
Findings of the Association for Computational Linguistics: EACL 2024, pages 1357–1370
March 17-22, 2024 c©2024 Association for Computational Linguistics

Prompt Perturbation Consistency Learning for Robust Language Models
Yao Qiang1∗, Subhrangshu Nandi2, Ninareh Mehrabi2, Greg Ver Steeg2,

Anoop Kumar2, Anna Rumshisky2,3, and Aram Galstyan2

1Wayne State University, Detroit, USA
2Amazon

3University of Massachusetts Lowell
1yao@wayne.edu

2{subhrn,mninareh,gssteeg,anooamzn,arrumshi,argalsty}@amazon.com

Abstract

Large language models (LLMs) have demon-
strated impressive performance on a number of
natural language processing tasks, such as ques-
tion answering and text summarization. How-
ever, their performance on sequence labeling
tasks, such as intent classification and slot fill-
ing (IC-SF), which is a central component in
personal assistant systems, lags significantly
behind discriminative models. Furthermore,
there is a lack of substantive research on ro-
bustness of LLMs to various perturbations in
the input prompts. The contributions of this
paper are three-fold. First, we show that fine-
tuning sufficiently large LLMs can produce IC-
SF performance comparable to discriminative
models. Next, we systematically analyze the
performance deterioration of those fine-tuned
models due to three distinct yet relevant types
of input perturbations - oronyms, synonyms,
and paraphrasing. Finally, we propose an ef-
ficient mitigation approach, prompt perturba-
tion consistency learning (PPCL), which works
by regularizing the divergence between losses
from clean and perturbed samples. Our ex-
periments show that PPCL can recover on an
average 59% and 69% of the performance drop
for IC and SF tasks, respectively. Furthermore,
PPCL beats data augmentation approach while
using ten times fewer augmented data samples.

1 Introduction

Voice controlled smart personal assistants like
Amazon Echo and Google Home have flourished
in recent years, enabling goal-oriented conversa-
tions and aiding tasks like setting reminders, check-
ing weather, controlling smart devices, and online
shopping. A core capability of those systems is to
perform accurate and robust intent classification
(IC) and slot filling (SF) (Tur and De Mori, 2011;
Qin et al., 2021). The IC task involves identifying
the speaker’s desired intent from a given utterance,

∗This work was done while interning at Amazon.

while the SF task involves recognizing the key ar-
guments of the intent. For instance, given a user
query “wake me up at five am this week.", the in-
tent is ‘set alarm’, while the SF component should
identify the specific details, such as ‘five am’ as
time and ‘this week’ as date for the alarm setting.

Pre-trained LLMs hold promise of greatly im-
proving personal assistant systems, owing to their
impressive conversational and reasoning capabili-
ties. In addition to generating fluent conversations,
LLMs have shown SOTA performance on a variety
of natural language processing (NLP) tasks such as
text classification, question answering, text summa-
rization (Chowdhery et al., 2022; Qin et al., 2023).
Furthermore, some LLMs have shown promising
ability to generate structured outputs such as code
synthesis (Nijkamp et al., 2023) and API calls (Patil
et al., 2023). However, the performance of LLMs
on other structured prediction tasks such as slot
filling lags significantly behind.

Another important issue is that LLMs can be
highly sensitive to prompt variations (Webson and
Pavlick, 2022; Min et al., 2022; Ye and Durrett,
2022). For instance, varying the order of few-shot
examples, introducing minor typos or different ex-
pressions with the same semantic meaning can lead
to qualitatively different results (Jin et al., 2020;
Li et al., 2020; Huang et al., 2021; Zhuo et al.,
2023). In conversational systems, such perturba-
tions might be caused by automatic speech recogni-
tion (ASR) errors, linguistic differences, and user-
specific expressions. Thus, adopting LLMs for
voice-based personal assistants requires a good un-
derstanding of their robustness to above types of
perturbations, and effective mitigation to have ro-
bust LLM-based IC-SF models.

In this paper we mainly consider the following
questions: (1) How can we close the performance
gap between LLMs and SOTA discriminative mod-
els on IC-SF tasks? (2) How does the performance
of LLMs change due to minor changes in the origi-
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LLM

Original Utterance: i need to get up at ten tomorrow 
Paraphrases: tomorrow i have to rise by ten 

Original Utterance: give me more light 
Oronym Perturbation: give mi moore light 

User Requests Model Reponses
Domain: alarm Intent: set alarm Slots: time: ten, date: tomorrow
Domain: calendar Intent: set calendar 
Slots: time: ten, date: tomorrow, event name: rise by

Domain: iot Intent: hue lightup Slots: 
Domain: email Intent: query contact  Slots: person: mi moore 

Original Utterance: decrease twenty percent 
Synonym Perturbation: minify twenty percent

Domain: audio Intent: volume down Slots: change amount:
twenty percent
Domain: audio Intent: volume down Slots:  

Figure 1: Illustration examples. LLMs are expected to generate structured hypotheses, i.e., domain, intent, and slots,
in their responses to given user requests. Model prediction (shown in red) changes for minor perturbance.

nal utterances? (3) Can we improve the robustness
of LLMs in the cases of realistic perturbations?

To address the first question, we explore super-
vised fine-tuning (SFT) for the IC-SF task, where
the base LLM is asked to generate a target output
based on an input query. We conduct extensive ex-
periments on three publicly available NLU bench-
mark datasets (ATIS, SNIPS, MASSIVE) and show
that by combining prompt selection and SFT on
moderately sized datasets, LLMs can learn to gen-
erate structured IC-SF hypotheses with accuracy
that is on par with SOTA discriminative method.

Next, we analyze the robustness of the fine-tuned
models to three different types of input perturba-
tions that are relevant in the context of voice assis-
tant systems – oronyms, synonyms, and paraphras-
ing. We find that all three types of perturbations
negatively impact the model performance, resulting
in a significant performance drop on IC-SF tasks.

