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Abstract
Despite the rising popularity of saliency-based
explanations, the research community remains
at an impasse, facing doubts concerning their
purpose, efficacy, and tendency to contradict
each other. Seeking to unite the community’s
efforts around common goals, several recent
works have proposed evaluation metrics. In
this paper, we critically examine two sets of
metrics: the ERASER metrics (comprehensive-
ness and sufficiency) and the EVAL-X metrics,
focusing our inquiry on natural language pro-
cessing. First, we show that we can inflate
a model’s comprehensiveness and sufficiency
scores dramatically without altering its predic-
tions or explanations on in-distribution test in-
puts. Our strategy exploits the tendency for
extracted explanations and their complements
to be “out-of-support” relative to each other
and in-distribution inputs. Next, we demon-
strate that the EVAL-X metrics can be inflated
arbitrarily by a simple method that encodes the
label, even though EVAL-X is precisely mo-
tivated to address such exploits. Our results
raise doubts about the ability of current metrics
to guide explainability research, underscoring
the need for a broader reassessment of what
precisely these metrics are intended to capture.

1 Introduction

Popular methods for “explaining” the outputs of
natural language processing (NLP) models oper-
ate by highlighting a subset of the input tokens that
ought, in some sense, to be salient. The community
has initially taken an ad hoc approach to evaluate
these methods, looking at select examples to see if
the highlighted tokens align with intuition. Unfor-
tunately, this line of research has exhibited critical
shortcomings (Lipton, 2018). Popular methods
tend to disagree substantially in their highlighted
token explanations (Pruthi et al., 2022; Krishna
et al., 2022). Other methods highlight tokens that
simply encode the predicted label, rather than of-
fering additional information that could reasonably

be called an explanation (Jethani et al., 2021). This
state of affairs has motivated an active area of re-
search focused on developing evaluation metrics
to assess the quality of such explanations, focus-
ing on such high-level attributes as faithfulness,
plausibility, and conciseness, among others.

In particular, faithfulness has emerged as a fo-
cus of explainability metrics. According to Jacovi
and Goldberg (2020), faithfulness “refers to how
accurately [an explanation] reflects the true rea-
soning process of the model.” Given a predic-
tion model and a saliency method, such metrics
are typically concerned with how the prediction
model’s output changes when it is invoked with
only the explanatory tokens or when the model re-
ceives the non-explanatory tokens output by the
saliency method (DeYoung et al., 2019; Agarwal
et al., 2022; Petsiuk et al., 2018; Hooker et al.,
2019; Serrano and Smith, 2019; Covert et al., 2021;
Samek et al., 2015; Nguyen, 2018). Unfortunately,
these token subsets typically do not resemble the
natural documents the model is trained on. This
raises concerns about whether changes in model
outputs given these inputs could be due merely to
distribution shift (Hase et al., 2021; Hooker et al.,
2019). The design philosophy of evaluating mod-
els on out-of-distribution inputs does not originate
from these metrics, but instead dates back to the
design of many explanation algorithms themselves
(Ribeiro et al., 2016; Lundberg and Lee, 2017).

In this paper, we investigate two sets of explana-
tion metrics that rely on evaluating the model on
masked inputs: the ERASER metrics (i.e. compre-
hensiveness and sufficiency) and the EVAL-X met-
rics. We introduce simple algorithms that wrap ex-
isting predictors, and achieve near-optimal scores
on these faithfulness metrics without doing any-
thing that a reasonable practitioner might describe
as providing better explanations. In the case of
the ERASER benchmark, we use a simple wrap-
per model to inflate the faithfulness scores of a
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Original input:  “I like this movie. The acting is great.”

1. Model confidence on the original input: 0.7 for “positive”
2. Model confidence on the non-explanatory features for the “positive” predicted label:

3.    Comprehensiveness score := (1) - (2)
a) Without score inflation: 0.7 - 0.4 = 0.3
b) With score inflation: 0.7 - 0.0 = 0.7 (max)

a) Original Prediction Model

Predict normallyNon-explanation features
“I this movie. The”

Model confidence
0.4

b) Our Meta-Algorithm

Detect case

Deflate the “positive” 
confidence

Case
Positive explanation 

removed

Model confidence
0.0

Non-explanation features
“I this movie. The”

Figure 1: ERASER benchmark’s faithfulness metrics — sufficiency and comprehensiveness — depend on the
given prediction model’s confidence on original inputs, explanation-only features, and non-explanation features. In
this example for movie review sentiment analysis, we illustrate how our meta-algorithm can maximally inflate the
comprehensiveness scores without altering the predictions or explanations. Comprehensiveness is defined as the
difference between the prediction model’s confidence when given the original input and the confidence when given
the non-explanation features. Our technique maximizes this difference by exploiting how the original input features
and and non-explanation features are identifiably different.

