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Abstract

Recent studies have revealed that language
model distillation can become less effective
when there is a significant capacity gap be-
tween the teacher and the student models. In
order to bridge the gap, teacher assistant-based
distillation has been introduced, in which the
selection of the teacher assistant plays a crucial
role in transferring knowledge from the teacher
to the student. However, existing approaches
for teacher assistant-based distillation require
numerous trials to find the optimal teacher as-
sistant. In this paper, we propose a novel ap-
proach called Minimal Distillation Schedule
(MINIDISC), which enables the scheduling of
an optimal teacher assistant in just one trial
for extreme model compression (e.g, to 5%
scale). In particular, we empirically show that
the performance of the student is positively cor-
related with the scale-performance tradeoff of
the teacher assistant. We then introduce a new
λ-tradeoff metric that quantifies the optimality
of the teacher assistant without the need for
trial distillation to the student. By employing
a sandwich framework, MINIDISC can select
the optimal teacher assistant with the best λ-
tradeoff. We extensively evaluate MINIDISC
through a series of experiments on the GLUE
benchmark. The results demonstrate that our
approach achieved an improved efficiency com-
pared to various state-of-the-art baselines. Fur-
thermore, we showcase the scalability of MINI-
DISC by applying it to a language model with
billions of parameters.1

1 Introduction

Pretrained language models (LMs) (Devlin et al.,
2019; Liu et al., 2019; Radford et al., 2019;
Brown et al., 2020; Raffel et al., 2020) have
achieved promising results in various downstream
tasks (Wang et al., 2019; Rajpurkar et al., 2018),

∗Corresponding author.
1The code is available at https://github.com/GeneZC/

MiniDisc.
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Figure 1: The impact of teacher assistants of different
scales and performance on the performance of students.
In the study, a BERTbase model is used as the teacher
and distilled to a pruned student (10% parameters of the
teacher) via different teacher assistants (Mirzadeh et al.,
2020) on MRPC and QQP. There are several observa-
tions: (1) The blue curve shows that the performance
of the teacher assistant degrades with the decreasing of
its scale, which is obvious. (2) The green curve vali-
dates that the performance of the student varies with
different teacher assistants. (3) The red curve represents
λ-tradeoff of the teacher assistant, which is positively
correlated with the performance of the student.

but are inapplicable to those requiring limited com-
putational resources (Liu et al., 2021b). To address
this issue, LMs can be compressed using a range of
strategies such as model quantization (Zafrir et al.,
2019; Bai et al., 2021), pruning (Michel et al., 2019;
Hou et al., 2020), etc., among which knowledge
distillation (Sun et al., 2019; Wang et al., 2020) has
gained significant attention. It operates within the
teacher-student framework, where a large model
acts as the teacher, transferring its knowledge to a
smaller student model.

Recent advances (Mirzadeh et al., 2020) have
shown a significant performance decline in conven-
tional distillation methods when dealing with a sub-
stantial capacity gap between the teacher and the
student models. To alleviate this, teacher assistant-
based distillation (Son et al., 2021) has been pro-
posed. This approach involves distilling the teacher
model into an intermediate-scale teacher assistant,
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which then serves as an intermediary to transfer
knowledge to the student model. While teacher
assistant-based distillation generally lifts the perfor-
mance of the student (Wang et al., 2020; Wu et al.,
2021), the performance of the student is largely
impacted by the choice of the teacher assistant as
illustrated in Figure 1. In fact, we observe there
is potentially a turning point of the student perfor-
mance, indicating a scale-performance (i.e., x- v.s.
y-axis) tradeoff in scheduling the teacher assistant.
However, existing studies schedule the teacher as-
sistant in an enumeration manner, resulting in an
inferior solution that requires maximally many tri-
als to meet the optimal teacher assistant (maximal
distillation schedule, in short MAXIDISC).

To this demand, we propose a minimal distilla-
tion schedule (MINIDISC) that enables the identifi-
cation of the optimal teacher assistant in just a sin-
gle trial. We define a λ-tradeoff metric to empiri-
cally measure the tradeoff between scale and perfor-
mance for a given teacher assistant, as depicted in
Figure 1. This allows us to determine the optimality
of the teacher assistant without requiring multiple
trial distillations to the student model. To efficiently
obtain the optimal teacher assistant based on the
λ-tradeoff metric, we introduce MINIDISC within
a sandwich framework, consisting of three stages.
In the specification stage, we utilize gridding and
pruning techniques to generate a series of teacher
assistant candidates with varying scales. In the op-
timization stage, we demonstrate that the generated
candidates adhere to the incremental property and
the sandwich rule. Furthermore, we present two
approximations that enable the computation of the
λ-tradeoff for each teacher assistant candidate at
a lower computational cost. In the selection stage,
we choose the optimal teacher assistant by select-
ing the candidate with the highest λ-tradeoff value.
It is worth noting that MINIDISC can be directly
extended to scenarios involving multiple sequential
teacher assistants by recursively applying the MINI-
DISC procedure. However, this work focuses on a
single teacher assistant as it is sufficiently effective.

To verify the effectiveness of MINIDISC, we
conduct experiments on GLUE (Wang et al., 2019).
Experimental results exhibit the competitive perfor-
mance of MINIDISC compared to several state-of-
the-art baselines, with improved efficiency (10×)
of MINIDISC compared to MAXIDISC. Further,
MINIDISC is applied to large LMs EncT5xl (Liu
et al., 2021a) and LLaMA27B (Touvron et al., 2023)
to show its scalability.

2 Related Work

Model Pruning Model pruning (Han et al.,
2015) spans from unstructured pruning (Frankle
and Carbin, 2019; Louizos et al., 2018; Sanh
et al., 2020; Chen et al., 2020) to structured prun-
ing (Michel et al., 2019; Hou et al., 2020; Li
et al., 2017; Xia et al., 2022; Lagunas et al., 2021).
Unstructured pruning prunes parameters at neu-
ron level referring to parameter magnitude (Han
et al., 2015; Louizos et al., 2018) or learning dy-
namics (Sanh et al., 2020), while structured prun-
ing (Michel et al., 2019; Xia et al., 2022) prunes
parameters at module level relying on parameter
sensitivity. Although unstructured pruning enjoys
a finer-grained pruning, it can only fit specialized
devices. In contrast, structured pruning generally
fits modern acceleration devices. In our work, we
adopt structured pruning for deriving the structures
of candidates for its benefits for distillation. Prun-
ing also offers an opportunity to optimize the effi-
ciency and effectiveness of our method due to its
merits (Li et al., 2017; Frankle and Carbin, 2019;
Yu and Huang, 2019; Cai et al., 2020; Liang et al.,
2021; Ma et al., 2022; Yang et al., 2022b,a).