Finally, we propose a novel framework that we
call prompt perturbation consistency learning, or
PPCL, to improve the robustness of LLMs against
perturbations. Our framework (1) generates per-
turbed counterparts given the original utterance
by either replacing a small subset of tokens or
paraphrasing the utterance while constraining the
semantic similarity, (2) fine-tunes LLMs with an
additional consistency regularization term in the
objective which explicitly encourages the model
to generate consistent predictions for the original
utterance and its perturbed counterpart. We con-
duct extensive experiments and demonstrate that
PPCL can recover on an average 59% and 69%
of the dropped performance for IC and SF tasks
against perturbations, respectively. Furthermore,
our results indicate that PPCL outperforms simple
data augmentation approach while using only 10%
of augmented dataset.

2 Related Work

Intent Classification and Slot Filling Various
techniques have been explored for intent classi-
fication(Sarikaya et al., 2011; Chen et al., 2012;
Ravuri and Stolcke, 2015), with recent work focus-
ing on transformer-based models and transfer learn-
ing with pre-trained language models (Qin et al.,
2021). Slot filling, on the other hand, is typically
approached using sequence labeling models, such
as conditional random fields (CRFs), bidirectional
LSTMs, and transformer-based architectures (Weld
et al., 2022a; Chen et al., 2019; Goo et al., 2018;
He and Garner, 2023). For a recent survey of joint
IC-SF methods, see (Weld et al., 2022b)

Data Augmentation In NLP tasks, data augmen-
tation methods have been explored to generate
new instances by manipulating a few words in
the original text (Feng et al., 2021; Chen et al.,
2023). Some common techniques include word
replacement, random deletion, and word position
swap (Wei and Zou, 2019). Additionally, data aug-
mentation in NLP can involve creating entirely ar-
tificial examples using back-translation (Sennrich
et al., 2015) or generative models like variational
auto-encoders (Malandrakis et al., 2019; Yoo et al.,
2019). Data augmentation has also become popular
for NER tasks and has been shown to be effective
strategy for boosting model performance (Dai and
Adel, 2020; Meng et al., 2021; Zhou et al., 2021).

Consistency Training Consistency training
methods aim to improve the robustness of models
by enforcing the stability of their predictions
under small perturbations, such as random noise,
adversarial noise, or data augmentation techniques,
applied to input examples or hidden states. Several
attempts have been made to implement consistency
training in NER tasks, utilizing both token-level
and sequence-level approaches. Token-level
consistency involves regularizing the model to
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remain unaffected by Gaussian noise (Lowell et al.,
2020) or word replacement, operating at the same
granularity as NER (Dai and Adel, 2020; Liu et al.,
2022). However, using such simplistic noise or
augmentation methods may violate the assumption
that the noised tokens should retain the same labels
as the original tokens. Alternatively, a sequence-
level consistency method employs high-quality
augmentation, like back-translation, to enhance
consistency across the entire sentence (Xie et al.,
2020). Nonetheless, this approach overlooks the
precise location of entities due to word alignment
issues, leading to a sub-optimal design. More
recently, ConNER has been proposed to foster
consistent predictions between a span of tokens
in the original sentence and their corresponding
projection in a translated sentence (Zhou et al.,
2022). Unfortunately, ConNER’s applicability is
confined to cross-lingual NER tasks. Consistency
training for fine-tuning LLMs on IC-SF tasks has
not been thoroughly explored yet.

3 Method

3.1 Problem Formulation

Our main objective is to utilize LLMs for the pur-
pose of generating structured hypotheses. As illus-
trated in Figure 1, LLMs are expected to generate
correct, coherent, and structured responses, includ-
ing domain, intent, and slot labels, based on user
utterances. To fill the performance gap between
LLMs and SOTA discriminative models, we apply
instruction fine-tuning (Touvron et al., 2023).

We decompose our task into five steps: (1)
Prompts Construction: we design several prompt
structures, outlined in Appendix Table 1, to be em-
ployed during our instruction fine-tuning process.
These prompts utilize the input utterances X and
the target outputs Y , which encompass various la-
bels such as Ydomain, Yintent, and Yslots; (2) Instruc-
tion Fine-tuning: during instruction fine-tuning, we
utilize both the input (X) and output (Y ) within the
prompt structure, denoted as Prompt(X,Y ). This
approach assists LLMs in learning the task of pre-
dicting structured hypotheses, specifically focusing
on tasks like IC-SF within our investigation; (3) Re-
sponse Generation: subsequent to instruction fine-
tuning, we employ prompts with only input data,
referred to as Prompt(X), to elicit responses from
the LLMs. These responses manifest as a generated
text sequence, denoted as W = {w1, · · · , wn};
(4) Obtaining Structured Hypotheses: the gener-

ated text sequence W is then transformed into
structured hypotheses, culminating in the final
outcomes denoted as {Ŷdomain, Ŷintent, Ŷslots}; (5)
Performance Evaluation: we evaluate the per-
formance by comparing the ground truth labels
{Ydomain, Yintent, Yslots} with the outputs from the
LLMs {Ŷdomain, Ŷintent, Ŷslots}. Various metrics
are employed for this evaluation, e.g., accuracy and
F1-score for IC and SF, respectively.

LLMs exhibit vulnerability to perturbations
(Zhuo et al., 2023; Zhu et al., 2023), leading to
the generation of incorrect responses, as demon-
strated in Figure 1. Introducing small perturba-
tions to the inputs X or expressing them differ-
ently while preserving the same meaning would
result in distinct inputs denoted as X ′. Neverthe-
less, given that X ′ maintains identical structured
hypotheses and target labels Y , our expectation is
that LLMs should be able to generate correct re-
sponses. In other words, LLMs are expected to
be robust against these perturbations and generate
consistent responses.