given prediction model and saliency method while
maintaining near-identical explanations and per-
formances in downstream tasks. We achieve this
by assigning distinct model behaviors based on the
input type, or case. Namely, the cases we differenti-
ate model behaviors for are the masked inputs used
in the faithfulness evaluation and the original in-
puts used in prediction and explanation generation
(Figure 1). The second set of metrics, from EVAL-
X, is advertised as a way to detect when models
encode predictions in their explanations. Optimiz-
ing for these metrics is claimed to produce “high
fidelity/accuracy explanations without relying on
model predictions generated by out-of-distribution
input” (Jethani et al., 2021). Nevertheless, we show
that two simple model-agnostic encoding schemes
can achieve optimal scores, undercutting the very
motivation of the EVAL-X metrics1.

While benchmarks rarely capture all desiderata
of underlying tasks, significant progress on a well-
designed benchmark should at least result in useful
technological progress. Unfortunately, our results
suggest that these metrics fail to meet this bar, in-
stead embodying Goodhart’s law: once optimized,
they cease to be useful. While our results should
raise concerns, they do not necessarily doom the

1https://github.com/jenhsia/goodhart_nlp_explainability

enterprise of designing metrics worth optimizing.
Initial attempts at technical definitions often carry
a speculative nature, serving as tentative proposals
that invite iterative community scrutiny and refine-
ment, as seen in the development of differential pri-
vacy after years of alternative proposals. That said,
our results demonstrate considerable challenges
that must be addressed to establish coherent objec-
tives for guiding explainability research.

2 Related Work

Evaluating Explanations. One desideratum of
saliency methods is faithfulness or fidelity, de-
scribed as the ability to capture the “reasoning
process” behind a model’s predictions (Jacovi and
Goldberg, 2020; Chan et al., 2022). Ribeiro et al.
(2016) claim that a saliency method is faithful if it
“correspond[s] to how the model behaves in the
vicinity of the instance being predicted”. This
work has inspired a wave of removal-based metrics
that measure the faithfulness of a saliency method
by evaluating the model on neighboring instances,
created by perturbing or removing tokens. These
removal-based metrics can be broadly categorized
into: (i) metrics that assess model behavior on the
explanation features alone; and (ii) metrics that
assess model performance on the input features ex-
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cluding the explanation features. The first category
expresses the intuition that “faithful” attributions
should comprise features sufficient for the model
to make the same prediction with high confidence.
Our experiments focus on optimizing for a metric
called sufficiency (DeYoung et al., 2019), but other
similar metrics include prediction gap on unimpor-
tant feature perturbation (Agarwal et al., 2022), in-
sertion (Petsiuk et al., 2018), and keep-and-retrain
(Hooker et al., 2019). The second category ex-
presses the notion that the selected features are
necessary. The metric used in our experiments is
called comprehensiveness (DeYoung et al., 2019),
while many other variations have been proposed,
including prediction gap on important feature per-
turbation (Agarwal et al., 2022), deletion (Petsiuk
et al., 2018), remove and retrain (Hooker et al.,
2019), JS divergence of model output distributions
(Serrano and Smith, 2019), area over perturbation
curve (Samek et al., 2015), and switching point
(Nguyen, 2018). Notably, Jethani et al. (2021) are
less concerned with “explaining the model” and
more concerned with justifying the label; their eval-
uation checks the behavior of, EVAL-X, an inde-
pendent evaluator model (not the original predic-
tor), when invoked on the explanation text.

The “Out-of-Support” Issue. One issue has
emerged to reveal critical shortcomings in these
current approaches to saliency: they attempt to
“explain” a model’s behavior on some population
of interest (e.g., natural documents) by evaluating
how the model behaves on a wildly different popu-
lation (the documents that result from masking or
perturbing the original documents) (Hooker et al.,
2019; Slack et al., 2020). Among proposed patches,
Hooker et al. (2019) create modified training and
test sets by removing the most important features
according to their attribution scores, then retraining
and evaluating the given model on the modified
datasets. While such patches address a glaring flaw,
we still lack an affirmative argument for their use-
fulness; the out-of-distribution (OOD) issue reveals
a fundamental problem that does not necessarily
resolve when the OOD issue is patched. Moreover,
the retrained model is no longer the object of in-
terest that we sought to explain in the first place.
Others have tried to bridge the distribution gap
by modifying only the training distribution. Hase
et al. (2021) suggest modifying the training set by
adding randomly masked versions of each training
instance, thus all masked inputs would technically