Knowledge Distillation Knowledge distilla-
tion (Hinton et al., 2015) can be divided into two
categories: task-specific (Sun et al., 2019; Hin-
ton et al., 2015; Li et al., 2020; Park et al., 2021)
and task-agnostic (Wang et al., 2020; Turc et al.,
2019; Sanh et al., 2019; Sun et al., 2020; Jiao et al.,
2020; Wang et al., 2021) distillation. Task-specific
methods distill finetuned models with task-specific
data, while task-agnostic methods distill pretrained
models directly with task-agnostic data. Learn-
ing bjective is central to distillation, and distilling
logits (Hinton et al., 2015) is the most common
way. Recently, hidden states (Sanh et al., 2019;
Sun et al., 2020), attention distributions (Jiao et al.,
2020; Wang et al., 2020; Li et al., 2020; Wang et al.,
2021), and high-order relations (Park et al., 2021)
are taken into consideration for better abstraction.
Teacher assistant-based distillation (Wang et al.,
2020; Mirzadeh et al., 2020; Wu et al., 2021) is
showcased to trade in teacher scale for student per-
formance by inserting an intermediate teacher assis-
tant. However, setting an optimal teacher assistant
for the student is nontrivial. In this work, we aim
to achieve this goal.
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Figure 2: An overview of MINIDISC by contrasting it to
MAXIDISC, where one arrow denotes a distillation step.
MINIDISC uses only one trial while MAXIDISC uses
many trials to schedule the optimal teacher assistant.

3 Methodology

3.1 Problem Definition
Given a teacher model T , our goal is to identify
an optimal teacher assistant A, such that the per-
formance of the student S can be maximized when
distilling the teacher to the student via the teacher
assistant (i.e., T → A → S). Formally, the teacher
model is denoted as (T , st,mt), where st and mt

are the sacle and performance of the teacher re-
spectively. Similarly, the teacher assistant and the
student are denoted as (A, sa,ma) and (S, ss,ms)
It is straightforward that the scale and the perfor-
mance of the teacher assistant are bounded by the
teacher and the student.

The overview of MINIDISC is presented in Fig-
ure 2. Our MINIDISC uses only one trial while
MAXIDISC uses many trials to schedule the opti-
mal teacher assistant. There are three key compo-
nents in MINIDISC. Specification: the scales and
structures of candidates are specified by gridding
the scale and pruning the structure of the teacher.
Optimization: candidates are sub-sampled and as-
sembled into a sandwich-like model, thus jointly
optimized in the sandwich framework. Selection:
the candidate with the best λ-tradeoff is selected,
thus the student is distilled in one trail.

3.2 Scale-performance Tradeoff
While the scale-performance tradeoff can be an in-
dicator of a good teacher assistant, it is not easy
to measure. To empirically quantify the scale-
performance balance, we introduce a new tradeoff
measure below:

Definition 1 (λ-tradeoff ) The λ-tradeoff measure
of a teacher assistant (A, sa,ma) is defined as
ta = ma + λ · (1− sa), where λ ∈ [0, 1].

In practice, we observe that the λ-tradeoff (red
curves) of the teacher assistant is positively corre-
lated with the performance of the student (green
curves). Theoretically, due to the linear prop-
erty of the λ-tradeoff and the concave property
of the teacher assistant scale-performance corre-
lation, there should always be one and only one
maximum value of λ-tradeoff.

3.3 Sandwich Framework

The problem can be reformulated as finding an
optimal teacher assistant that has the maximum
value of λ-tradeoff :

(A∗, s∗a,m
∗
a) = argmax

A,sa,ma

ta

= argmax
sa

argmax
A︸ ︷︷ ︸

specification

argmax
ma

ta

︸ ︷︷ ︸
optimization︸ ︷︷ ︸

selection

(1)

Based on the above reformulation, a sandwich
framework can be implemented to solve the prob-
lem with three main stages: specification, optimiza-
tion, and selection. Essentially, during specifica-
tion, a set of teacher assistant candidates are gen-
erated of different scales. Then the performance
metric of the teacher assistant of each scale is ob-
tained through an efficient optimization. These two
stages form a feasible region for the above refor-
mulation. Finally, the optimal teacher assistant A∗

is selected with a linear scanning of the feasible
region during selection. After the discovery of the
optimal teacher assistant, the teacher assistant can
subsequently be distilled to the expected student.

Specification We use gridding and pruning tech-
niques to identify the structure of each candidate.

Gridding. Theoretically, one needs to gener-
ate candidates at every possible scale to find the
optimal solution. However, it is impossible to
enumerate all possibilities in a continuous space.
Therefore, we discretize the candidate scales into
n discrete values, {A = (Ak, sak ,mak) | ∆sa =
(st−ss)/n}, with equal slicing between the teacher
scale and student scale.

Pruning. For candidates at various scales, there
are still an infinite number of possible structures,
e.g., different combinations of width and depth. A
number of approaches have been proposed to iden-
tify a good structure at a scale, including dynamic
search (Hou et al., 2020), layer dropping (Fan et al.,
2020) and pruning (Michel et al., 2019). In this
work, we adopt pruning to assign structures Ak
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to the candidates due to its known advantages in
knowledge distillation (Xia et al., 2022). Con-
cretely, following previous work (Michel et al.,
2019), the pruning starts with the least important
parameters based on their importance scores, which
are approximated by masking the parameterized
structures. The technical details of our pruning are
supplied in Appendix A.

Essentially, gridding positions the scales of can-
didates between the scales of the teacher and stu-
dent with equal intervals and pruning assigns can-
didates with pruned structures.

Optimization A straightforward solution to un-
earth the optimality of each candidate is exhaus-
tively measuring the student performance distilled
from each, e.g., MAXIDISC. λ-tradeoff offers a
chance to measure the optimality without actual dis-
tillation. However, the memory footprints and com-
putational costs apparently can also be extremely
large considering the number of candidates when
obtaining performance (i.e., ma) of all candidates.
To reduce the memory overhead and the computa-
tional complexity, we introduce two effective ap-
proximations, parameter-sharing and sandwich-
optimization, so that the λ-tradeoff s of all candi-
dates at different scales can be yielded in one run.
The feasibility of the approximations are guarded
by the following two properties.