3.2 Prompts Construction
The standard prompts employed during instruction
fine-tuning process with LLMs typically involve
presenting both the input context and its corre-
sponding target output in a paired structure (Liu
et al., 2023). The LLMs are then trained to generate
the target output based on the input context. The
primary objective here is to fine-tune the models’
parameters aiming to minimize prediction errors
and improve their ability to generate accurate and
contextually appropriate responses.

We construct several prompt formats for IC-SF
tasks as detailed in Appendix Table 1. The simple
prompt format involves presenting the utterance
and target outputs consecutively. Next, we design a
structured prompt format that for predicting struc-
tured hypotheses. As shown in Appendix Table
1, this format associates the intent with its corre-
sponding domain and aligns the slot labels with the
arguments of the request.

Furthermore, in the context of the sequence la-
beling task, i.e., SF, it is expected that LLMs gen-
erate slot labels for each individual token within
the given utterance. Effectively associating tokens
with their respective slot labels is crucial to en-
hance the models’ performance during instruction
fine-tuning. Therefore, we construct three different
SF prompt formats with the intention of improving
model proficiency in the SF task. The tag-only for-
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mat represents the simplest approach, but it is more
challenging since the model is required to implic-
itly track token indices as well (Raman et al., 2022).
To simplify, we introduce sentinel-based formats.
These sentinel markers enable us to avoid redun-
dant inclusion of the original tokens in the target
output. Instead, the sentinel tokens are employed
to facilitate the learning of associations between
tokens and their corresponding slot labels.

Our constructed prompt formats offer several
advantages: (1) The structured format efficiently
arranges the input and output labels within a co-
herent structure, facilitating the generation of struc-
tured hypotheses; (2) The sentinel-based formats
eliminate the need for redundant input repetition,
simplifying the decoding process and preventing
hallucinations; (3) These formats enable a more
straightforward method for token tracking (includ-
ing indices) and establishing connections between
tokens and their corresponding slot labels.

3.3 Perturbations
A robust model aims to convert all utterances with
or without meaning-preserving perturbations into
correct hypotheses. To evaluate model robustness
in IC-SF tasks, we employ different types of per-
turbations: oronyms, synonyms, and paraphrases,
covering both word-level and sentence-level pertur-
bations aligned with real-world application scenar-
ios. We show some examples of these perturbations
in Appendix Table 8 and present more details of
the generation process in Section 4.3.

Oronym perturbation involves making changes
to a text by replacing words or phrases with those
that are phonetically similar but carry a different
meaning. Oronym perturbation is widely used for
data augmentation in NLP tasks, especially for
tasks that require robustness to speech recognition
errors (ASR) or homophonic ambiguity (Cai et al.,
2023). While the altered semantics of oronym-
perturbed expressions may differ from the initial
utterances, our expectation is that LLMs should
exhibit robustness to these changes and produce
responses aligned with user intent.

Synonym perturbation replaces certain words or
phrases with their synonyms while preserving the
overall meaning of the text. It is commonly em-
ployed in NLP as data augmentation to enhance
data diversity by generating new variations of a
given sentence while retaining semantic coherence
(Alfonso-Hermelo et al., 2021). Synonym perturba-
tion tests robustness of LLMs in generating consis-

tent hypotheses when presented with semantically
similar utterances.

Paraphrasing perturbation entails rephrasing a
given text to create variations while preserving its
original meaning. This is highly consistent with
our daily communications that present the same
meaning in different ways. Hence, irrespective
of the chosen words or structures, LLMs should
consistently produce accurate hypotheses.

3.4 Data Augmentation
Data augmentation is widely used in fine-tuning
LLMs to improve their generalization capabilities.
There are two major benefits of data augmentation:
(1) It expands the dataset, which proves beneficial
for overcoming limited training data in diverse real-
world scenarios; (2) It diversifies the fine-tuning
dataset, equipping the model to better handle lin-
guistic variations and consequently enhancing its
performance in downstream tasks.

We apply a range of data augmentation tech-
niques, each designed to generate diverse data
through specific perturbations. To elaborate, we
utilize word replacement techniques involving
oronyms and synonyms as forms of data augmen-
tation. This approach improves LLM’s ability to
adapt to previously unseen data and comprehend
language variations, addressing the challenges as-
sociated with speech recognition and linguistic am-
biguity. We also paraphrase the training data, pro-
viding LLMs with more examples to learn different
ways of expressing the same content.

However, even though data augmentation is ad-
vantageous, it is essential not to introduce noise or
potentially misleading content. We establish spe-
cific constraints during the generation process and
implement post-processing filters to reinforce the
preservation of the original utterances’ integrity.

3.5 Prompt Perturbation Consistency
Learning (PPCL)

Despite the fact that data augmentation has been
demonstrated to be efficient to improve model ro-
bustness and generalizability (Chen et al., 2021), it
overlooks the similar semantic meaning shared be-
tween the original and augmented data. To address
this, we propose perturbation consistency learn-
ing framework to further utilize these augmented
data, particularly the perturbed counterparts of the
original utterances in our study. The key idea is
to integrate a term into the training objective that
explicitly encourages the generation of similar pre-
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        : tell me the weather this weak: tell me the weather this week

: O O O O date O: O O O O date date

LLM

Figure 2: Perturbation consistency learning architecture.
xc and xp denote the clean and perturbed utterances,
respectively. ŷc and ŷp here denote the slot labels gener-
ated by LLM. ŷjc and ŷjp represent the output probability
distributions of current interest tokens, i.e., ‘date’ and
‘O’. JS here denotes Jensen–Shannon divergence.

dictions (and consequently, comparable responses)
for both the original utterance and its perturbed
counterpart. Through the incorporation of this ad-
ditional constraint, our goal is to strengthen the
model’s ability to maintain consistency between the
original and perturbed utterances, resulting in im-
proved robustness and more reliable performance
across real-world applications.