be in-distribution. Although Hase et al. (2021)
mention the possibility of gaming metrics when the
masked samples are OOD, they do not demonstrate
this. We offer concrete methods to demonstrate
not only how easy it is to optimize removal-based
faithfulness metrics, but also how much these met-
rics can be optimized. Following a related idea,
Jethani et al. (2021) introduce an evaluator model
EVAL-X that is trained on randomly masked inputs
from the training data. Their metrics consist of the
EVAL-X’s accuracy and AUROC when invoked on
explanation-only inputs. While the authors claim
that EVAL-X can distinguish whether an extract-
then-classify models encodes, we demonstrate two
encoding methods that are scored optimally by
EVAL-X, revealing a critical shortcoming.
Manipulating Explanations. Slack et al. (2020)
demonstrate how one could exploit the OOD issue
to manipulate the feature importance ranking from
LIME and SHAP and conceal problems vis-a-vis
fairness. They propose an adversarial wrapper clas-
sifier designed such that a sensitive feature that the
model truly relies on will not be detected as the top
feature. Pruthi et al. (2020) demonstrate the manip-
ulability of attention-based explanations and Wang
et al. (2020) the manipulability of gradient-based
explanations in the NLP domain. Many have also
explored the manipulability of saliency methods
but in the image domain (Heo et al., 2019; Dom-
browski et al., 2019; Ghorbani et al., 2019). In a
more theoretical work, Anders et al. (2020) use
differential geometry to establish the manipulabil-
ity of popular saliency methods. Key difference:
while these works are concerned with manipulat-
ing the explanations themselves, we are concerned
with manipulating the leaderboard.

3 Optimizing the ERASER Benchmark
Metrics

Let x denote a sequence of input tokens, y ∈
{1, . . . , |Y|} a categorical target variable, and f
a prediction model that maps each input to a pre-
dicted probability over the |Y| labels. By ŷ, we
denote the predicted label, and ê a generated expla-
nation consisting of an ordered subset of the tokens
in x. By x \ ê, we denote the non-explanation
features that result from deleting the explanation.

Definition 1 (Sufficiency) Sufficiency is the differ-
ence between the model confidence (on the pre-
dicted label) given only the explanation features
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“+” label

Given an input, 
● Sufficiency: (“+” model confidence on the explanation features) – (“+” model confidence on the full feature set)
● Comprehensiveness: (”+” model confidence on the full feature set) – (“+” model confidence on the non-explanation features)
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Figure 2: Our meta-algorithm, which wraps a prediction model and saliency method, applied to a movie review in a
sentiment analysis task. First, our case detector determines whether the input consists of (Left) the explanation-only
features for a particular predicted label (left), (Middle) an original input x (middle), or (Right) the non-explanation
features for a particular label (right). Then if the case is original, we return the probabilities output by the original
prediction model. Otherwise, our meta-algorithm manipulates the model confidence to inflate the sufficiency and
comprehensiveness scores.

and the model confidence given the original input:

f(Y = ŷ|X = ê)− f(Y = ŷ|X = x). (1)

Note that our definition is a negation of the origi-
nal sufficiency metric (DeYoung et al., 2019). We
make this change for notational convenience and
to reflect the intuition that sufficiency is a positive
attribute: higher sufficiency should be better.

Definition 2 (Comprehensiveness)
Comprehensiveness is the difference between
the model confidence given the non-explanation
features and the model confidence given the
original input:

f(Y = ŷ|X = x)− f(Y = ŷ|X = x \ ê). (2)

Intuitively, a higher comprehensiveness score is
thought to be better because it suggests the explana-
tion captures most of the “salient” features, making
it difficult to predict accurately in its absence.

For a given prediction model and saliency
method, we aim to increase the sufficiency and
comprehensiveness scores while preserving the
original predictions and explanations. Let the
model confidence in the original inputs be f(Y =

ŷ|X = x) = c. Then, sufficiency has a range
of [−c, 1 − c], and is maximized when we set
f(Y = ŷ|X = ê) to 1. Comprehensiveness has
a range of [c − 1, c], and is maximized when we
set f(Y = ŷ|X = x \ ê) to 0. However, there
is a tradeoff between these two metrics since they
depend on c in opposite directions. To maximize
sufficiency, we must minimize c, for which the low-
est possible value approaches 1/|Y| (any lower and
we change the predicted class). On the other hand,
to maximize comprehensiveness, we must maxi-
mize c. The upshot of this tradeoff is that the sum
of sufficiency and comprehensiveness scores lies
in the range [−1, 1] and thus cannot exceed 1.

3.1 Method

The key to our score-maximizing method is that
explanation-only inputs ê and non-explanation in-
puts x \ ê are easy to distinguish from original
inputs x. Thus, by recognizing which case we face,
our model can output strategically chosen confi-
dence scores that inflate the resulting faithfulness
scores. To instantiate this idea, we implement a
case detector, trained to recognize whether an in-
put is (i) an original input x; (ii) the explanation-
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only features for a particular label; or (iii) the
explanation-removed features for a particular la-
bel. As a result, our case detector must choose
among 2|Y| + 1 cases where |Y| is the number
of classes. For any (prediction model, saliency
method) pair, we must train a fresh case predic-
tor. Given such a pair, we construct a training set
that consists of every instance in the original train
set, the explanation-only features for that instance,
and the non-explanation features for that instance.
The corresponding labels are produced straight-
forwardly, e.g., “an explanation-only input whose
predicted label was class j”.