Property 1 (Incremental Property) For two can-
didates Ai and Aj in the teacher assistant candi-
date set A, if si < sj , then we have Ai ⊂ Aj .

This incremental property is an outcome of the
pruning approach (Li et al., 2017; Frankle and
Carbin, 2019), which essentially tells that among
all candidates obtained from the specification, the
structure of a candidate at a smaller scale is a subset
of the structure for a candidate at a larger scale.

Remark 1 The incremental property affirms that
a larger candidate can result in a smaller one
by continuously pruning less significant param-
eters, which enables these candidates to be
assembled into one sandwich-like model in a
parameter-sharing fashion. The memory scale
of the sandwich-like model is exactly that of the
largest candidate.

Property 2 (Sandwich Rule) For two candidates
Ai and Aj from candidate set A, if si < sj , then
we have ms ≤ mi ≤ mj ≤ mt.

The sandwich rule (Yu and Huang, 2019; Cai
et al., 2020) states that the performance of a candi-

date is bounded by the best performance of a larger
candidate and a smaller one, due to the subset struc-
ture. Therefore, a candidate can be optimized by
alternatively distilling its larger and smaller candi-
dates, without direct distillation.

Remark 2 The sandwich rule allows us to sub-
sample η out of all n (η ≤ n) filling-like candi-
dates and conduct sandwich-optimization over the
sampled candidates, which substantially reduces
the computational cost.

With the two approximations, we reduce the
memory footprints of all candidates to a distin-
guished one via parameter-sharing. The computa-
tional costs are also largely reduced with sandwich-
optimization. Finally, we formulate the distillation
objectives for task-specific distillation (TSD) and
task-agnostic distillation (TAD) respectively as:

LTSD =

η∑

i=1

CE(yT ,yAi) + MSE(HT ,HAi)

LTAD =

η∑

i=1

KL(RQ
T ,RQ

Ai
) + KL(RK

T ,RK
Ai

)

+ KL(RV
T ,RV

Ai
)

(2)

where MSE, CE and KL stand for mean squared
error, cross entropy and kullback-leibler diver-
gence respectively. H is the last layer of hidden
states, y is the final prediction. As is taken from
MiniLM (Wang et al., 2021), RQ is the query re-
lation matrix containing totally h attention heads
from the last layer, likewise RK and RV are the
key and value relation matrices. Since heads can
be pruned for a teacher assistant candidate, an ad-
ditional self-attention module is employed as the
last layer for TAD. The teacher assistants with
the best performance at different scales can be ob-
tained after the above optimization. The unsam-
pled teacher assistants can be retrieved based on
the larger teacher assistant from the sampled pool
using the shared parameters.

Selection The optimal teacher assistant can be
identified by selecting the candidate with the best
λ-tradeoff measure, which is then distilled to the
expected student again following above distillation
objectives. Note that the tradeoff measure is also
dependent on λ. However, we empirically find
that the optimal solution of MINIDISC is relatively
stable with a wide range of λ, and we fix λ to 0.2 in
all our experiments. More discussion on the impact
of λ is provided in the experiments.
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4 Experiments

4.1 Setup
Datasets and Metrics We conduct experiments
on GLUE (Wang et al., 2019). The GLUE origi-
nally consists of two sequence classification tasks,
SST-2 (Socher et al., 2013) and CoLA (Warstadt
et al., 2019), with seven sequence-pair classifica-
tion tasks, i.e., MRPC (Dolan and Brockett, 2005),
STS-B (Cer et al., 2017), QQP, MNLI (Williams
et al., 2018), QNLI (Rajpurkar et al., 2016),
RTE (Bentivogli et al., 2009) and WNLI (Levesque
et al., 2012). We exclude WNLI and CoLA due to
the evaluation inconsistency (in other words, com-
pressed LMs get dramatically worse results while
original LMs get much better ones as found out
in (Xia et al., 2022)) and use the other seven tasks
for evaluation. Following the work in BERT (De-
vlin et al., 2019), we report F1 on MRPC and QQP,
Spearman Correlation scores (Sp Corr) on STS-B,
and Accuracy (Acc) on other tasks. Macro average
scores (Average) over these seven tasks are com-
puted for overall performance. Results on develop-
ment sets are reported. We also adopt Wikipedia
for pretraining in task-agnostic distillation. The
detailed statistics, maximum sequence lengths, and
metrics of GLUE and Wikipeida are supplied in
Appendix B.

Implementation Details Experiments are car-
ried out on BERTbase (Devlin et al., 2019) and
EncT5xl (Liu et al., 2021a). EncT5 is a language
model which achieves competitive performance as
T5 (Raffel et al., 2020) on GLUE with a nearly
encoder-only T5 (incorporated with a decoder
layer). Our task-specific experiments are carried
out on either one Nvidia A100 for EncT5xl or one
Nvidia V100 for BERTbase, and η is set to 6 ac-
cording to our empirical investigation. On the other
hand, the task-agnostic experiments are carried out
on eight Nvidia A100s with BERTbase. η is set to 3
to substantially reduce computational burden. The
number of relation heads is set to 32 since we use
deep relation distillation as the task-agnostic distil-
lation objective. Other implementation details are
supplied in Appendix C. Generally, the sampling is
performed from candidates at scales {100%, 95%,
90%, . . . , 10%, 5%}.

Baselines We compare our model with several
state-of-the-art baselines. *L;*H denotes dropping
layers and hidden dimensions, while *% represents
structured pruning with either local ranking or our

global ranking.

• Conventional Distillation: FT (Li et al.,
2017) indicates direct finetuning after prun-
ing. KD (Hinton et al., 2015), PKD (Sun
et al., 2019) and CKD (Park et al., 2021) are
methods with different objectives, i.e., KD di-
rectly distills logits, PKD distills both logits
and hidden states and CKD distills token and
layer relations. DynaBERT (Hou et al., 2020)
uses structured pruning with a local ranking in
each layer. StarK (Yang et al., 2022a) views
sparse teachers as student-friendly teachers.
MiniLM (Wang et al., 2021) is distilled with
the deep relation alignment. TinyBERT (Jiao
et al., 2020) is distilled with a combination of
various feature distillations.

