we leveraged help feedback by develop-
ing a model to self-generate help, provide it to the
agent, and ask a clarification question if confusion
is detected. Through this approach, we achieved
a fully interactive agent capable of both receiving
and providing interactions to humans. Our experi-
ments demonstrated performance improvements in
these settings.

Moving forward, our future work will focus on
enhancing the performance of clarification ques-
tions, and incorporating more types of help. We
are also interested in generalizing our contributions
to other domains, including tasks that don’t require
an agent to navigate a 2D/3D space.

We believe our approach is directly generaliz-
able to tasks that require an agent to navigate a 3D
or 2D space to make decisions (like many robotics
tasks). Here, the forms of interactions we proposed
and how they are used would not change. For tasks
that do not have a 3D/2D space, like summariza-
tion, we hypothesize that our framework can still
be applicable, by modifying help and keeping the
rest of the framework the same. For example, for
summarization, the agent must read and summarize
certain areas of the document, while ignoring other
irrelevant areas, in order to produce a successful
summary. Thus, instead of restrictive help restrict-
ing the search space of the agent to an area on a
3D grid, restrictive help can restrict the lines of
text in a document that the agent has to read. This
help would useful to enable the agent to prioritize
the relevant parts of the document, leading to a
better summary. Similarly, instead of corrective
help changing the direction of the grid the agent
should search, it can correct the summarization by
detailing topics that were missed in the summary.
In these ways, our framework can generalize to
other tasks, making them end-to-end interactive,
and improving performance. Investigating this is

part of our future work.

8 Limitations

In this section, we first discuss some limitations
of our model and framework (Sec. 8.1). Then, we
expand with a discussion on ethics as it relates to
the deployment of our models (Sec. 8.2).

8.1 Limitations

Our model has been trained on the IGLU (Kisel-
eva et al., 2022b,a) dataset. Although in the paper
we provided results to demonstrate strong perfor-
mance on this dataset and we hypothesize that our
results will generalize to our AI agent instruction
following tasks, we have not tested these hypothe-
sis yet, and it is part of our future work. However,
we believe our interactive framework of an agent
receiving help based on concepts relevant for its
task to and also identifying confusion to ask rele-
vant clarifying questions is a general contribution
and may be applicable in other scenarios.

Scaling our models to larger settings on larger
datasets would likely require more compute, and
could impact performance/training time. We
trained on a single NVIDIA 12 GB Titan X GPU,
and training took a day. Running hyper-parameter
search also took a week, to find the best parameters
for our Large Language Model.

8.2 Ethics

To the best of our knowledge we did not violate
any code of ethics through the experiments done
in this paper. We reported the details of our exper-
iments both in the main body of the paper and
the appendix, including hyperparameter details,
training/validation set performance, etc. Moreover,
qualitative result we report is an outcome from a
machine learning model and does not represent the
authors’ personal views.

Our interactive framework in general should be
used to improve the performance of AI agents.
However, we understand that some users may use
it with malicious intent, such as providing incor-
rect help feedback to make the agent make a wrong
prediction. We showed in the paper, especially in
the model self-generated help and discussion sec-
tions, that our model can adapt to incorrect human
feedback, since the model does not solely rely on
human feedback, but also utilizes the knowledge
it learns in the training data. However, studying
malicious human feedback is an ongoing area of

1314

our future work, and users deploying this system
should be aware of this possibility.

References
Afra Feyza Akyurek, Ekin Akyurek, Ashwin Kalyan,

Peter Clark, Derry Tanti Wijaya, and Niket Tandon.
2023. RL4F: Generating natural language feedback
with reinforcement learning for repairing model out-
puts. In Proceedings of the 61st Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 7716–7733, Toronto,
Canada. Association for Computational Linguistics.

Mohammad Aliannejadi, Julia Kiseleva, Aleksandr
Chuklin, Jeff Dalton, and Mikhail Burtsev. 2020.
Convai3: Generating clarifying questions for open-
domain dialogue systems (clariq). arXiv preprint
arXiv:2009.11352.