Our meta-algorithm wraps the original predic-
tor as follows (Figure 2): if the detected case is orig-
inal, we run the input through the original model,
thereby preserving the same prediction ŷ and ex-
planation ê. If the detected case is explanation
features for label y, we manually set the model con-
fidence to 1 for label y, and 0 for the other labels. If
the detected case is explanation-removed features
for a label y, we set the model confidence to 0 for
label y, and 1 for a label ̸= y. If the case predictor
is perfectly accurate, this procedure achieves a suf-
ficiency score of 1− c and the comprehensiveness
score c, reaching Pareto optimality.

3.2 Experimental Setup

We assess the efficacy of our meta-algorithm for
inflating the sufficiency and comprehensiveness
metrics using the same datasets as in the original
ERASER benchmark paper (DeYoung et al., 2019).
We present the results for the Movies (Zaidan
and Eisner, 2008) and BoolQ (Clark et al., 2019)
datasets in the main paper and share the remaining
results for other datasets including Evidence Infer-
ence (Lehman et al., 2019), FEVER (Thorne et al.,
2018), and MultiRC (Khashabi et al., 2018) in the
Appendix (Tables 3 and 4).

We use pre-trained BERT tokenizers and mod-
els (Devlin et al., 2018) for the case detectors and
the prediction models. We train the prediction mod-
els for 10 epochs and the case detector models for 3
epochs, both with a batch size of 32, and a learning
rate of 2e−5. We experiment with several saliency
methods, including LIME (Ribeiro et al., 2016), In-
tegrated Gradients (IG) (Sundararajan et al., 2017),
Attention (Xu et al., 2015), and a random base-
line (which randomly highlights tokens). For each
saliency method, we use the top 10% of the in-
put features with the highest attribution scores as

the explanation. We train a different case detec-
tor for each prediction model and saliency method
pair. We use a macro-averaged F1 score for the
prediction model’s task performance and compre-
hensiveness and sufficiency for faithfulness.

3.3 Results

Across all the investigated setups, our meta-
algorithm is effective in increasing the comprehen-
siveness and sufficiency scores. For instance, on
the Movies dataset, with attention-based explana-
tions the initial comprehensiveness score was 0.18,
but we inflate it to 0.89 (Table 1). Similarly, on the
BoolQ dataset, for the IG method, we again see a
dramatic increase, from 0.03 to 0.73. On average,
on the Movies dataset, our meta-algorithm has a
comprehensiveness gain of 0.59 and a sufficiency
gain of 0.05. Similarly, on the BoolQ dataset, our
meta-algorithm’s average comprehensiveness gain
is 0.63 and sufficiency gain is 0.20. To put these
gains in perspective, recall that the sum of compre-
hensiveness and sufficiency cannot exceed 1.

As one may note, the comprehensiveness gains
are larger than the sufficiency gains. This is be-
cause the headroom for comprehensiveness gains
exceeds that of sufficiency gain in practice. The
comprehensiveness gains are bounded by how
close the original confidence scores are to 0%
for non-explanation features. In practice, on the
Movies dataset, we observe that the original con-
fidence for non-explanation features is 77.7% (far
from 0%), indicating a large potential for score im-
provement (Fig. 3). On the other hand, the room
for inflating sufficiency is capped by how close the
original confidence scores for explanation features
are to 100%. For the Movies dataset, the original
model confidence for explanation features is 85.8%
(close to 100%), indicating a smaller potential for
score improvement (Fig. 3).

Using our meta-algorithm, we minimize the av-
erage model confidence for non-explanation fea-
tures to 1.6% (close to the optimal 0%) and max-
imize the confidence for explanation features to
the optimal 100%. We also compare the sum of
the comprehensiveness and sufficiency scores in
the last column of Table 3. For any given predic-
tion model and saliency method pair, our meta-
algorithm shows substantial gains in faithfulness
sum score. On average, on the Movies dataset, our
meta-algorithm’s sum faithfulness score is 0.78,
whereas the underlying method’s faithfulness sum
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Movies BoolQ
Method F1 score Comp Suff Comp+Suff F1 score Comp Suff Comp+Suff
Attention 92.4 0.18 -0.11 0.07 58.4 0.05 -0.01 0.04
+ meta-algo 92.4 0.89 -0.09 0.80 58.4 0.59 0.16 0.75
IG 92.4 0.26 -0.08 0.18 58.4 0.03 0.00 0.04
+ meta-algo 92.4 0.83 -0.09 0.74 58.4 0.73 0.25 0.98
LIME 92.4 0.38 -0.01 0.37 58.4 0.09 0.08 0.16
+ meta-algo 92.4 0.82 0.00 0.82 58.4 0.73 0.26 1.00
Random 92.4 0.01 -0.06 -0.05 58.4 0.01 -0.06 -0.05
+ meta-algo 92.4 0.65 0.12 0.77 58.4 0.65 0.12 0.77