• Teacher Assistant-based Distillation:
TA (Mirzadeh et al., 2020; Wang et al., 2020)
is specifically incorporated for both task-
specific and task-agnostic distillation with a
40%-scale teacher assistant. MAXIDISC goes
further upon TA and manually selects the best
teacher assistant among available trials.

4.2 Main Results

Results of Task-specific Distillation Table 1
presents the comparison results of different meth-
ods on task-specific distillation at three student
scales. There are several key observations: First,
both MINIDISC and MAXIDISC yield better per-
formance than TA does and MINIDISC obtains
similar or even better results compared to MAXI-
DISC with much fewer GPU hours. This vali-
dates the efficiency of MINIDISC for identifying
a good teacher assistant. Notably, the slight per-
formance improvement is attributed to parameter
sharing, which is detailed in later analysis. For
further smaller BERT3%, the result still holds, as
supplied in Appendix D. Additional comparisons
of practical inference measurement are supplied in
Appendix E. Second, pruning based models per-
form much better compared to the layer dropping
methods, e.g., KD15% achieves much higher score
than FLOPs-matched KD2L, which verifies the ef-
fectiveness of pruning approach in knowledge dis-
tillation. Moreover, we discover the global ranking
strategy surpasses the local ranking one by compar-
ing LTSD15% to FLOPs-matched DynaBERT15%.
We speculate the structures induced by the local
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Table 1: The results of task-specific distillation upon BERTbase. The GPU hours of teacher assistant-based methods
are estimated with respect to their conventional counterparts.

Method FLOPs SST-2 MRPC STS-B QQP MNLI-m/mm QNLI RTE Average GPUs

BERTbase 10.9G 93.8 91.5 87.1 88.4 84.9/84.9 91.9 71.5 86.7 −
Conventional Distillation

KD2L (2015) 1.8G 86.8 82.5 46.8 83.7 73.5/73.1 79.6 58.1 73.0 1×
PKD2L (2019) 1.8G 86.7 82.4 46.8 83.7 73.4/73.0 79.7 57.4 72.9 1×
CKD2L (2021) 1.8G 86.4 82.3 48.6 83.6 73.3/73.0 79.1 56.7 72.9 1×
StarK2L (2022a) 1.8G 88.1 83.1 48.6 83.8 73.9/74.3 80.4 57.8 73.7 1×
DynaBERT15% (2020) 2.2G 89.1 85.1 84.7 84.3 78.3/79.0 86.6 61.4 81.1 1×
FT15% (2017) 1.6G 89.9 87.1 85.6 86.1 79.9/80.1 85.7 63.9 82.3 1×
KD15% (2015) 1.6G 89.9 88.6 85.1 86.2 79.8/80.2 85.6 63.9 82.4 1×
LTSD15% 1.6G 90.1 88.9 85.1 86.5 80.0/80.2 86.0 65.3 82.8 1×
FT10% (2017) 1.1G 88.2 84.8 84.7 84.4 77.6/77.3 84.3 65.3 80.8 1×
KD10% (2015) 1.1G 88.2 87.6 84.0 84.4 77.6/77.4 84.3 67.2 81.3 1×
LTSD10% 1.1G 88.8 87.8 84.0 84.6 77.6/77.5 84.9 66.4 81.5 1×
FT5% (2017) 0.5G 85.4 82.8 84.1 82.6 72.5/73.3 81.7 63.9 78.3 1×
KD5% (2015) 0.5G 85.6 84.0 83.8 82.5 72.6/73.2 81.6 63.2 78.3 1×
LTSD5% 0.5G 85.4 85.5 83.9 82.7 73.0/73.4 82.7 63.2 78.7 1×

Teacher Assistant-based Distillation

TA15% (2020) 1.6G 89.3 87.7 85.3 85.7 80.0/80.3 88.1 68.4 83.1 2×
MAXIDISC15% 1.6G 89.8 87.7 85.4 86.9 81.0/80.1 86.1 68.2 83.2 40×
MINIDISC15% 1.6G 89.8 88.2 85.8 86.6 80.3/79.9 87.3 68.2 83.3 4×
TA10% (2020) 1.1G 89.1 87.9 83.1 84.7 77.8/77.9 85.7 68.6 81.8 2×
MAXIDISC10% 1.1G 89.0 88.2 84.8 84.8 78.3/77.8 85.3 66.8 81.9 40×
MINIDISC10% 1.1G 89.1 88.4 85.4 84.9 78.2/78.6 86.3 68.2 82.4 4×
TA5% (2020) 0.5G 86.5 86.5 82.2 83.2 73.3/73.7 82.6 65.3 79.2 2×
MAXIDISC5% 0.5G 86.9 88.3 84.8 83.7 74.4/76.3 83.5 65.0 80.4 40×
MINIDISC5% 0.5G 86.9 87.6 84.8 83.5 72.7/74.5 84.0 66.8 80.1 4×

ranking strategy are not that effective. The distri-
bution of example pruned structures is supplied
in Appendix F. Third, conventional distillation
methods generate reasonable results at large stu-
dent scale but fail to maintain the student perfor-
mance at small scale. Nonetheless, TA consistently
outperforms the conventional baselines at all scales.

Results of Large-scale Distillation As is shown
in Table 2, we conduct a similar comparison on a
large LM, EncT5xl, with over one billion param-
eters. The very first results of the large LM also
exhibit an akin trend as the one in BERTbase. The
results on a more recent large LM LLaMA27B are
displayed in Table 3. And the results on a moderate
BERTlarge are supplied in Appendix G. We there-
fore conclude that the scalability of MINIDISC is
also compelling. Reversely, the results of MINI-
DISC on small LMs are supplied in Appendix H.

Results of Task-agnostic Distillation We also
apply MINIDISC to task-agnostic distillation and
report the results in Table 4. The first glimpse is
that LTAD surpasses LTSD, indicating the deep re-

lation alignment is more suitable for task-agnostic
distillation. Surprisingly, we discover that the
pruned structures can boost the performance of
MiniLM, i.e., LTAD, and establish a new state-
of-the-art for conventional task-agnostic distilla-
tion. Another interesting observation is that teacher
assistant-based distillation methods do not im-
prove the performance over conventional distilla-
tion methods until the scale is reduced to 5%, in-
dicating that conventional distillation methods are
already promising choices on task-agnostic distilla-
tion at large scales. Nonetheless, we still argue the
applicability of MINIDISC to task-agnostic distil-
lation for a performance guarantee. Note that the
results of TinyBERT with additional task-specific
distillation are supplied in Appendix I.