Mohammad Aliannejadi, Julia Kiseleva, Aleksandr
Chuklin, Jeff Dalton, and Mikhail Burtsev. 2021.
Building and evaluating open-domain dialogue cor-
pora with clarifying questions. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 4473–4484, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Negar Arabzadeh, Mahsa Seifikar, and Charles LA
Clarke. 2022. Unsupervised question clarity pre-
diction through retrieved item coherency. In Pro-
ceedings of the 31st ACM International Conference
on Information & Knowledge Management, pages
3811–3816.

Luciana Benotti, Tessa Lau, and Martín Villalba. 2014.
Interpreting natural language instructions using lan-
guage, vision, and behavior. ACM Transactions on
Interactive Intelligent Systems (TiiS), 4(3):1–22.

Yonatan Bisk, Deniz Yuret, and Daniel Marcu. 2016.
Natural language communication with robots. In
Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 751–761.

Beatriz Borges, Niket Tandon, Tanja Käser, and An-
toine Bosselut. 2023. Let me teach you: Pedagogical
foundations of feedback for language models. arXiv
preprint arXiv:2307.00279.

Okko Buß and David Schlangen. 2011. Dium–an in-
cremental dialogue manager that can produce self-
corrections. Proceedings of SemDial 2011 (Los An-
gelogue).

Herbert H Clark. 1996. Using language. Cambridge
university press.

Bhavana Dalvi, Oyvind Tafjord, and Peter Clark. 2022.
Towards teachable reasoning systems. arXiv preprint
arXiv:2204.13074.

Ahmed Elgohary, Christopher Meek, Matthew
Richardson, Adam Fourney, Gonzalo Ramos, and
Ahmed Hassan Awadallah. 2021. Nl-edit: Correcting
semantic parse errors through natural language
interaction. arXiv preprint arXiv:2103.14540.

Linxi Fan, Guanzhi Wang, Yunfan Jiang, Ajay Man-
dlekar, Yuncong Yang, Haoyi Zhu, Andrew Tang,
De-An Huang, Yuke Zhu, and Anima Anandkumar.
2022. Minedojo: Building open-ended embodied
agents with internet-scale knowledge. In Thirty-sixth
Conference on Neural Information Processing Sys-
tems Datasets and Benchmarks Track.

Kevin A Gluck and John E Laird. 2018. Interactive task
learning: Humans, robots, and agents acquiring new
tasks through natural interactions. The MIT Press.

Prashant Jayannavar, Anjali Narayan-Chen, and Julia
Hockenmaier. 2020. Learning to execute instructions
in a minecraft dialogue. In Proceedings of the 58th
annual meeting of the association for computational
linguistics, pages 2589–2602.

Joo-Kyung Kim, Guoyin Wang, Sungjin Lee, and
Young-Bum Kim. 2021. Deciding whether to ask
clarifying questions in large-scale spoken language
understanding. In 2021 IEEE Automatic Speech
Recognition and Understanding Workshop (ASRU),
pages 869–876. IEEE.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Julia Kiseleva, Ziming Li, Mohammad Aliannejadi,
Shrestha Mohanty, Maartje ter Hoeve, Mikhail
Burtsev, Alexey Skrynnik, Artem Zholus, Alek-
sandr Panov, Kavya Srinet, Arthur Szlam, Yuxuan
Sun, Katja Hofmann, Marc-Alexandre Côté, Ahmed
Awadallah, Linar Abdrazakov, Igor Churin, Putra
Manggala, Kata Naszadi, Michiel van der Meer, and
Taewoon Kim. 2022a. Interactive grounded language
understanding in a collaborative environment: Iglu
2021. In Proceedings of the NeurIPS 2021 Com-
petitions and Demonstrations Track, volume 176 of
Proceedings of Machine Learning Research, pages
146–161. PMLR.

Julia Kiseleva, Alexey Skrynnik, Artem Zholus,
Shrestha Mohanty, Negar Arabzadeh, Marc-
Alexandre Côté, Mohammad Aliannejadi, Milagro
Teruel, Ziming Li, Mikhail Burtsev, Maartje ter
Hoeve, Zoya Volovikova, Aleksandr Panov, Yuxuan
Sun, Kavya Srinet, Arthur Szlam, Ahmed Awadallah,
Seungeun Rho, Taehwan Kwon, Daniel Wontae Nam,
Felipe Bivort Haiek, Edwin Zhang, Linar Abdraza-
kov, Guo Qingyam, Jason Zhang, and Zhibin Guo.
2022b. Interactive grounded language understanding
in a collaborative environment: Retrospective on
iglu 2022 competition. In Proceedings of the
NeurIPS 2022 Competitions Track, volume 220 of
Proceedings of Machine Learning Research, pages
204–216. PMLR.