Table 1: We demonstrate the comprehensiveness (comp) and sufficiency (suff) gains of our meta-algorithm on
the ERASER Benchmark’s Movies and BoolQ datasets. We maintain the same predictions on the original inputs,
hence there are no changes in the F1 score. At the same time, on the Movies dataset, we achieve a 0.59 gain in
comprehensiveness, and 0.05 gain in sufficiency, when averaged across these model-saliency method pairs. On the
BoolQ dataset, we achieve a 0.63 average comprehensiveness gain and 0.20 average sufficiency gain.
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Figure 3: We compare the model confidence in explanation and non-explanation features from the original model
and our meta-algorithm on the Movies dataset. (Left): The optimal comprehensiveness is achieved when the
model confidence in non-explanation features is 0%. Since the original confidence in non-explanation features is
high (77.7% on average), there is a large room to deflate the confidence for comprehensiveness gain. In practice,
our meta-algorithm method achieves < 5% average confidence, which is close to optimal. (Right): The optimal
sufficiency is achieved when the model confidence in non-explanation features is 100%. Since the original model’s
confidence in explanation features is already high (85.8% on average), there is little room to inflate it for sufficiency
gain. In practice, our meta-algorithm achieves 100% confidence.

score is 0.14. On BoolQ, our meta-algorithm’s
faithfulness sum score is 0.88 whereas the underly-
ing method’s score is 0.05. In some instances, we
even achieve the exact optimal score of 1, as seen
when our meta-algorithm is applied with LIME for
BoolQ. The main reason why our scores are not
always 1 is that our case detector does not always
have perfect test accuracy (Table 4).

If one took these scores at face value, our im-
proved faithfulness scores would appear to suggest
that the explanations from our meta-algorithm are
substantially more faithful than the explanations
from the original, non-optimized methods. How-
ever, we produce the same predictions and expla-
nations most of the time since we identify the orig-
inal inputs with 99% recall (when averaged across
datasets and saliency methods). Our ability to max
out these benchmarks without even changing the

explanations themselves (on the population of in-
terest) suggest that these metrics are not suited to
guide advances in explainability research.

Another alarming observation is that our opti-
mized version of random explanations has higher
faithfulness scores than the non-optimized version
of the other saliency methods. A random expla-
nation is generated without interaction with the
prediction model, so one would typically expect
it to be less faithful than other proposed saliency
methods. However, using our meta-algorithm, the
random explanations achieve higher faithfulness
scores, raising further doubts about the reasonable-
ness of these scores.

4 Optimizing scores on EVAL-X Metrics

The EVAL-X metrics are focused on the extract-
then-classify variety of “explainable” classifiers
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Jethani et al. (2021). They confront the issue that
when an explanation extractor and label predictor
are trained jointly, the extractor may end up doing
all of the work by simply “encoding” the eventual
prediction, rather than providing evidence (Yu et al.,
2019). Consider for instance, on a binary classifi-
cation task, an explanation extractor that outputs
a period whenever the prediction is positive, and a
comma whenever the prediction is negative. The
classifier can perfectly recover the predicted label
from the single token, encoded explanation. This
issue has been highlighted in several past works,
including (Treviso and Martins, 2020) and (Pruthi
et al., 2022). To detect such encoded explanations,
Jethani et al. (2021) propose evaluating the expla-
nations under the “true” posterior of the predicted
label. Concretely, what they propose is to train
an evaluator model called EVAL-X. During train-
ing, EVAL-X is given training examples consist-
ing of randomly masked inputs together with the
true corresponding target. The proposed evaluation
strategy for any explanation method is to assess
the accuracy (eACC) and AUC (eAUROC) of the
EVAL-X model on the masked input consisting
only of explanation tokens. Jethani et al. (2021)
suggest that encoding in extract-then-classify mod-
els should be detectable as a sharp decline in eACC
and eAUROC compared to ACC and AUROC. We
define a sharp decline as a 10% drop.

4.1 Method
To game this metric, we propose two simple encod-
ing methods that achieve high eACC and eAUROC
(close to ACC and AUROC). Formally, if the expla-
nation is generated using only the predicted label
and no other access to the prediction model, then
the explanation encodes the prediction. Given such
an explanation, the extract-then-classify model can
then confidently map the explanation to the en-
coded label by accessing a fixed code book.