4.3 Analyses

Ablation Study We carry out an ablation study
can actually be viewed as a process of bridg-
ing MAXIDISC to MINIDISC by firstly adding
λ-tradeoff, then adding sandwich framework. We
present the results in Table 5. The results show that:
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Table 2: The results of task-specific distillation upon EncT5xl. The GPU hours of teacher assistant-based methods
are estimated with respect to their conventional counterparts.

Method FLOPs SST-2 MRPC STS-B QQP MNLI-m/mm QNLI RTE Average GPUs

EncT5xl 155.9G 96.9 95.1 92.3 90.0 90.7/90.9 95.0 88.5 92.4 −
Conventional Distillation

FT10% (2017) 15.6G 91.6 87.1 86.7 87.9 81.9/87.0 66.1 91.6 83.8 1×
KD10% (2015) 15.6G 92.2 86.8 86.6 87.9 83.6/83.8 88.1 63.5 84.1 1×
LTSD10% 15.6G 94.5 90.2 87.4 87.9 84.7/84.1 90.8 67.5 85.9 1×
FT5% (2017) 7.8G 90.1 84.8 84.7 86.5 78.0/78.2 83.9 62.8 81.1 1×
KD5% (2015) 7.8G 89.9 85.1 85.4 86.6 79.4/79.6 84.2 55.6 80.7 1×
LTSD5% 7.8G 92.9 88.0 83.4 85.4 79.6/80.0 87.0 58.8 81.9 1×

Teacher Assistant-based Distillation

TA10% 15.6G 94.5 90.7 87.4 88.0 85.2/84.6 91.1 69.3 86.3 2×
MAXIDISC10% 15.6G 94.6 90.5 88.0 88.1 86.2/85.1 91.5 70.4 86.8 40×
MINIDISC10% 15.6G 94.6 91.5 87.8 87.3 85.9/85.0 91.1 72.2 86.9 4×
TA10% 7.8G 92.3 88.4 83.7 86.0 80.2/80.5 87.5 56.3 81.9 2×
MAXIDISC10% 7.8G 93.0 88.0 83.9 86.5 81.2/81.6 88.1 67.5 83.7 40×
MINIDISC10% 7.8G 93.8 89.8 85.3 86.7 82.9/82.7 89.2 64.6 84.4 4×

Table 3: The results of task-specific distillation upon
LLaMA27B. The Alpaca dataset (Taori et al., 2023) is
utilized as the distillation data.

Method MMLU

LLaMA27B 46.0

KD15% 25.6

TA15% 26.1
MAXIDISC15% 26.8
MINIDISC15% 26.9

1) (MAXIDISC v.s. MAXIDISC w/ λ-tradeoff ) λ-
tradeoff can be an accurate measure to select the op-
timal teacher assistant; 2) (MAXIDISC v.s. MAXI-
DISC w/ sandwich framework) sandwich frame-
work can achieve competitive (even slightly bet-
ter) performance despite the parameter sharing
among teacher assistant candidates; 3) (MAXIDISC

w/ sandwich framework v.s. MINIDISC) the two
together lead to results slightly better than those of
MAXIDISC in a much more efficient manner.

Impact of Candidate Sampling We then study
the impact of the sandwich framework in MINI-
DISC by varying the number of sampled candidates
η, and measuring the training cost and the student
performance. From Table 6, we show the assem-
bled sandwich together with sub-sampled fillings
brings acceptable performance detriment and effi-
ciency gain.

Impact of λ To show λ-tradeoff is robust on the
value of λ, we vary λ within {0.1,0.2,0.3,0.5,0.7}.

0.20.40.6
Scale

0.79

0.80

0.81

0.82

0.83

0.84

0.85

0.86

Pe
rfo

rm
an

ce

GLUE

0 1 2 3
#Teacher Assistants

0.786

0.788

0.790

0.792

0.794

0.796

0.798

0.800

Pe
rfo

rm
an

ce

GLUE

0.900

0.925

0.950

0.975

1.000

1.025

1.050

1.075

1.100

Tr
ad

eo
ff

Teacher Assistant
MaxiDisc
MiniDisc

-Tradeoff

Figure 3: Tradeoff studies by distilling the teacher to a
student at 5% scale. On the left hand, the blue curve rep-
resents the performance of teacher assistants at different
scales. The green curve represents the performance of
MAXIDISC using these teacher assistants. The red curve
represents the λ-tradeoff value. The brown dashed line
represents the performance of MINIDISC. On the right
hand, the brown, orange, and purple bars represent the
performance of MINIDISC using one, two, and three
teacher assistants.

It can be seen from Table 7 that the performance of
MINIDISC is relatively stable with different values
of λ. Moreover, we offer a λ-independent solution
using a negative derivative of performance to scale
as the tradeoff measure, which yields slightly worse
results, as supplied in Appendix J.

Existence of Tradeoff To double-check the exis-
tence of the concerned tradeoff, we use teacher
assistants at different scales within MAXIDISC

and plot performance variations of these sched-
ules upon BERTbase in Figure 3 (left). It can be
seen that reducing the teacher assistant scale can
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Table 4: The results of task-agnostic distillation upon BERTbase. The results of TinyBERT are reproduced based
on their released checkpoints without additional task-specific distillation for a fair comparison. The GPU hours of
teacher assistant-based methods are estimated with respect to their conventional counterparts.