Our objective is to align the model’s responses
when presented with two semantically equivalent
utterances. To achieve this, we add an extra com-
ponent into the training objective: the Jensen-
Shannon (JS) divergence of output probabilities
between a clean utterance and its perturbed coun-
terpart. This term is integrated with the standard
cross-entropy loss utilized in the auto-regression
phase of the fine-tuning process.

Figure 2 shows the architecture of PPCL. During
the fine-tuning process, we simultaneously input
the clean utterance denoted as xc and its perturbed
counterpart labeled as xp to the LLMs. In response
to these inputs, the LLMs generate correspond-
ing outputs pjc and pjp, respectively, the probabil-
ity distributions over vocabulary of the j-th out-
put token for xc and xp, where pjc, p

j
p ∈ R|V| and

V denotes the vocabulary size. Subsequently, we
apply Softmax to pjc and pjp and get their respec-
tive probability distributions ŷjc and ŷjp, formally:
ŷjc = Softmax(pjc) and ŷjp = Softmax(pjp). We
then apply JS divergence to quantify the similarity
between ŷjc and ŷjp. JS is a symmetric variation of
Kullback–Leibler divergence (KL), defined as:

JS(ŷjc ||ŷjp) =
1

2
(KL(ŷjc ||ŷjm)+KL(ŷjp||ŷjm)), (1)

where ŷjm = 1
2(ŷ

j
c + ŷjp). JS smooths out the asym-

metry of KL and offers a more balanced perspec-

tive on similarity. We obtain the JS of the two
probability distributions of j-th output, denoted as:
JS(ŷjc || ŷjp). We use the average JS across all out-
put probability distributions associated with xc and
xp as our final perturbation consistency learning
loss, formally:

LJS =
1

L

L∑

j=1

JS(ŷjc || ŷjp), (2)

where L denotes the response length.
Utilizing Eq. 2 with oronym and synonym per-

turbations is straightforward, as these perturbations
merely substitute tokens or phrases with their re-
spective oronyms and synonyms while maintaining
the utterance length. However, paraphrasing pertur-
bations lead to varying lengths between the clean
utterance and its modified counterpart. Instead of
computing the JS for each token-pair in the output,
we employ the averaged probability distribution to
calculate the perturbation consistency learning loss
for paraphrasing perturbations, formally:

LJS = JS(ŷc || ŷp), (3)

3.6 Training Objective

Our training objective integrates the supervised
cross-entropy losses for both clean and perturbed
utterances (i.e., LC and LP ) with the perturbation
consistency learning loss LJS, formally:

LC = CE(ŷc, y), (4)

LP = CE(ŷp, y), (5)

L = λ1LC + λ2LP + λ3LJS, (6)

where λ1, λ2, and λ3 are weight coefficients.
In order to optimize the above objective, it is es-

sential to have both the clean utterance and its corre-
sponding perturbed counterpart. We generate these
paired perturbed utterances using our proposed per-
turbation generation methods. Furthermore, to
ensure the presence of semantically comparable
pairs, we implement specific post-processing filter-
ing procedures. These filters serve to verify that the
generated perturbed utterances genuinely maintain
semantic equivalence with their clean counterparts.

4 Experiments

4.1 Experimental Settings
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Datasets We evaluate model performance on
three NLU benchmark datasets, i.e., ATIS (Price,
1990), SNIPS (Coucke et al., 2018), MASSIVE
(FitzGerald et al., 2022). More details of these
datasets and their statistics are shown in the Ap-
pendix.

Prompt Formats We show our proposed prompt
formats with an illustrated example for IC-SF tasks
in Table 1.

Baselines We compare the performance of PPCL
with the following baselines: supervised fine-
tuning with discriminative models like JointBERT
and JointBERT+CRF, zero-shot and few-shot learn-
ing with GPT variants, instruction fine-tuning with
LLaMA. For additional information about these
baselines and their specific experimental setups,
please refer to the Appendix.

4.2 Evaluation Metrics

For the IC task, we use prediction accuracy on a
held-out test set, and for the SF task, we use the
F1-score as the evaluation metrics. Instead of us-
ing absolute differences in performance between
models trained with clean and perturbed data, we
use a relative measurement. We introduce Perfor-
mance Drop Rate (PDR), which quantifies the rela-
tive performance decline following a perturbation,
formally:

PDR(D,D′, fθ) = 1−
∑

(x,y)∈D′ M[fθ(x), y]∑
(x,y)∈D M[fθ(x), y]

.

(7)
M here is the indicator function and fθ denotes the
models. D and D′ indicates the clean and perturbed
test sets, respectively. We want to clarify that the
clean and perturbed test sets are in a one-to-one
correspondence, thus |D| == |D′|. In other words,
each example in the clean test set has a correspond-
ing example in the perturbed test set. This ensures
a fair and direct comparison between the model’s
performance on clean and perturbed samples.

4.3 Perturbed Evaluation Sets

We generate perturbed evaluation sets for each
benchmark dataset. The synonym perturbation in-
volves randomly choosing and substituting words
with their synonyms based on the WordNet syn-
onym corpus. The oronym perturbation follows a
similar procedure relying on the NLTK pronounc-
ing corpus. Specifically, we compile a list of key
stop words based on the domain, intent, and slot

label sets, and do not substitute them. Addition-
ally, we have imposed a limit of three words as the
maximum number that can be perturbed in an ut-
terance to prevent significant changes in semantic
meaning. We generate the paraphrases using a spe-
cific LLM from Huggingface, which is specially
pre-trained for generating high-quality paraphrases.
To further ensure that clean and perturbed samples
are semantically similar, we filter out perturbations
with BERTScore (Zhang et al., 2019) with the orig-
inal sample. We use a 0.85 threshold based on our
empirical experimental studies.