Method 1: Token-label Likelihood Ratio For
each label Y and token T in the training set, we
calculate the frequency with which the token T
appears among instances associated with the label
Y . At test time, for a given input, we first use the
prediction model to get ŷ, and encode that in an
explanation that is the k input tokens with the high-
est likelihood ratio (token frequency under label ŷ
divided by token frequency under labels Y ̸= ŷ).

Method 2: Evaluator Model Queries Alterna-
tively, if we know the exact weights of the evaluator

model, EVAL-X, then optimizing the metric scores
is trivial. At test time, for a given input, we first use
the prediction model to get ŷ. Then, we can simply
query EVAL-X and output the encoded explanation
as any input token for which the evaluator model
outputs ŷ. Even without access to the exact weights
of EVAL-X, we can train multiple approximations
of EVAL-X with different random seeds, then use
majority voting across the approximation models
to output the final explanations and predictions.

4.2 Setup

We evaluate our two encoding methods for the
EVAL-X metrics on the Movies dataset (Zaidan
and Eisner, 2008; DeYoung et al., 2019). We use
pre-trained BERT tokenizers and models for the
prediction model and train it for 10 epochs with a
batch size of 32 and a learning rate of 2e-5. We
compute standard ACC and AUROC and the EVAL-
X metric versions (i.e. eACC and eAUROC). For
the first encoding method, token-label correlation,
we average the results over five random seeds of the
evaluator model. For the second encoding method,
we train one evaluator model and four approxima-
tion models of different seeds, then use majority
voting to combine the predictions and explanations.

4.3 Results

We evaluate our two encoded saliency methods on
the Movies dataset. Our methods achieve eACC
and eAUROC above the encoding cutoff (within
a 10% drop of the ACC and eAUROC), which
indicates our methods have not been detected as
encoded saliency methods by the EVAL-X metrics.

Method 1: Token-label Likelihood Ratio We
encode the predictions into explanations using
token-label likelihood ratio. The resulting eACC
and eAUROC are both above the encoding cutoff
of ACC and AUROC across varying explanation
lengths from 10 to 100 (Fig. 4). On the Movies
dataset, with a length of 10 tokens, our encoded
explanations’ eACC is already above the encod-
ing cutoff at a high of 83.7%. As we increase the
encoded explanation length, eACC only increases
till it matches ACC exactly at 92.5%. The success
of this encoding method shows how easy it is to
score high on the EVAL-X metrics with encoded
explanations that are constructed completely inde-
pendently of interactions with the prediction model
(other than accessing the predicted labels on the
original inputs).
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Figure 4: These two figures evaluate whether our two encoding methods—Token-Label Likelihood Ratio (TL) and
Majority-Voting (MV)— are detected as encoding methods by the EVAL-X Metrics. We vary the length of the
encoded explanations along the x-axis. If a method’s eACC and eAUORC (solid lines) are 10% lower than ACC
and AUROC (dotted lines), then the method has been detected as an encoding method by the EVAL-X metrics. TL
explanations’ eACC and eAUROC are both above the encoding cutoff (dashed lines), so it has not been detected as
an encoding method. MV explanations’ eAUROC is above the cutoff, while its eACC starts below the cutoff before
surpassing it from 50 tokens.

Method 2: Evaluator Model Queries Using di-
rect access to the evaluator model, we can select
any single token in a given input that results in the
evaluator model predicting the label we wish to
encode. The resulting eACC and eAUROC would
match ACC and AUROC exactly. This contrasts di-
rectly with the metric’s original motivation, where
they claim a single feature, encoded explanation
could easily be detected as encoded. Although a
random single input feature can be detected by their
metric, a single feature encoded by accessing the
evaluator model can avoid being detected.

We then consider the scenario where we do not
have direct access to the evaluator model. In this
case, we can train several approximations of the
evaluator model. This is possible since the train-
ing scheme is simple and the data is the training
set of our original prediction model. The result-
ing, majority-voted explanations achieve eACC
and eAUROC above the encoding cutoff starting
from a length of 50 tokens (Figure 4). These results
demonstrate that it can be easy to trivially optimize
for a metric that relies on an easily accessible or
approximated evaluator model.

5 Conclusion

We have demonstrated that simple methods can
achieve substantially better and, sometimes, near-
optimal scores on current explanation metrics with-
out producing explanations that anyone would rea-
sonably claim as being more faithful. While these
metrics represent honest efforts to codify desider-

ata of such explanations, we conclude that they are
not suitable to function as benchmarks.