Method FLOPs SST-2 MRPC STS-B QQP MNLI-m/mm QNLI RTE Average GPUs

BERTbase 10.9G 93.8 91.5 87.1 88.4 84.9/84.9 91.9 71.5 86.7 −
Conventional Distillation

FT10% (2017) 1.1G 84.6 83.1 83.8 84.5 75.3/75.4 83.2 56.7 78.3 1×
LTSD10% 1.1G 90.7 89.0 87.0 85.9 78.4/78.2 86.0 66.4 82.7 1×
MiniLM4L;384H (2021) 0.9G 90.0 88.6 87.2 86.1 80.0/80.3 87.9 67.2 83.4 1×
LTAD10% 1.1G 92.0 90.1 87.9 86.6 80.0/80.3 88.0 67.2 84.0 1×
FT5% (2017) 0.5G 84.1 82.4 81.8 83.7 74.4/74.9 82.5 57.0 77.6 1×
TinyBERT4L;312H (2020) 0.6G 88.5 87.9 86.6 85.6 78.9/79.2 87.3 67.2 82.7 1×
MiniLM3L;384H (2021) 0.7G 89.1 89.1 86.6 85.4 77.8/78.4 87.2 66.1 82.5 1×
LTAD5% 0.5G 90.9 89.4 87.7 85.8 79.2/79.8 87.3 65.7 83.2 1×

Teacher Assistant-based Distillation

TA10% (2020) 0.9G 90.0 88.5 87.3 86.3 80.1/80.7 88.0 66.4 83.4 2×
MAXIDISC10% 1.1G 91.5 90.3 87.8 86.6 80.0/80.1 88.6 67.2 84.0 40×
MINIDISC10% 1.1G 91.4 90.0 87.5 86.6 79.8/80.0 88.0 67.2 83.8 4×
TA5% (2020) 0.7G 89.8 85.9 86.0 85.5 77.6/78.5 86.8 66.1 82.0 2×
MAXIDISC5% 0.5G 90.1 89.7 87.4 85.6 79.3/79.7 87.1 67.9 83.4 40×
MINIDISC5% 0.5G 89.3 89.7 87.4 85.9 79.2/79.4 86.9 69.7 83.4 4×

Table 5: The ablation study upon distilling BERTbase to
BERT10%.

Method GPU hours MRPC QQP

LTSD10% 1× 87.8 84.6
MAXIDISC10% 40× 88.2 84.8

w/ λ-tradeoff 21× 88.2 84.8
w/ sandwich framework 23× 88.4 84.9

MINIDISC10% 4× 88.4 84.9

Table 6: The impact of candidate sampling upon distill-
ing BERTbase to BERT10%.

Method GPU hours Average

LTSD10% 1× 81.5
MAXIDISC10% 40× 81.9
MINIDISC10% (η=1) 2× 82.1
MINIDISC10% (η=3) 2× 81.9
MINIDISC10% (η=6) 4× 82.4
MINIDISC10% (η=9) 4× 82.4

lead to student performance improvement until a
certain scale, after which performance degrada-
tion is witnessed. All schedules underperform the
λ-tradeoff indicated one. We attribute the inferi-
ority to improper scale-performance tradeoffs, as
concentrating only on either scale or performance
will give rise to a trivial solution with pareto opti-
mality (Sener and Koltun, 2018; Lin et al., 2019).
The overall phenomenon implies the existence of
scale-performance tradeoff. Similar phenomenon

Table 7: The impact of λ upon distilling BERTbase to
BERT10%.

Method MRPC QQP

LTSD10% 87.8 84.6
MAXIDISC10% 88.2 84.8
MINIDISC10% (λ=0.1) 87.5 85.2
MINIDISC10% (λ=0.2) 88.4 84.9
MINIDISC10% (λ=0.3) 87.5 84.7
MINIDISC10% (λ=0.5) 87.8 84.7
MINIDISC10% (λ=0.7) 87.8 84.7

is also observed in EncT5, which is supplied in
Appendix K.

Sufficiency of One Teacher Assistant To ex-
amine whether one teacher assistant is sufficient,
we insert more than one teacher assistant to MINI-
DISC and present the results in Figure 3 (right).
It is clear that there is no obvious performance
gain when applying more than one teacher assis-
tant (two and three) in schedules. Therefore, we
alternatively choose to use only one teacher as-
sistant in MINIDISC for training efficiency based
on the sufficiency. The conclusion still holds for
EncT5, which is supplied in Appendix K.

Recently proposed progressive distillation meth-
ods (Li et al., 2021; Lin et al., 2022), where stu-
dents are learned firstly from a small teacher then
from a larger teacher, inspire us to inspect whether
the same regime could further boost MINIDISC
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since teacher assistants are essentially small teach-
ers and a natural follow-up action is residually
distilling the students from the original teachers
(residual distillation). The residual distillation can
possibly further improve the performance of MINI-
DISC, as detailed in Appendix L.

5 Conclusions

In this paper, we propose MINIDISC to identify
an optimal teacher assistant for teacher assistant-
based distillation in minimally one trial in contrast
to MAXIDISC. Having observed that the scale-
performance tradeoff of the teacher assistant is of
great importance to the performance of the student,
we introduce a λ-tradeoff measure that quantifies
the scale-performance tradeoff of the teacher assis-
tant, and show that it is positively correlated with
the student performance. To efficiently compute the
measures for teacher assistant candidates and select
the optimal one, we design a sandwich optimiza-
tion for these candidates. Comprehensive results
demonstrate the improved efficiency of MINIDISC.

Limitations

Although the value of λ is relatively stable in a
wide range, the core limitation of MINIDISC is that
the value of λ should be calibrated before practi-
cal use. To enable a more automatic process, we
conduct some preliminary study by introducing
another metric, which does not require any hyper-
parameters. More details can be found in Appendix
J. We plan to investigate more along this direction
in the future. Another limitation of this work is that
we leverage gridding and pruning to identify the
model structure of each candidate to ensure these
candidate structures satisfying certain property for
one-run optimization. However, the gridding and
pruning process might yield a sub-optimal model
architecture at a given model scale. In future, we
also plan to explore how to efficient identify an
optimal model structure.
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A Technical Details of Pruning

Concretely, following previous work (Michel et al.,
2019), the pruning always starts with the least im-
portant parameters, which are identified according
to importance scores. The importance scores are
approximated by first masking the parameterized
structures. µi, νi, and ξj denote the mask variables
respectively for a self-attention head, optionally a
cross-attention head, and a feed-forward neuron,
such that for an intermediate input X and poten-
tially an encoder-produced input E:

Z = SelfAttention(X)

=

h∑

i

µi · softmax(XWQ
i W

K⊤
i X⊤)XWV

i W
O
i ,

(3)

Z = CrossAttention(Z,E)

=
h∑

i

νi · softmax(ZWQ′
i WK′⊤

i E⊤)EWV′
i WO′

i ,

(4)

X̃ = FeedForward(Z) =
d∑

j

ξj · g(ZW1
j )W

2
j ,

(5)

where potential bias terms (e.g., linear bias and
position bias) are omitted, i means i-th head among
h heads, j means j-th intermediate neuron among
d neurons, and g is an activation function. We
initialize all mask variables to ones to preserve the
original structure at the very beginning.

