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Abstract
In this work, we focus on a fundamental yet
underexplored problem, event semantic clas-
sification in context, to help machines gain a
deeper understanding of events. We classify
events from six perspectives: modality, affirma-
tion, specificity, telicity, durativity, and kinesis.
These properties provide essential cues regard-
ing the occurrence and grounding of events,
changes of status that events can bring about,
and the connection between events and time. To
this end, this paper introduces a novel bilingual
dataset collected for the semantic classification
tasks and models designed to address them as
well. By incorporating these event properties
into downstream tasks, we demonstrate that un-
derstanding the fine-grained event semantics
benefits event understanding and reasoning via
experiments on event extraction, temporal rela-
tion extraction and subevent relation extraction.

1 Introduction

A semantic class contains words that share a se-
mantic feature. For example, within nouns, there
are two subclasses, concrete nouns, and abstract
nouns. Concrete nouns include people, plants, and
animals, while abstract nouns refer to concepts
such as qualities, actions, and processes. In this
work, instead of classifying nouns that are rather
comprehensible lexemes in text, our focus is on
the semantic classification of events. We perform
semantic classification from multiple perspectives,
which yields properties that are beneficial to com-
prehensive event understanding and relevant down-
stream tasks such as event extraction (Doddington
et al., 2004; Wang et al., 2020b), event-event re-
lation extraction (Glavaš et al., 2014; O’Gorman
et al., 2016), and event reasoning (Han et al., 2021).

Different from conventional span classification
tasks such as entity typing (Mikheev et al., 1998;
Yaghoobzadeh and Schütze, 2015; Choi et al.,
2018) and event typing (Walker et al., 2006; Wad-
den et al., 2019; Zhang et al., 2021) that map

Context: The community warmly RECEIVED

the refugees.
Event: RECEIVED

Synset of event: receive.v.5
Definition of synset (gloss): express willing-
ness to have in one’s home or environs.

Properties of RECEIVED
Modality: realis
Affirmation: affirmative
Specificity: specific
Telicity: telic
Durativity: durative
Kinesis: non-static

Figure 1: An example of event semantic classification
from six perspectives. The synset of the event is drawn
from WordNet (Miller, 1992).

textual spans to predefined ontologies for abstrac-
tion purposes, we focus on understanding the fine-
grained semantic qualities of an event. To facil-
itate this, we propose to classify events by their
multi-faceted properties — modality, affirmation,
specificity, telicity, durativity, and kinesis. The
definitions of these properties are as follows1:

• Modality (actuality): whether an event actu-
ally occurs.

• Affirmation: whether an event is described
affirmatively.

• Specificity (genericity): whether an event
refers to a particular instance.

• Telicity (lexical aspect): whether an event has
a specific endpoint.

• Durativity (punctuality): whether an event
happens momentarily.

1Details about these properties are discussed in §2.

1395



• Kinesis: whether an event describes a state or
an action.

Among these properties, modality, affirmation, and
specificity are of great help to understanding the oc-
currence and grounding of an event, since modality
and affirmation indicate if an event actually occurs
(Hopper and Thompson, 1980), whereas specificity
indicates whether an event is understood as a sin-
gular occurrence, a finite set of such occurrences,
or others (Doddington et al., 2004). Telicity and
durativity, on the other hand, are properties that
connect events with time, and thus they evidently
provide useful cues for temporal reasoning in nar-
rative text. And the last property, kinesis, divides
events into states and non-states. Examples that
belong to states include “desire,” “want,” “love,”
and so forth. They involve no dynamics and do not
constitute changes themselves (Mourelatos, 1978).

There are a few works that have incidentally
tagged some properties for events in the TimeML
(Pustejovsky et al., 2003), ACE (Doddington et al.,
2004), MASC (Ide et al., 2008), and UDS (Gantt
et al., 2022) annotations. Yet only modality has
been addressed with machine learning approaches
in Monahan et al. (2015). In terms of usage of
these properties, previous effort has been limited to
leveraging them in feature-based statistical learning
methods for the event coreference resolution task
(Ahn, 2006; Bejan and Harabagiu, 2010). In a
nutshell, we lack the tools to obtain these useful
attributes and have not fully exploited them for
event understanding and reasoning tasks.

In this paper, we introduce ESC, the first compre-
hensive dataset collected for event semantic classi-
fication in both English and Chinese. It contains all
the WordNet (Miller, 1992) example sentences for
frequent verbs that feature 5,015 eventive synsets.
The event mentions within these sentences are an-
notated with their six semantic properties. We also
introduce and evaluate several models for the pro-
posed tasks. By incorporating the event properties
predicted by our best model into multiple event-
related tasks, we demonstrate the utility of these
properties through detailed experimental analysis.
The contribution of this paper is threefold:

• We introduce a new bilingual dataset for fine-
grained event semantic classification tasks in
English and Chinese.

• We design novel models for classifying events
by six properties and evaluate the performance

of large language models (LLMs) on this task.

• To enhance the model performance of event
understanding, we propose a constraint learn-
ing and enforcing methodology for incorpo-
rating event properties and evaluate on three
downstream datasets.

2 Event Properties

This section introduces six event properties we aim
to address and why we choose them in detail. We
also provide examples and analysis on how they
assist event reasoning tasks.