1315

https://doi.org/10.18653/v1/2023.acl-long.427
https://doi.org/10.18653/v1/2023.acl-long.427
https://doi.org/10.18653/v1/2023.acl-long.427
https://doi.org/10.18653/v1/2021.emnlp-main.367
https://doi.org/10.18653/v1/2021.emnlp-main.367
https://proceedings.mlr.press/v176/kiseleva22a.html
https://proceedings.mlr.press/v176/kiseleva22a.html
https://proceedings.mlr.press/v176/kiseleva22a.html
https://proceedings.mlr.press/v220/kiseleva23a.html
https://proceedings.mlr.press/v220/kiseleva23a.html
https://proceedings.mlr.press/v220/kiseleva23a.html

Julia Kiseleva, Kyle Williams, Jiepu Jiang, Ahmed Has-
san Awadallah, Aidan C Crook, Imed Zitouni, and
Tasos Anastasakos. 2016. Understanding user satis-
faction with intelligent assistants. In Proceedings of
the 2016 ACM on conference on human information
interaction and retrieval, pages 121–130.

Alexander Koller, Kristina Striegnitz, Andrew Gar-
gett, Donna Byron, Justine Cassell, Robert Dale, Jo-
hanna D Moore, and Jon Oberlander. 2010. Report
on the second nlg challenge on generating instruc-
tions in virtual environments (give-2). In Proceed-
ings of the 6th international natural language gener-
ation conference.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Ves Stoyanov, and Luke Zettlemoyer. 2019. Bart: De-
noising sequence-to-sequence pre-training for natural
language generation, translation, and comprehension.
arXiv preprint arXiv:1910.13461.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
et al. 2023. Self-refine: Iterative refinement with
self-feedback. arXiv preprint arXiv:2303.17651.

Aman Madaan, Niket Tandon, Dheeraj Rajagopal, Yim-
ing Yang, Peter Clark, Keisuke Sakaguchi, and
Ed Hovy. 2021. Improving neural model perfor-
mance through natural language feedback on their
explanations. arXiv preprint arXiv:2104.08765.

Putra Manggala and Christof Monz. 2023. Aligning
predictive uncertainty with clarification questions
in grounded dialog. In Findings of the Association
for Computational Linguistics: EMNLP 2023, pages
14988–14998.

Nikhil Mehta and Dan Goldwasser. 2019. Improving
natural language interaction with robots using advice.
arXiv preprint arXiv:1905.04655.

Stephanie Milani, Anssi Kanervisto, Karolis Ra-
manauskas, Sander Schulhoff, Brandon Houghton,
and Rohin Shah. 2023. Bedd: The minerl basalt eval-
uation and demonstrations dataset for training and
benchmarking agents that solve fuzzy tasks. arXiv
preprint arXiv:2312.02405.

Shrestha Mohanty, Negar Arabzadeh, Julia Kiseleva,
Artem Zholus, Milagro Teruel, Ahmed Awadallah,
Yuxuan Sun, Kavya Srinet, and Arthur Szlam. 2023.
Transforming human-centered ai collaboration: Re-
defining embodied agents capabilities through in-
teractive grounded language instructions. arXiv
preprint arXiv:2305.10783.

Shrestha Mohanty, Negar Arabzadeh, Milagro Teruel,
Yuxuan Sun, Artem Zholus, Alexey Skrynnik,
Mikhail Burtsev, Kavya Srinet, Aleksandr Panov,
Arthur Szlam, et al. 2022. Collecting interactive
multi-modal datasets for grounded language under-
standing. arXiv preprint arXiv:2211.06552.