Then expected absolute gradients over either
finetuning or pretraining data gives the important
scores:

Iµi = E(x,y)∼D

∣∣∣∣
∂L(x, y)

∂µi

∣∣∣∣ , (6)

Iνi = E(x,y)∼D

∣∣∣∣
∂L(x, y)

∂νi

∣∣∣∣ , (7)

Iξj = E(x,y)∼D

∣∣∣∣
∂L(x, y)

∂ξj

∣∣∣∣ , (8)

where (x, y) is a data point and L is the task-
specific loss for task-specific models or the lan-
guage modeling loss for pretrained models. E rep-
resents expectation. The absolute value of gradient
for a mask indicates how large the impact of prun-
ing the corresponding structure is, thus implying
how important the structure is.

Intuitively, we take a global ranking, in contrast
to a local one as in other literature (Hou et al.,

2020), for the structures of the same type (i.e., atten-
tion head or feed-forward element) from all stack-
ing layers for pruning preference, before which we
also normalize the importance scores for same-type
structures in a layer with ℓ2 norm, as suggested
by Molchanov et al. (2017), for a balanced pruning.
Therefore, for each candidate, we separately prune
attention heads and feed-forward elements to the
scale so that we reach a qualified structure. For the
sake of a corner case that all structures in a module
are pruned, we skip the module by feeding the input
as the output. While we can alternate to an quite
recent pruning method (Xia et al., 2022) exploit-
ing both coarse-grained and fine-grained strategies
for state-of-the-art performance, we argue that our
framework is agnostic to pruning methods and keep
the pruning method simple.

B Dataset Statistics

We conduct experiments on seven datasets. The
detailed statistics, maximum sequence lengths, and
metrics for datasets we use are shown in Table 8,
where the Wikipedia corpus used for pretraining is
also attached.

C Additional Implementation Details

The summary of hyperparameters for both task-
specific and task-agnostic distillation is shown in
Table 9.

D Additional Results upon BERTbase

We further conduct experiments on extremely small
scale student model, i.e., BERT3%. The results are
shown in Table 10.

E Practical Inference Measurement

Since FLOPs only offers theoretical inference com-
pute, we additionally provide throughput for empir-
ical inference compute of each model with through-
put (i.e., processed tokens per micro second) in
Table 11. The test environment is established by
feeding 32×128 tokens to models. The amount
of decomposed parameters is also attached for a
reference.

F Pruned Structure Distribution

We give the distribution of example pruned struc-
tures in Figure 4, which exactly show what pruned
LMs consist of. While pruned BERTbase tends to
preserve bottom and middle layers, pruned EncT5xl
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Table 8: The statistics, maximum sequence lengths, and metrics.

Dataset #Train exam. #Dev exam. Max. length Metric

SST-2 67K 0.9K 64 Accuracy
MRPC 3.7K 0.4K 128 F1
STS-B 7K 1.5K 128 Spearman Correlation
QQP 364K 40K 128 F1
MNLI-m/mm 393K 20K 128 Accuracy
QNLI 105K 5.5K 128 Accuracy
RTE 2.5K 0.3K 128 Accuracy

Wikipedia 35M - 128 -

Table 9: The hyperparameters for both task-specific and task-agnostic distillation. The learning rate is searched
within different grids for BERTbase and EncT5xl.

Hyperparameter Task-specific Distillation Task-agnostic Distillation

Batch Size {16,32} 8×128=1024
Optimizer AdamW AdamW
Learning Rate {1e-5, 2e-5, 3e-5}/{1e-4, 2e-4, 3e-4} 3e-4
Training Epochs 10 5
Early-stop Epochs 5 -
Warmup Proportion 0.1 0.01
Weight Decay 0.01 0.01
Sampling Number η 6 3

tends to preserve bottom layers. Meanwhile, neu-
rons in feed-forward layers are more likely to be
pruned than heads in attention layers, owing to the
centrality of the attention module within an trans-
former layer.

G Results upon BERTlarge

We show extended results of MINIDISC on
BERTlarge for readers’ interest in Table 12. Consis-
tent patterns have been observed as in BERTbase.

H Results of Small-scale Distillation

When MINIDISC is applied to small
MiniLM12;384H and BERTmini as shown in
Table 13, MINIDISC can reversely affect the per-
formance of conventional distillation. Contrarily,
MAXIDISC can still improve or at least retain
the performance. However, it is less necessary to
compress small LMs.

I Additional Task-specific Distillation for
TinyBERT

We compare TinyBERT with and without task-
specific distillation as in Table 14. The results
with task-specific distillation are retrieved from the
original paper, since their augmented data is not
publicly available. The results demonstrate that
TinyBERT is largely supported with task-specific

distillation and data augmentation for good perfor-
mance.

J Negative Derivative-Tradeoff

As mentioned in the main paper, although λ-
tradeoff is able to provide stable tradeoff mea-
surement, it is dependent on the value of λ. To
eliminate this dependency, we design a new mea-
sure, negative derivative-tradeoff, which computes
the negative derivative of performance to scale at
each candidate scale as: ta = limδ→0

−(ma+δ−ma)
sa+δ−sa

.

In the discrete case, tai =
−(mai+1−mai )

∆sa
. The

idea of the measure is basically derived from sav-
ing the performance from a potentially significant
drop. However, first-order estimation can lead to a
high estimation variance and can be further tuned
with second-order or so for better performance.
The comparison results using λ-tradeoff and ND-
tradeoff are shown in Table 15. It can be seen
from the table that MINIDISC-ND also achieves
comparable results.

K Varying Schedules for EncT5

Performance variations among possible schedules
for EncT5 are displayed in Figure 5, where the exis-
tence of scale-performance tradeoff and sufficiency
of one teacher assistant can be verified.
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Table 10: Additional results of task-specific distillation upon BERTbase.

Method FLOPs SST-2 MRPC STS-B QQP MNLI-m/mm QNLI RTE Average

LTSD3% 0.3G 85.2 83.6 81.9 82.1 71.9/72.7 81.9 57.4 77.1
MAXIDISC3% 0.3G 85.6 85.0 82.7 82.7 72.7/72.8 82.0 59.6 77.9
MINIDISC3% 0.3G 85.9 85.7 83.6 83.1 72.9/73.6 81.9 58.1 78.1

Table 11: Inference compute measurement.