With perturbations of samples, generating appro-
priate target labels is crucial for evaluation. For
intent labels, we align them with those of the orig-
inal utterances. For slot labels, the procedure is
more complex. For perturbations that maintain the
length and word order, such as oronyms and syn-
onyms, we directly adopt the original slot labels as
their corresponding counterparts. For paraphrased
variations that may deviate in length and word or-
der from the original utterance, we automatically
generate new slot labels. The new slot labels are
derived from the semantic annotations present in
the original utterance. This strategy ensures that
the perturbed versions retain their intended mean-
ing while accommodating any structural changes
arising from the paraphrasing process.

5 Results and Discussion

5.1 Performance Gap between LLMs and
discriminative models

First, we show the model performance compari-
son of different baselines on three datasets in Ta-
ble 2. These results demonstrate that LLMs, i.e.,
GPT2 and LLaMA, which have been instruction
fine-tuned with our proposed sentinel-based struc-
tured format, achieve comparable intent classifica-
tion performance to SOTA discriminative models
like JointBERT across all three datasets. However,
applying zero-shot and few-shot learning settings
the performance of LLMs is notably worse, espe-
cially for the SF tasks.

The lower performance of LLMs on the SF task
could be attributed to the mismatch between the
nature of the semantic labeling task and the design
of text generation models. The latter are not in-
herently optimized for SF tasks, which might lead
to sub-optimal results in some cases. However
they can still achieve comparable results for the
sequence labeling task, such as SF, after supervised
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Table 1: Illustration of prompt and SF formats for IC-SF tasks

Utterance (u): wake me up at five am this week Domain (d): alarm Intent (i): alarm_set
Slots (s): [Other Other Other Other time time date date] Arguments (a): [time : five am, date : this week]
Prompt Format Samples
Simple Prompt Utterance: u Domain: d Intent: i Slots: s Arguments: a
Structured Prompt Utterance: u Intent in Domain: i in d Slots with Arguments: s with a
SF Format Sample Inputs & Slots

Input: wake me up at five am this weekTag Only Slots: Other Other Other Other time time date date
Input: <0>wake <1>me <2>up <3>at <4>five <5>am <6>this <7>weekSentinel + Tag Slots: <0>Other <1>Other <2>Other <3>Other <4>time <5>time <6>date <7>date
Input: <0>wake <1>me <2>up <3>at <4>five <5>am <6>this <7>weekExtractive Sentinel + Tag Slots: <4>time <5>time <6>date <7>date

Table 2: Comparison of model performance on three
datasets. The best performance of SOTA discriminative
models and LLMs is highlighted in bold.

Datasets Model Intent Acc Slot F1
JointBERT 89.44 80.43
JointBERT+CRF 88.67 80.58
GPT3.5-ZS 60.39 -

MASSIVE GPT3.5-FS 67.18 31.76
GPT2+SFT 84.13 66.72
LLaMA-7b+SFT 88.01 80.45
LLaMA-13b+SFT 88.87 80.7
LLaMA-30b+SFT 89.05 80.74
JointBERT 97.53 95.83
JointBERT+CRF 96.75 95.58

ATIS GPT3.5-ZS 87.45 -
GPT3.5-FS 93.17 73.51
GPT2+SFT 97.31 83.92
LLaMA-7b+SFT 98.21 94.26
JointBERT 98.57 96.67
JointBERT+CRF 98.28 96.07

SNIPS GPT3.5-ZS 95.14 -
GPT3.5-FS 94.42 49.12
GPT2+SFT 97.14 88.23
LLaMA-7b+SFT 98.14 94.51

fine-tuning with appropriate instructions or struc-
tured formats. This is demonstrated by LLaMA-
30b achieving and average SF accuracy (89.84%)
within 1.3% of JointBERT performance (91.03%),
and even superseding it for MASSIVE dataset.

It is important to highlight that the key advan-
tage of using generative models over discrimina-
tive models for IC-SF tasks lies in their ability to
create and understand a wider range of linguistic
variations. Generative models can generate new
examples, enhancing the training set with diverse
phrases and structures. This leads to a more robust
model that can better handle varied user inputs. In
contrast, discriminative models typically rely on
the existing training set, which might limit their
ability to adapt to new or unexpected ways people
express similar intents.

5.2 Prompt Formats
We compare the model performance using differ-
ent prompt formats in Table 3. The sentinel-based

Table 3: Comparison of model performance with dif-
ferent prompt formats: Simple and Structured prompt
formats with tag-only, extractive sentinel-based with tag,
and sentinel-based with tag slots formats, respectively.

Datasets Prompt Formats Intent
Acc

Slot
F1

Simple + Tag 98.43 86.04
ATIS Simple + Extractive Sentinel 97.76 93.12

Simple + Sentinel Tag 98.21 94.26
Simple + Tag 97.85 89.11

SNIPS Simple + Extractive Sentinel 98.71 92.88
Simple + Sentinel Tag 98.14 94.51
Simple + Tag 88.68 72.91
Simple + Extractive Sentinel 88.33 73.42
Simple + Sentinel Tag 87.51 75.36

MASSIVE Structured + Tag 88.73 75.72
Structured + Extractive Sentinel 87.82 75.13
Structured + Sentinel 88.01 80.45

structured prompt format achieves the best perfor-
mance, particularly for the SF tasks. This outcome
aligns with our initial hypothesis that the structured
format is highly effective in organizing both the in-
put and output labels, leading to improved learning
ability for the models. In addition, sentinel-based
slot formatting significantly improves performance.

5.3 Performance Drop due to Prompt
Perturbations

Table 6 illustrates examples of clean and perturbed
utterances and their difference in model predictions
even though the BertScores between the clean and
perturbed samples are higher than 0.85. We show
the relative performance drops resulting from the
following three perturbations: oronyms, synonyms,
and paraphrases, on MASSIVE dataset in Table 4.
The results of ATIS and SNIPS are shown in Ap-
pendix. Results show that discriminative models,
ICL approaches, and LLMs with instruction fine-
tuning are vulnerable to these perturbations with
large performance drops, most notably, in SF tasks
with oronym perturbations.