Anjali Narayan-Chen, Colin Graber, Mayukh Das,
Md Rakibul Islam, Soham Dan, Sriraam Natarajan,
Janardhan Rao Doppa, Julia Hockenmaier, Martha
Palmer, and Dan Roth. 2017. Towards problem solv-
ing agents that communicate and learn. In Proceed-
ings of the First Workshop on Language Grounding
for Robotics, pages 95–103.

Anjali Narayan-Chen, Prashant Jayannavar, and Ju-
lia Hockenmaier. 2019. Collaborative dialogue in
Minecraft. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 5405–5415, Florence, Italy. Association for
Computational Linguistics.

OpenAI. 2023. ChatGPT. https://www.openai.com.

Aishwarya Padmakumar, Jesse Thomason, Ayush Shri-
vastava, Patrick Lange, Anjali Narayan-Chen, Span-
dana Gella, Robinson Piramuthu, Gokhan Tur, and
Dilek Hakkani-Tur. 2022. Teach: Task-driven em-
bodied agents that chat. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 36,
pages 2017–2025.

Debjit Paul, Mete Ismayilzada, Maxime Peyrard, Beat-
riz Borges, Antoine Bosselut, Robert West, and
Boi Faltings. 2023. Refiner: Reasoning feedback
on intermediate representations. arXiv preprint
arXiv:2304.01904.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, Peter J Liu, et al. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21(140):1–67.

Allen Z Ren, Anushri Dixit, Alexandra Bodrova,
Sumeet Singh, Stephen Tu, Noah Brown, Peng Xu,
Leila Takayama, Fei Xia, Jake Varley, et al. 2023.
Robots that ask for help: Uncertainty alignment
for large language model planners. arXiv preprint
arXiv:2307.01928.

Pengzhen Ren, Yun Xiao, Xiaojun Chang, Po-Yao
Huang, Zhihui Li, Brij B Gupta, Xiaojiang Chen, and
Xin Wang. 2021. A survey of deep active learning.
ACM computing surveys (CSUR), 54(9):1–40.

Rohin Shah, Cody Wild, Steven H Wang, Neel Alex,
Brandon Houghton, William Guss, Sharada Mo-
hanty, Anssi Kanervisto, Stephanie Milani, Nicholay
Topin, et al. 2021. The minerl basalt competition
on learning from human feedback. arXiv preprint
arXiv:2107.01969.

Ori Shapira, Ramakanth Pasunuru, Hadar Ronen, Mohit
Bansal, Yael Amsterdamer, and Ido Dagan. 2021.
Extending multi-document summarization evaluation
to the interactive setting. In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 657–677.

1316

https://doi.org/10.18653/v1/P19-1537
https://doi.org/10.18653/v1/P19-1537
https://www.openai.com

Zhengxiang Shi, Yue Feng, and Aldo Lipani. 2022.
Learning to execute actions or ask clarification ques-
tions. In Findings of the Association for Computa-
tional Linguistics: NAACL 2022, pages 2060–2070.

Mohit Shridhar, Jesse Thomason, Daniel Gordon,
Yonatan Bisk, Winson Han, Roozbeh Mottaghi, Luke
Zettlemoyer, and Dieter Fox. 2020. Alfred: A bench-
mark for interpreting grounded instructions for ev-
eryday tasks. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition,
pages 10740–10749.

Alexey Skrynnik, Zoya Volovikova, Marc-Alexandre
Côté, Anton Voronov, Artem Zholus, Negar
Arabzadeh, Shrestha Mohanty, Milagro Teruel,
Ahmed Awadallah, Aleksandr Panov, et al. 2022.
Learning to solve voxel building embodied tasks
from pixels and natural language instructions. arXiv
preprint arXiv:2211.00688.

Niket Tandon, Aman Madaan, Peter Clark, and Yiming
Yang. 2022. Learning to repair: Repairing model out-
put errors after deployment using a dynamic memory
of feedback. NAACL Findings.(to appear).

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Man-
dlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and
Anima Anandkumar. 2023. Voyager: An open-ended
embodied agent with large language models. arXiv
preprint arXiv:2305.16291.

Julia White, Gabriel Poesia, Robert Hawkins, Dorsa
Sadigh, and Noah Goodman. 2021. Open-domain
clarification question generation without question ex-
amples. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 563–570.