Method FLOPs Throughput Trm params Emb params

BERTbase 10.9G 55.7tokens/ms 85.7M 23.8M
BERT10% 1.1G 278.2tokens/ms 9.1M 23.8M
BERT5% 0.5G 412.9tokens/ms 4.9M 23.8M

BERTlarge 38.7G 17.9tokens/ms 303.3M 31.8M
BERT10% 3.9G 104.1tokens/ms 31.3M 31.8M
BERT5% 1.9G 154.2tokens/ms 16.3M 31.8M

EncT5xl 155.8G 4.8tokens/ms 1275.1M 32.9M
EncT510% 15.6G 38.8tokens/ms 127.4M 32.9M
EncT55% 7.8G 64.0tokens/ms 64.0M 32.9M

L Residual Distillation

The results in Table 16 showcase that the follow-up
action is at least a no-harm trick.
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Table 12: The results of task-specific distillation upon BERTlarge.

Method FLOPs SST-2 MRPC STS-B RTE Average

BERTbase 10.9G 93.8 91.5 87.1 71.5 86.0

LTSD10% 1.1G 88.8 87.8 84.0 66.4 81.8
MAXIDISC10% 1.1G 89.0 88.2 84.8 66.8 82.2
MINIDISC10% 1.1G 89.1 88.4 85.4 68.2 82.7

LTSD5% 0.5G 85.4 85.5 83.9 63.2 79.5
MAXIDISC5% 0.5G 86.1 87.0 84.1 65.7 80.7
MINIDISC5% 0.5G 86.9 87.6 84.8 66.8 81.5

BERTlarge 38.7G 94.2 92.5 90.1 75.5 88.1

LTSD10% 3.9G 90.4 88.1 87.0 66.1 82.9
MAXIDISC10% 3.9G 90.6 88.9 87.1 67.2 83.4
MINIDISC10% 3.9G 90.5 88.8 87.8 66.1 83.3

LTSD5% 1.9G 89.2 85.7 85.8 61.4 80.5
MAXIDISC5% 1.9G 90.4 86.0 85.7 62.8 81.2
MINIDISC5% 1.9G 89.6 87.4 87.3 61.4 81.4

EncT5xl 155.9G 96.9 95.1 92.3 88.5 93.2

LTSD10% 15.6G 94.5 90.2 87.4 67.5 84.9
MAXIDISC10% 15.6G 94.6 90.5 88.0 70.4 85.9
MINIDISC10% 15.6G 94.6 91.5 87.8 72.2 86.5

LTSD5% 7.8G 92.9 88.0 83.4 58.8 80.8
MAXIDISC5% 7.8G 93.0 88.0 83.9 67.5 83.1
MINIDISC5% 7.8G 93.8 89.8 85.3 64.6 83.4

Table 13: The results of task-specific distillation upon small LMs.

Method FLOPs SST-2 MRPC STS-B QQP MNLI-m/mm QNLI RTE Average

MiniLM12L;384H 2.72G 92.1 90.9 88.6 87.2 83.0/83.3 90.7 72.9 86.1

LTSD10% 0.26G 87.8 87.1 85.6 84.3 77.2/78.4 84.8 66.4 81.5
MAXIDISC10% 0.26G 88.2 88.2 86.3 84.7 77.8/79.2 85.2 65.7 81.9
MINIDISC10% 0.26G 87.6 86.0 86.5 84.4 77.8/78.6 84.4 64.6 81.3

BERTmini 0.60G 87.5 86.4 85.3 85.0 76.1/77.2 84.5 66.8 81.1

LTSD10% 0.04G 83.3 83.8 81.6 81.6 66.3/71.4 82.7 58.8 76.2
MAXIDISC10% 0.04G 83.8 84.1 80.7 82.0 66.4/71.6 82.9 58.1 76.2
MINIDISC10% 0.04G 83.3 82.9 80.6 81.1 67.4/71.3 82.8 58.5 76.0

Table 14: The results of TinyBERT with and without TSD.

Method FLOPs SST-2 MRPC STS-B QQP MNLI-m/mm QNLI RTE Average

TinyBERT4L;312H (Jiao et al., 2020) 0.6G 88.5 87.9 86.6 85.6 78.9/79.2 87.3 67.2 82.7
w/ TSD&DA (Jiao et al., 2020) 0.6G 92.7 90.2 86.3 87.1 82.8/82.8 88.0 65.7 84.5

MiniLM3L;384H (Wang et al., 2021) 0.7G 89.1 89.1 86.6 85.4 77.8/78.4 87.2 66.1 82.5

Table 15: The results of negative derivative-tradeoff upon BERTbase.

Method FLOPs SST-2 MRPC STS-B RTE Average

BERTbase 10.9G 93.8 91.5 87.1 71.5 86.0

LTSD10% 1.1G 88.8 87.8 84.0 66.4 81.8
MAXIDISC10% 1.1G 89.0 88.2 84.8 66.8 82.2
MINIDISC-λ10% 1.1G 89.1 88.4 85.4 68.2 82.7
MINIDISC-ND10% 1.1G 89.8 87.9 85.4 66.4 82.4

LTSD5% 0.5G 85.4 85.5 83.9 63.2 79.5
MAXIDISC5% 0.5G 86.1 87.0 84.1 65.7 80.7
MINIDISC-λ5% 0.5G 86.9 87.6 84.8 66.8 81.5
MINIDISC-ND5% 0.5G 86.8 86.0 84.9 66.8 81.1
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(a) 12-layer BERTbase.
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(b) 24-layer EncT5xl. Layer indices lager than 24 denote modules from the one-layer decoder (i.e., two more attention modules
and one more feed-forward modules).

Figure 4: The distribution of example pruned structures. The structures are derived with MRPC dataset.
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Figure 5: Performance comparisons among various schedules for EncT5. The dots represent performance variations
using either one or two teacher assistants for MAXIDISC. The triangles represent performance resulting from
MINIDISC using one teacher assistant. The rectangles represent performance resulting from MINIDISC using two
teacher assistants.

Table 16: The results of residual distillation upon distilling BERTbase to BERT10%.

Method MRPC QQP

LTSD10% 87.8 84.6
MINIDISC10% 88.4 84.9

w/ residual distillation 88.4 85.1
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