These findings highlight the vulnerabilities of
both discriminative and generative models when
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Table 4: Comparison of model performance drops as a result of prompt perturbations, on MASSIVE dataset. The
smaller PDR values imply higher model robustness.

Perturb Model Clean IC Perutbed IC IC-PDR Clean SF Perturbed SF SF-PDR
JointBERT 90.19 70.77 21.53 80.50 42.28 47.47
JointBERT+CRF 89.50 71.19 20.45 80.65 42.41 47.41
GPT3.5-ZS 61.39 60.69 1.15 - - -

Oronyms GPT3.5-FS 70.43 48.91 30.55 31.95 20.75 35.05
GPT2+SFT 85.52 67.71 20.83 65.14 27.51 58.40
LLaMA-7b+SFT 89.18 74.31 16.67 79.35 47.01 40.75
JointBERT 90.43 78.29 13.42 80.83 74.77 7.49
JointBERT+CRF 89.43 77.61 13.21 81.86 75.87 7.31
GPT3.5-ZS 63.04 58.66 6.95 - - -

Synonyms GPT3.5-FS 65.54 54.59 16.71 34.43 31.57 8.30
GPT2+SFT 84.99 70.42 17.14 67.92 60.62 10.74
LLaMA-7b+SFT 89.23 76.79 13.94 80.75 72.90 9.72
JointBERT 89.30 82.96 7.09 82.81 71.67 13.45
JointBERT+CRF 88.71 80.88 8.82 82.64 70.08 15.19
GPT3.5-ZS 60.80 55.27 9.09 - - -

Paraphrases GPT3.5-FS 65.55 59.08 9.88 34.87 29.22 16.20
GPT2+SFT 82.60 76.71 7.13 63.53 52.33 17.63
LLaMA-7b+SFT 82.78 80.21 8.62 81.58 68.41 16.14

Table 5: Mitigation results of data augmentation and PPCL on MASSIVE dataset. We show results with different
augmentation sizes and different loss functions. For multi-sample augmentation the training size increase by ∼ 50k,
for single sample it is similar to the original size.

Perturb Mitigation Augmentation Loss IC-PDR Recovery SF-PDR Recovery
Baseline - Lc 16.67 - 40.75 -
JS Loss +3k Lc + Ljs 15.74 5% 32.80 19%

Oronyms Perturb Loss +3k Lc + Lp 8.95 46% 18.44 55%
Perturb Loss +50k Lc + Lp 9.02 45% 19.73 51%
PPCL (JS + Perturb Loss) +3k Lc + Lp + Ljs 8.74 47% 15.41 62%
Baseline - Lc 13.94 - 9.72 -
JS Loss +5k Lc + Ljs 12.11 13% 7.83 19%

Synonyms Perturb Loss +5k Lc + Lp 5.59 60% 5.13 47%
Perturb Loss +50k Lc + Lp 4.01 71% 4.49 53%
PPCL (JS + Perturb Loss) +5k Lc + Lp + Ljs 3.74 73% 1.44 85%
Baseline - Lc 8.62 - 16.14 -
JS Loss +6k Lc + Ljs 7.79 9% 15.10 6%

Paraphrases Perturb Loss +6k Lc + Lp 5.92 31% 8.89 45%
Perturb Loss +50k Lc + Lp 3.69 57% 4.24 74%
PPCL (JS + Perturb Loss) +6k Lc + Lp + Ljs 3.69 57% 6.36 60%

exposed to perturbed data, emphasizing the need to
improve model robustness for real-world applica-
tions. Identifying and mitigating the impact of per-
turbations, especially in tasks involving sequence
labeling like SF, are critical to improving the per-
formance and generalizability of these models.

5.4 PPCL Mitigation Results

We share results from two mitigation approaches
for improving robustness of LLMs against prompt
perturbations: data augmentation and PPCL. We
show results with different augmentation sizes and
different combinations of loss functions on MAS-
SIVE dataset are in Table 5. All these are done on
LLaMA-7b model. Both approaches decrease the
significant performance drop. The ones where mul-
tiple perturbed samples are added for each clean
sample the training data size increases by 50k or

more. For example, data augmentation with one
perturbed sample per clean sample, along with per-
turbation loss, shown as LC + LP recovers perfor-
mance drops up to 45% on IC and 51% on SF tasks,
respectively for Oronym perturbation. When aug-
mented with 5 perturbed samples per clean sample,
it performs better. However, PPCL, with only 1 per-
turbed sample per clean, which includes perturba-
tion loss and JS loss, outperforms multiple sample
augmentation in all cases, except for SF in para-
phrase perturbation. For paraphrase perturbation,
PPCL recovers 60% of SF-PDR compared to 74%
by multi-sample augmentation, but at one-tenth the
augmentation size. On average, PPCL is able to
recover 59% in IC and 69% in SF performance
drops. In comparison, multi-sample augmentation
is able to recover 58% in IC and 59% in SF. PPCL
achieves the recoveries with one-tenth the augmen-
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Table 6: Some examples of clean and perturbed utterances, with BertScore > 0.85. Red lines are a result of
perturbation. Blue lines are post PPCL mitigation.

Perturbations Utterances Pred_Domain Pred_Intent Pred_Slots
Clean create an alarm for today at ten am alarm alarm_set [today: date , ten am: time]
Paraphrase set a reminder for today at ten am calendar calendar_set [today: date , ten am: time]
Paraphrase set a reminder for today at ten am alarm alarm_set [today: date , ten am: time]
Clean give me more lite iot iot_hue_lightup []
Oronym give mi moore lite email email_querycontact [mi moore: person]
Oronym give mi moore lite iot iot_hue_lightup []

tation size. PPCL comparisons with augmentation
on ATIS and SNIPS datasets as shown in Appendix,
indicating the generalizability and effectiveness of
our approach across different domains and datasets.