Terry Winograd. 1972. Understanding natural language.
Cognitive psychology, 3(1):1–191.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le
Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander M. Rush. 2020. Transform-
ers: State-of-the-art natural language processing. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Artem Zholus, Alexey Skrynnik, Shrestha Mohanty,
Zoya Volovikova, Julia Kiseleva, Artur Szlam, Marc-
Alexandre Coté, and Aleksandr I Panov. 2022. Iglu
gridworld: Simple and fast environment for embod-
ied dialog agents. arXiv preprint arXiv:2206.00142.

A Additional Related Works

User-Feedback As interactive grounded language
understanding tasks like IGLU are very challeng-
ing, many works have looked at how humans can
interact with agents to provide feedback. (Benotti
et al., 2014) allow humans to rephrase their instruc-
tions in feedback. However, on more challenging
tasks like IGLU, this new instruction may still be
complex enough that the model won’t understand
it and thus likely won’t help the model general-
ize/learn better. Active learning mechanisms (Ren
et al., 2021) show how users can interact with the
agent during training, and normally this involves
having the agent ask questions when it needs help.
We experimented with this as well in our setup,
where help is used to identify confusion, enabling
the agent to ask clarification questions. Elgohary
et al. learn to apply user-provided syntactic edit
operations. Buß and Schlangen show how dialogue
models can propose self-corrections, whereas we
show how grounded language learning systems can
do this, specifically ones that directly help their
task. Other works (Madaan et al., 2021; Tandon
et al., 2022; Dalvi et al., 2022) show how user-
feedback can be used to correct/improve LLMs,
even being saved in memory. More recent works
(Madaan et al., 2023; Paul et al., 2023) use LLMs to
generate the feedback/reasoning steps. Even more
recently, Borges et al. design a general framework,
FELT, for how LLM-feedback can be provided,
by training a model to provide it. In the future,
these works can be combined with our framework,
where help is provided via a language model, that
is improved using reinforcement learning.

B Help Details

In this section, we provide detailed examples of the
help types discussed in Sec 4.1. Help is generated
based on gold data, or in the model self-generated
case based on model predictions. Based on these
coordinates (either gold or predicted), we can gen-
erate the help and fill it into a pre-defined slot based
on each help type.

B.1 Restrictive

For Restrictive Help, we divide the center region
(from -0.5 to 0.5 in the x and y directions) into an
equal number of regions (either 4 or 8, depending
on the model). Then, we divide the rest of the grid
into 4 regions, also in the x and y directions. For
example, a coordinate with (x, y) location (0.8, 0.8)

1317

https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6

is in the ‘upper left not in the center’ region, while
a coordinate (0.2, 0.2) is in the ‘upper left in the
center’ region. These regions are then filled into
the slots in the sentence ‘Place the block in the
_ region’, to form the final help sentence: ‘Place
the block in upper left not in the center region’.
As we have 8 total regions, the different region
descriptions we use are: "upper right", "upper left",
"lower left", "lower right", "upper upper right",
"upper upper left", "lower lower left", and "lower
lower right"

B.2 Length-Based

Length-based help tells the model how many
blocks to place. For example, if 3 blocks must
be placed, then the help is ‘You should place 3
blocks’. To generate the help utterance, we slot
fill the sentence ‘You should place _ blocks‘ with a
number representing the number of blocks to place.

B.3 Corrective

Corrective help tells the model what direction to
adjust its’ predictions in. For example, if the model
predicted a (x, y) coordinate of (0.5, 0.5) and the
true block location was (0.8, 0.5), then the model
should place the block more to the right, based
on the x coordinate. Thus, the help would be be:
‘Place the block more to the right’. To generate the
help utterance, we slot fill the sentence ‘Place the
block more to the _ ‘ with either "left’, "right", "up",
or "down" (depending on the direction to adjust).

B.4 Mistake-Based

Mistake-based help tells the model how many
blocks it placed incorrectly. For example, if the
model placed 3 blocks and 2 were placed incor-
rectly, the help would be: ‘You placed 2 blocks
incorrectly’. To generate the help utterance, we
slot fill the sentence ‘You placed _ blocks incor-
rectly‘ with a number corresponding to how many
blocks were placed incorrectly.