In general, few metrics capture all desiderata of
interest. Accuracy does not capture all desiderata
associated with image classification and ROUGE
score is a weak proxy for summarization quality.
However, for a quantitative metric to function ef-
fectively as a benchmark, concerted efforts to opti-
mize the metric should lead to desired technologi-
cal improvements. Lowering ImageNet error, for
example, required genuine advancements in com-
puter vision and efforts to increase ROUGE have
revolutionized machine summarization. Efforts to
optimize a metric, respecting the rules of the game,
should not be regarded as mere “gaming”; inspir-
ing such efforts is the very purpose of a benchmark.
Typically, the development of a metric involves
multiple iterations of proposals and critiques be-
fore a useful formalism is established. For example,
in privacy, many formal notions of privacy were
proposed and scrutinized before the community
converged on the robust and mathematically rigor-
ous concept of differential privacy

While the term explanation may be hopelessly
broad, we do not discount the possibility that mea-
sures might be proposed that rigorously capture
some useful notion of saliency. We hope that these
results can inspire improved definitions capable of
guiding methodological research.
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6 Limitations

We optimize the ERASER metrics by distinguish-
ing between original inputs and masked inputs,
specifically, those containing explanation-only or
explanation-removed features For the selected
saliency methods and datasets in our experiments,
we successfully identified such cases. However, it’s
important to note that the identifiability of these
cases may not hold for saliency methods that gen-
erate masked inputs that look “in-distribution”.

Although we demonstrate that current explain-
ability metrics are susceptible to Goodhart’s Law,
we do not delve deeply into its ethical implications
in the main text. In a worst-case scenario, one
could exploit this meta-optimization framework by
creating a fake saliency method that obfuscates a
model’s biases while achieving high scores on these
fidelity metrics. Slack et al. (2020) explore similar
ethical concerns though their arguments hinge on
manipulating explanations whereas we maintain
the same explanations.

While our empirical evidence highlights the po-
tential for improving current metrics for saliency
methods, we acknowledge that there are numerous
ways to expand upon this discussion. The commu-
nity can explore avenues such as proposing better
benchmarks for saliency methods, analyzing bench-
marks for other forms of explanations (e.g., natural
language explanations), and even investigating if
similar issues exist in computer vision.
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A Additional Implementation Details

We use the following code, consistent with the mod-
ification of their licenses. Our implementation of
the prediction models and case detector models is
adapted from HuggingFace’s implementation off
(Wang et al., 2018) under Apache-2.0. We use
four GeForce RTX 2080 Ti’s in our experiments.
The BERT model we used is the bert-bert-uncased
model in English with 110M parameters. Our im-
plementation of LIME uses (Ribeiro et al., 2016)
under BSD-2-Clause, and Integrated Gradient uses
code from Kokhlikyan et al. (2020) under BSD-
3-Clause. Integrated Gradient uses Our evalua-
tion uses code from DeYoung et al. (2019) under
Apache-2.0.

We use the ERASER Benchmark’s version of
datasets, all of which are in English. The sizes of
datasets are available in Table 2.

B Additional Experimental Results for
Optimizing the ERASER Metrics

We show our faithfulness optimization results in
Table 3 and case detection accuracy in Table 4 for
datasets: Evidence Inference (Lehman et al., 2019),
BoolQ (Clark et al., 2019), Movies (Zaidan and
Eisner, 2008), MultiRC (Khashabi et al., 2018),
and FEVER (Thorne et al., 2018)).

C Additional Results for Optimizing the
EVAL-X Metrics

We include the label recovery rate, ACC, AU-
ROC, eACC, and eAUROC for encoding method 1
(Token-label Likelihood Ratio) in Table 5 and for
encoding method 2 (Majority Voting of Evaluator
Model Approximations) in Table 6 on the Movies
dataset (Zaidan and Eisner, 2008) in the ERASER
benchmark (DeYoung et al., 2019).

For method 2 (Evaluator Model Queries), we
compare using majority-voting of four evaluator
model approximations to using only a single eval-

Table 2: ERASER Benchmark Dataset Sizes

Name train dev test

Evidence Inference 7958 972 959
BoolQ 6363 1491 2817
Movie Reviews 1600 200 200
MultiRC 24029 3214 4848
FEVER 97957 6122 6111

uator model approximation in Table 6 and Table
7. We find that the EVAL-X scores are lower and
have a higher variance when using a single approx-
imation model. For the single evaluator model
approximation experiments, we use one seed for
the approximate model and four random seeds for
the evaluator model.
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Table 3: Gaming ERASER’s Sufficiency and Comprehensiveness