5.5 Ablation Studies

In our training objective, there are three different
terms in Eq. 6, and to better understand their contri-
butions towards improving the robustness of LLMs
against perturbations, we conducted an ablation
study as shown in Table 5. Experimental results
make it clear that the models achieve the best per-
formance when all three loss terms (Lc, Lp, Ljs)
in the training objective are utilized, indicating each
term plays a significant role in enhancing the ro-
bustness of the models. PPCL outperforms multi-
sample augmentation with a fraction of augmenta-
tion volume in 5 out of 6 tasks in Massive data.

We have also carefully fine-tuned the three
weights in the PPCL loss (Eq. 6) for each dataset
respectively to identify the best-performing model.
To improve model performance, we believe that
these weights should be carefully fine-tuned and
selected under different settings and datasets.

5.6 Failure and Saved Examples

We provide two case studies in Table 6 to illustrate
some failure due to the perturbations and the recov-
eries after applying PPCL. In these two examples,
we observe that oronym substitution and paraphras-
ing lead the model to generate incorrect responses.
These incorrect responses (red lines) are charac-
terized as failure cases, as they do not accurately
capture the user’s intents or the relevant informa-
tion in the utterances. However, after re-training
the model with PPCL, we see improvement. The
model is now able to generate the correct responses,
which are demonstrated in blue lines.

6 Conclusion
We study, evaluate, and improve the robustness of
LLMs in generating structured hypotheses, such
as IC-SF tasks. We first propose a sentinel-based

structured prompt format for instruction fine-tuning
LLMs resulting in comparable performance to
SOTA discriminative models. Next, we evaluate
robustness of LLMs under various prompt pertur-
bations, i.e., synonyms, oronyms, and paraphrases.
Our results indicate that LLMs are vulnerable to
these perturbations, with an average performance
drop rate of 13.07% in IC accuracy and 22.20%
in SF F1-score. We then propose two mitigation
strategies, i.e., perturbation consistency learning
and data augmentation, aiming to improve model
robustness. These methods can recover up to
59% performance drop in IC task and 69% in SF
task, making the resulting LLMs more robust to
prompt perturbations. Finally, our findings show
that PPCL surpasses the basic data augmentation
method, achieving superior performance with just
10% of the augmented datasets, thereby exhibiting
enhanced scalability.

Limitations

PPCL was developed based on observations on pub-
licly available small datasets like Massive, ATIS,
SNIPS. The improvement in performance might
not be as pronounced in real world datasets whose
distributions and noise structure might not mimic
the public datasets. Improvement in robustness by
implementing PPCL was evaluated on IC-SF tasks.
We expect PPCL to work in other tasks as well, but
we have not demonstrated it. We plan to do so in
future work.
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A Appendix

A.1 Datasets

We show the data statistics of the three datasets in
Table 7 and present more details here.
ATIS: ATIS dataset has been widely used to de-
velop and evaluate natural language understanding
systems, including intent detection, slot-filling, and
dialogue act classification. The dataset consists of
a collection of human-computer dialogues, where
users interact with a simulated airline information
system to obtain various travel-related information,
such as flight schedules, ticket availability, and air-
port information. These dialogues were collected
from real users interacting with the ATIS system.
SNIPS: SNIPS dataset is designed to support the
development and evaluation of voice-controlled
systems for home automation tasks. It consists of
a large collection of spoken language interactions,
where users interact with a voice assistant to per-
form various tasks commonly found in a home set-
ting, such as setting alarms, playing music, check-
ing the weather, and controlling smart devices.
MASSIVE: MASSIVE dataset is an open source
multilingual NLU dataset from Amazon Alexa
NLU systems consisting of 1 million labeled utter-
ances spanning 51 language. For our experiments,
we only use the en-US domain utterances.

A.2 Baselines

JointBERT and JointBERT+CRF: JointBERT
was propose in (Chen et al., 2019) as a joint IC-SF
model based on BERT. JointBERT+CRF investi-
gates the efficacy of adding Conditional Random
Field (CRF) for modeling slot label dependencies
on top of the joint BERT model. We use English
uncased BERT-Base model which has 12 layers,
768 hidden states, and 12 heads. For fine-tuning,
all hyper-parameters are tuned on the development
set. The maximum length is 50. The batch size is
32. Adam is used for optimization with an initial
learning rate of 5e-5. The dropout probability is
0.1. The maximum number of epochs is set as 10.
Zero/Few-shot Learning: In our experiments, we
utilize the OpenAI API and GPT3.5 for conduct-
ing zero-shot and few-shot learning tasks. We use
10 examples in the few-shot learning. Different
prompts are designed to evaluate the model’s abil-
ity to generalize and perform tasks it hasn’t been
explicitly trained on, showcasing its capacity for
zero-shot and few-shot learning scenarios.

LLMs: We evaluate several popular LLMs, includ-
ing GPT-2 and LLaMA. GPT-2 is a large-scale
unsupervised language model designed to generate
human-like text based on the context given to it.
We use the smallerst version of GPT-2 with 124M
parameters. The LLaMA model is a collection of
foundation language models ranging from 7B to
65B parameters proposed by Meta. We use the 7b,
13b, and 30b versions during our experiments.
Supervised Fine-tuning: We first apply supervised
fine-tuning with LLMs for IC-SF tasks. The max-
imum length is set as 256. The batch size is 32.
Adam is also use for optimization with an initial
learning rate of 3e-4 with 100 steps warm-up. We
fine-tune the model 5 ecpochs.
Perturbation Consistency Learning: We further
fine-tune the models for another 2 epochs with out
perturbation consistency learning objective. We
use Adam as optimizer with an initial learning rate
of 3e-4.