C Implementation Details

We implement our models using the PyTorch
Framework2 and use the Transformers package
(Wolf et al., 2020) for our Transformer implemen-
tations. We use the Facebook BART-Base model
everywhere that we use a Transformer Language
Model (Lewis et al., 2019). We train our end-to-end

2https://pytorch.org/

model with a learning rate of 1e-4 and the Adam op-
timizer (Kingma and Ba, 2014). Our self-generated
models use a learning rate of 1e-6 and the classifi-
cation layer is not pre-loaded. We trained all our
models using a 12GB TITAN XP GPU card. Train-
ing the self-generated model took approximately
5 hours, whereas training the end-to-end models
took anywhere from 1-2 days. We mentioned the
details of our dataset in Sec. 5.1.

D Dataset Details

We use the public IGLU MultiTurn Dataset3. The
dataset breaks down the complicated IGLU task
of building a reference structure into steps, and
we train and evaluate our models on each step.
Thus, the input to our model is the most re-
cent Architect instruction and language context
(prior Builder/Architect instructions), while the out-
put is a sentence describing where blocks should
be placed (if any; parsing this output is dis-
cussed in Sec 3). Training details: D. We use
the train_data_augmented_part1.json file for
training, and the val_data.json file for testing.
We have 8,736 training samples, 11,283 valida-
tion, and 1,238 test. When evaluating the confu-
sion/clarification question models, we use 50% of
the training/dev data to learn the self-generated
help models, and then generate help for the vali-
dation/test sets, using gold at train time. For fair
comparison, the test sets in all settings are the same.

E Ablation Study for Restrictive Help

In Tab. 4, we show an ablation study for restrictive
help, evaluated on a smaller dataset. It is clear
that restrictive help with 8 regions leads to the best
performance, which is why we use it.

F Discussion Cont.: Varying Help
Utterances

In the main experiments of the paper, the help we
used was generated by slot-filling to create syn-
thetic utterances, as discussed in Sec. 4.2. However,
when real humans provide help, they are likely to
provide it via a wide variety of language, not just
several pre-defined slots. In this section, we simu-
late these settings, by first generating large amounts
of help utterances that have a variety of language,

3https://gitlab.aicrowd.com/aicrowd/
challenges/iglu-challenge-2022/
iglu-2022-rl-mhb-baseline/-/tree/master/nlp_
training

1318

https://pytorch.org/
https://gitlab.aicrowd.com/aicrowd/challenges/iglu-challenge-2022/iglu-2022-rl-mhb-baseline/-/tree/master/nlp_training
https://gitlab.aicrowd.com/aicrowd/challenges/iglu-challenge-2022/iglu-2022-rl-mhb-baseline/-/tree/master/nlp_training
https://gitlab.aicrowd.com/aicrowd/challenges/iglu-challenge-2022/iglu-2022-rl-mhb-baseline/-/tree/master/nlp_training
https://gitlab.aicrowd.com/aicrowd/challenges/iglu-challenge-2022/iglu-2022-rl-mhb-baseline/-/tree/master/nlp_training

Model Distance Reward # Blocks
Placed

% Help Fol-
lowed

Restrictive Help 4 Regions 23.06 (37.67) 0.48 (0.73) 2.32 (1.53) 69.56 (46.01)
Restrictive Help 8 Regions 23.03 (27.71) 0.54 (0.76) 2.54 (0.70) 65.22 (47.62)
Restrictive Help 16 Regions 37.69 (108.12) 0.42 (0.63) 2.60 (1.15) 62.64 (48.37)

Table 4: Ablation Study: Test Set Results for different number of regions for restrictive help. We find that 8 regions
provides the best performance. Gold blocks placed mean is 3.40 and STD is 3.53.

and then using them as help in our final IGLU Task
Model.

As collecting a large amount of human help in-
teractions is not cost efficient, we simulate these
settings, focusing on restrictive help. To get a vari-
ety of help utterances, we prompt a strong language
generation Large Language Model (LLM), Chat-
GPT (OpenAI, 2023), to generate them. In the
prompt, seen in Fig. 4, we ask the LLM to rewrite
utterances in a different way. We manually inspect
the outputs to discard duplicates and ensure valid-
ity, and keep the rest.