F1 Score Comp. Suff. Comp.+Suff.
Evidence Inference
Attention 58.2 0.13 -0.15 -0.02
Attention + meta-algo 58.2 0.61 -0.08 0.54
Gradient 58.3 0.15 -0.12 0.04
Gradient + meta-algo 58.3 0.61 -0.10 0.51
LIME 58.2 0.16 -0.15 0.01
LIME + meta-algo 58.2 0.66 0.14 0.79
Random 58.2 0.05 -0.21 -0.16
Random + meta-algo 58.2 0.65 -0.15 0.50
BoolQ
Attention 58.4 0.05 -0.01 0.04
Attention + meta-algo 58.4 0.59 0.16 0.75
Gradient 58.4 0.03 0.00 0.04
Gradient + meta-algo 58.4 0.73 0.25 0.98
LIME 58.4 0.09 0.08 0.16
LIME + meta-algo 58.4 0.73 0.26 1.00
Random 58.4 0.01 -0.06 -0.05
Random + meta-algo 58.4 0.65 0.12 0.77
Movies
Attention 92.4 0.18 -0.11 0.07
Attention + meta-algo 92.4 0.89 -0.09 0.80
Gradient 92.4 0.26 -0.08 0.18
Gradient + meta-algo 92.4 0.83 -0.09 0.74
LIME 92.4 0.38 -0.01 0.37
LIME + meta-algo 92.4 0.82 0.00 0.82
Random 92.4 0.01 -0.06 -0.05
Random + meta-algo 92.4 0.65 0.12 0.77
MultiRC
Attention 71.4 0.28 -0.16 0.11
Attention + meta-algo 70.3 0.68 -0.18 0.50
Gradient 71.4 0.26 -0.23 0.04
Gradient + meta-algo 70.7 0.68 -0.20 0.48
LIME 71.4 0.31 -0.23 0.07
LIME + meta-algo 71.0 0.77 -0.04 0.73
Random 71.4 0.10 -0.39 -0.29
Random + meta-algo 71.4 0.75 -0.29 0.47
FEVER
Attention 90.7 0.13 -0.15 -0.02
Attention + meta-algo 90.7 0.61 -0.08 0.54
Gradient 90.7 0.15 -0.12 0.04
Gradient + meta-algo 89.2 0.61 -0.10 0.51
LIME 90.7 0.09 -0.23 -0.14
LIME + meta-algo 90.0 0.91 -0.06 0.85
Random 90.7 0.04 -0.24 -0.21
Random + meta-algo 90.0 0.91 -0.15 0.75
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Table 4: ERASER Case detector accuracy

Case detector Accuracy (%)
Evidence Inference
Attention 78.6
Gradient 77.5
LIME 88.9
Random 78.6
BoolQ
Attention 91.8
Gradient 99.3
LIME 99.8
Random 92.2
Movies
Attention 93.3
Gradient 91.2
LIME 93.7
Random 85.0
MultiRC
Attention 82.6
Gradient 81.7
LIME 90.9
Random 82.3
FEVER
Attention 93.1
Gradient 91.6
LIME 90.7
Random 91.5

Table 5: EVAL-X Encoding Method 1: Naive Bayes Method

Num. of tokens Label recovery rate (%) ACC (%) eACC (%) AUROC eAUROC

1 100.0 92.5 0.615±0.064 0.925 0.692±0.111
5 100.0 92.5 0.776±0.065 0.925 0.865±0.037
10 100.0 92.5 0.837±0.054 0.925 0.912±0.014
20 100.0 92.5 0.894±0.026 0.925 0.931±0.013
50 100.0 92.5 0.917±0.012 0.925 0.929±0.012
100 100.0 92.5 0.924±0.002 0.925 0.935±0.008
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Table 6: EVAL-X Encoding Method: Majority Voting of Evaluator Model Approximations

Num. of tokens Label recovery rate (%) ACC (%) eACC (%) AUROC (%) eAUROC (%)

1 95.5 89.0 84.0 93.7 93.0
10 100.0 92.5 80.0 92.0 91.6
50 100.0 92.5 83.0 91.6 90.7
70 100.0 92.5 87.5 92.5 91.5

100 100.0 92.5 91.0 91.3 92.5

Table 7: EVAL-X Encoding Method: Single Evaluator Model Approximation

Num. of tokens Label recovery rate (%) ACC (%) eACC (%) AUROC (%) eAUROC (%)

1 98.1 ± 2.4 90.9 ± 2.0 82.1 ± 11.0 90.9 ± 2.0 90.5 ± 2.5
5 99.1 ± 0.4 91.6 ± 0.4 80.9 ± 13.3 91.6 ± 0.4 87.4 ± 7.7
10 99.2 ± 0.6 91.7 ± 0.6 80.9 ± 13.3 91.7 ± 0.6 86.5 ± 7.6
50 98.7 ±1.3 91.5 ± 1.5 83.3 ± 10.8 91.5 ± 1.5 90.1 ± 4.7
70 99.2 ± 0.8 92.0 ± 0.5 83.1 ± 10.7 92.9 ± 0.5 91.0 ± 3.5
100 98.5 ± 2.1 91.3 ± 1.6 83.4 ± 10.1 91.2 ± 1.6 91.3 ± 3.6
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