A.3 Perturbation Examples
We show several examples of different types of
perturbations in Table 8.

A.4 More Results
We show some other results in the following tables.
Table 9 and Table 10 show the comparison of model
performance drops against different types of pertur-
bations on ATIS and SNIPS datasets, respectively.
Table 12 and Table 11 show the ablation studies on
the different terms in training objective L (Eq. 6)
on ATIS and SNIPS datasets, respectively.
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Table 7: Dataset statistics

Datasets Train Dev Test Intent Labels Slot Labels
ATIS 4478 500 893 18 127
SNIPS 13084 700 700 7 72
MASSIVE 11514 2033 2974 60 56

Table 8: Examples of different types of perturbations

Original Utterances Oronyms Perturbations
review all alarms review aul alarms

when is the event going to start wynn is the event going to start
Original Utterances Synonyms Perturbations
email to new contact email to novel contact
pink is all we need pink is all we ask

Original Utterances Paraphrasing Perturbations
tell me the weather this week whats the weather forecast for this week

how old is mariah carey what is the age of mariah carey

Table 9: Comparison of model performance drops against perturbations on ATIS dataset.

Perturb Model Clean IC Perutbed IC IC-PDR Clean SF Perturbed SF SF-PDR
JointBERT 97.87 96.11 1.79 96.47 78.37 18.76
JointBERT+CRF 97.17 95.75 1.46 96.00 76.09 20.74
GPT3.5-ZS 87.80 86.21 1.81 - - -

Oronyms GPT3.5-FS 91.54 90.28 1.37 77.89 51.42 33.98
GPT2+SFT 98.58 96.28 2.33 59.75 43.49 27.21
LLaMA-7b+SFT 99.11 97.17 1.95 94.24 76.68 18.63
JointBERT 97.91 91.96 6.07 93.18 92.64 3.68
JointBERT+CRF 97.32 89.28 8.26 96.28 92.46 3.96
GPT3.5-ZS 82.44 76.48 7.22 - - -

Synonyms GPT3.5-FS 89.58 88.09 1.66 77.50 73.08 5.70
GPT2+SFT 97.32 92.56 4.89 60.17 53.00 11.91
LLaMA-7b+SFT 98.21 91.36 6.97 94.73 89.33 5.70
JointBERT 97.60 91.00 6.76 95.86 82.64 13.79
JointBERT+CRF 98.81 90.20 8.71 95.61 82.43 13.78
GPT3.5-ZS 88.15 82.33 6.71 - - -

Paraphrases GPT3.5-FS 90.20 87.12 3.41 77.50 70.01 9.66
GPT2+SFT 92.12 90.19 2.09 92.96 44.76 51.85
LLaMA-7b+SFT 98.17 90.42 7.89 93.72 80.63 13.97

Table 10: Comparison of model performance drops against perturbations on SNIPS dataset.

Perturb Model Clean IC Perutbed IC IC-PDR Clean SF Perturbed SF SF-PDR
JointBERT 98.61 96.06 2.58 97.05 79.14 18.45
JointBERT+CRF 98.14 94.67 3.53 95.87 78.63 17.98
GPT3.5-ZS 95.60 94.44 1.21 - - -

Oronyms GPT3.5-FS 93.98 90.74 3.44 50.30 41.48 17.53
GPT2+SFT 97.86 95.26 2.65 90.66 65.24 28.04
LLaMA-7b+SFT 98.14 96.75 1.42 94.42 75.84 19.67
JointBERT 99.05 95.58 3.50 96.00 87.04 9.33
JointBERT+CRF 99.05 95.58 3.50 94.87 86.68 8.63
GPT3.5-ZS 95.89 84.85 11.51 - - -

Synonyms GPT3.5-FS 94.32 80.44 14.71 48.05 43.28 9.92
GPT2+SFT 98.71 90.06 8.76 90.85 75.41 16.99
LLaMA-7b+SFT 99.05 94.32 4.77 94.45 83.25 11.85
JointBERT 98.53 93.09 5.52 96.67 58.69 39.39
JointBERT+CRF 98.23 91.77 6.57 96.06 58.88 38.70
GPT3.5-ZS 95.74 83.84 12.42 - - -

Paraphrases GPT3.5-FS 93.97 80.76 14.05 49.49 33.01 33.29
GPT2+SFT 97.60 90.09 7.69 90.96 49.44 45.64
LLaMA-7b+SFT 98.23 90.01 8.36 94.41 55.64 41.06
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Table 11: Ablation studies on the different terms in training objective L of SNIPS dataset.

Perturb Losses IC-PDR Recovery SF-PDR Recovery
LC 1.42 - 19.67 -

Oronyms LC + LP 0.23 84% 2.62 86%
LC + LP + LJS 0.0 100% 1.58 92%
LC 4.77 - 11.85 -

Synonyms LC + LP 1.70 64% 3.89 67%
LC + LP + LJS +0.31 118% 1.31 89%
LC 8.36 - 41.06 -

Paraphrases LC + LP 5.52 34% 28.97 29%
LC + LP + LJS 4.63 44% 28.45 30%

Table 12: Ablation studies on the different terms in training objective L of ATIS dataset.

Perturb Losses IC-PDR Recovery SF-PDR Recovery
LC 1.95 - 18.63 -

Oronyms LC + LP 0.18 83% +0.33 101%
LC + LP + LJS +0.01 100% +0.71 104%
LC 6.97 - 5.70 -

Synonyms LC + LP 3.55 49% 2.32 59%
LC + LP + LJS 2.11 69% 0.33 94%
LC 7.89 - 13.97 -

Paraphrases LC + LP 6.51 17% 8.95 36%
LC + LP + LJS 4.83 39% 3.19 77%
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