Once we have a large amount of restrictive help
(25 utterances for each region), each written in
a different way, we aim to use them in the final
IGLU Task Model, as different ways humans can
provide help. However, instead of having the IGLU
Task Model determine which region each help ut-
terance corresponds to, which could be difficult, we
use LLM’s to do it. For this, we few-shot prompt
ChatGPT, to output the region corresponding to the
utterance. Once the region is known, we can feed
it directly to the IGLU task model, such as by us-
ing the same slot-filling generated utterances from
Sec. 4.2, but now generated using the predicted re-
gion. Then, the rest of our setup would be identical
as before, except now our IGLU Task model can
use a wide variety of language as help.

An example of the few-shot training examples
and the ChatGPT model output is seen in Fig. 5.
Tab. 6 shows the results, and we can see that Chat-
GPT is able to well determine the regions from a
variety of help utterances. While we do not eval-
uate the ChatGPT predictions end-to-end in our
IGLU Task Model and instead leave it for future
work, we do not expect significant performance
changes, given the high performance of ChatGPT
to determine the regions correctly.

We believe that these initial results show that our
system can handle actual human help, which can
have a large amount of language variety. By using
ChatGPT to determine which region corresponds

to the help and then creating the help utterances
for the IGLU Task model using that, we are able to
handle the large language variety humans may use
when providing help.

Region
Upper Right

Table 5: Examples of help utterances generated by ChatGPT
when asked to rewrite: “Place the block in the upper left”. We
can see that there is a large variety in the language of the help,
similar to how humans would provide the same help with a
large amount of language.

Region Accuracy
Upper Right

Upmost Right 85.00

Upper Left 95.45

Upmost Left 93.75

Lower Left 94.44

Lowermost Left 85.71

Lower Right 82.60

Lowermost Right 81.25

Table 6: Accuracy of ChatGPT few-shot predicting the cor-
rect region for each help utterance, based on 25 utterances.
Results show that this is a fairly simple task for ChatGPT,
achieving high accuracy for all regions. Thus, we hypothe-
size our models can handle a variety of language in the help
utterances.

G Real World Application of Help

In this section, we discuss a potential real-world
application of our help system, enabling humans to
communicate with AI agents for tasks like IGLU
in natural language.

In this paper, we simulated the help by slot fill-
ing pre-defined utterances. However, in the real-
world, humans can provide help in a variety of
language. To handle this, we first note that each
form of help is constrained in some way, i.e. has
a limited number of options for the types of help
that can be given. For example, restrictive help can

1319

User: Can you please rewrite "Place the block in the upper left”

System: Kindly place the block on the top left side.

User: Can you please rewrite "Place the block in the upper left”

System: …

Figure 4: An example of the ChatGPT interaction to rewrite utterances. The user asks the system to rewrite help
utterances, in this case for the “upper left” region. ChatGPT then does it (shown by the “System” response). If an
utterance is repeated, it is discarded. Finally, all rewrites are manually inspected by humans to make sure they are
valid and not conflicting with other regions (such as “upmost left” in this case).

User: What region corresponds to "Place the block in the upper left”. Please

respond in a number and use the following mapping: {0: "upper right", 1: "upper

left", 2: "lower left", 3: "lower right", 4: "upmost right", 5: "upmost left", 6:

"lowermost left", 7: "lowermost right"}

System: 1

User: What region corresponds to “Could you place the block at the left-most and

topmost position?”. Please respond in a number and use the following mapping:

{0: "upper right", 1: "upper left", 2: "lower left", 3: "lower right", 4: "upmost right", 5:

"upmost left", 6: "lowermost left", 7: "lowermost right"}

System: 5

User: What region corresponds to “Could you place the block at the left and top

position”. Please respond in a number and use the following mapping: {0: "upper

right", 1: "upper left", 2: "lower left", 3: "lower right", 4: "upmost right", 5: "upmost

left", 6: "lowermost left", 7: "lowermost right"}

System: 1

User: What region corresponds to “Kindly place the block on the top left side”.

Please respond in a number and use the following mapping: {0: "upper right", 1:

"upper left", 2: "lower left", 3: "lower right", 4: "upmost right", 5: "upmost left", 6:

"lowermost left", 7: "lowermost right"}

System: …

Figure 5: An example of the ChatGPT prompt to classify help utterances into a region. ChatGPT is prompted with
examples of a region, for the “upper left” and “upmost left” region, as these could be confusing. It then must output
the correct region. The figure shows three few-shot training examples, and then ChatGPT makes a prediction on the
last one, shown by “....”. We use the same “upper left” centered few-shot examples for other regions as well, and
ChatGPT can generalize.

has 8 regions, length-based help has a maximum
of 8 blocks that can be placed, corrective help has
4 directions to move, and mistake-based help has
up to 8 number of blocks that can be placed in-
correctly. Thus, every human help utterance must
be mapped to one of the options. We hypothesize
that this can be done using a few-shot prompted
Large Language Model (LLM), where the model is
trained for a classification problem. For example, it
could be trained to first identify which form of help
the human is providing, i.e. restrictive, and then
which version of restrictive help, i.e. which region

the block should be placed in. This would allow
converting a varying language help utterance into
one of our "slot-filled" help utterances, and then
our framework could be used as normal.

Further, in this paper we only experimented with
a single-step dialogue only IGLU setup, but it is
possible that IGLU be solved with a different setup,
like a Reinforcement Learning (RL) agent. In this
case, our help can be provided as an additional
input to the RL agent model via a Language Model
component, and then everything can be used as
normal.

1320

H Discussion: Model Inconsistencies

Our primary novel contribution in this work is
our methods for enabling fully interactive systems
for challenging grounded language understanding
tasks like IGLU, something which is often looked
over in today’s research. Our experimental results
show that our ideas are beneficial. Notably, our
best model sees significant performance improve-
ments over our baseline. Table 2, row A3, shows
a large performance improvement on distance and
number of blocks placed. For example, mean dis-
tance (lower is better) improves from the baseline
of 12.64 to 5.10 and STD distance improves from
51.73 to 9.10.

In some of our other experiments, while our mod-
els always offer performance improvements, results
may not improve significantly, particularly on STD.
We hypothesize that this happens due to our base-
line model not being strong enough on certain ex-
amples, not because our protocols are ineffective.
A stronger baseline should lead to better results.
Unfortunately, due to lack of compute resources,
in this paper we could not use a stronger Language
Model than BART as a baseline, but we leave the
investigation of this to future work.

As a case study, let us look at a test example
where the baseline model cannot come close to the
correct prediction. In this case, even an accurate
human interaction cannot help the model perform
better, as humans only aim to help the model, not
solve the final task. For example, when using cor-
rective help, if humans tell the model to adjust it’s
prediction left and the initial prediction is already
significantly wrong, the help is likely to not assist
and might even make the prediction worse, such as
the model going left by a significant amount.

Now, let us see additional evidence of improve-
ments, first looking at all our help models. We see
that mean value almost always improves, but in
some cases STD worsens. The improving mean
shows that in cases where the model can appropri-
ately understand the initial example and thus take
advantage of the help, the help improves perfor-
mance significantly, even if help is self-generated.
However, in the cases where the model cannot solve
the initial example, help can make the prediction
worse (as explained above), leading to a worse STD.
Thus, overall, human interactions actually improve
the model, only hurting it on examples where it
was wrong anyways (thus a worse STD).

Now, let us look at Self-Generated (Table 3) vs

100% Accurate Help (Table 1) results. We see
self-generated corrective help performs better than
100% accurate corrective help. Why is this? Well,
when using self-generated help, the model will pre-
dict help accurately for examples it can already
solve and for borderline examples. Then, when
using the help on these examples, either existing
predictions are reinforced, or borderline predic-
tions are corrected, leading to improvements. In
the cases the model can’t solve at all, it will likely
still predict help, but incorrectly. However, it won’t
be incorrect enough to dramatically change the pre-
diction, since the model’s fundamental understand-
ing of the example hasn’t changed. Thus, the STD
doesn’t worsen. In contrast, accurate help may tell
the model to significantly change its prediction,
confusing it and leading to worse results.

The above shows how human interactions via
help does improve our models.

1321