2.1 Modality

Modality, also referred to as actuality, classifies
events into realis and irrealis. Realis indicates that
an event is a statement of fact, in other words, the
event actually happens. For example, the “speak”
event in “I hired an assistant who SPEAKS English”
actually occurs. On the contrary, if the context of
an event is expressing nonactual or nonfactual, then
the modality of the event is irrealis. For example,
the “speak” event in “I am looking for an assistant
who SPEAKS English” is in an irrealis mode. The
modality property of events presents the ground-
ing and occurrence information. This is useful in
event coreference resolution and temporal relation
extraction since it is unreasonable to predict the
coreferential or temporal relation between a non-
factual event and an event that actually occurs.

2.2 Affirmation

Affirmation is similar to modality in the sense that
they are both properties about the happening of an
event. Affirmation divides events into those men-
tioned in affirmative clauses like “we e1:HAD some
bread yesterday” and those mentioned in negative
clauses like “but now we e2:HAVE no more bread.”
Yet different from modality, we can explore the
temporal order between affirmative events and neg-
ative events, e.g., the temporal relation between
(e1, e2) is BEFORE. Essentially, we use realis for
statements of fact, either affirmative or negative,
and irrealis for anything contrary to fact, either
affirmative or negative. And this is why we sepa-
rately handle affirmation and modality, instead of
merging them into one event property, i.e., polarity
in the ACE annotations (Doddington et al., 2004).
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2.3 Specificity

There are specific events and generic events if we
classify them with specificity. Generic events can
be found in the following example: “After HAV-
ING a large meal, lions may SLEEP longer.” In
contrast, the events in the following sentence, “the
lion HAD a large meal and SLEPT for 24 hours,”
are both specific ones. We cannot infer any event
relations across the two example sentences, given
that events within different sentences do not agree
on specificity with each other.

2.4 Telicity

Telicity describes how an event is structured in re-
lation to time. If an event has a natural endpoint,
it is said to be telic; if the situation an event de-
scribes is not heading for any particular endpoint,
it is said to be atelic. A common example of events
that differ in their lexical aspect is “arrive” and
“run”: the former has a natural endpoint while the
latter does not. However, “run” in a certain context,
like “RUNNING ten miles”, has a natural endpoint.
Another example is “I ATE it up” and “I am EAT-
ING it”: the former activity is viewed as completed
and telic, while the latter is atelic. Though we may
determine the telicity for part of event triggers with-
out any context, we can observe changes in telicity
for event triggers in different contexts. And that is
why we need to provide contexts of events when
annotating telicity.

Some readers may argue that this “endpoint” test-
ing for events is not clear enough, since any event,
if placed in a longer time scale, would always have
an endpoint. On that account, we consider an-
other algebraic definition of telicity proposed by
Krifka (1989): telic events are quantized, while
atelic ones are cumulative. This would be easy to
understand if we took a dimensionality increase
perspective. We can view entities as objects in
the three-dimensional space and events as objects
in the four-dimensional space where time is in-
troduced as an extra axis. Of course, events are
different from entities in many ways, e.g., events
often involve the interaction among multiple enti-
ties, yet a remarkable difference between entities
and events is that events interact with time. Note
that there is a countability distinction in the entity
domain: “book,” “chair,” and “person” are count-
able, whereas “water,” “food,” and “air” are un-
countable. If we apply the countability concept
to the time axis in the event domain, we can get

countable events (or telic events) like “SOLVE a
puzzle” and uncountable events (or atelic events)
like “WALK around aimlessly.” With the help of the
algebraic definition, the inter-annotator agreement
(IAA) is significantly improved compared to when
only the “endpoint” definition is given (see Tab. 1).

Telicity is beneficial to temporal reasoning in
that it provides endpoint information about events.
For instance, consider the following two sentences:
“he e3:RAN his eyes over her body and e4:KISSED

her on the forehead” and “he was in e5:LOVE with
her and e6:KISSED her on the forehead.” Notice
that e3:RAN in the first sentence is a telic event that
has an endpoint whereas e5:LOVE in the second
is an atelic event that has no endpoint. Therefore,
the temporal relationship between the first event
pair (e3, e4) is BEFORE, and the temporal relation
between the second pair (e5, e6) is INCLUDES.

2.5 Durativity
Durativity classifies events into two categories: du-
rative events and punctual events. Punctual events
are those that happen within several seconds, such
as “KICK a football” and “LOSE my wallet”; and
durative events last for some period of time longer
than seconds: for instance, “GO to school” typically
takes tens of minutes, and “LOSE weight” usually
takes several months. Note that “lose” can be punc-
tual and durative events in different contexts. So is
the case for many other event triggers, and thus we
need to study the durativity of events with contexts.

As shown in Zhou et al. (2020), the duration of
events not only provides important cues in temporal
reasoning but in event coreference and parent-child
relations as well. It is evident that two events with
different durativity features are not coreferential
to each other. And a punctual event cannot be the
parent of a durative event, given that a parent-child
relation entails spatio-temporal containment.

2.6 Kinesis
Kinesis is a property that distinguishes states from
non-states (actions). Non-static events usually
bring about status changes in event participants,
whereas static events do not. Continuing with the
previous example “he was in e5:LOVE with her
and e6:KISSED her on the forehead,” e5 is a state
whereas e6 is an action (non-state). Note that the
kinesis of some event triggers can also be context-
dependent, e.g., “own” is a non-state in the first
example and a state in the second: (1) “he owned
his mistake in front of the class,” (2) “he owns
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Modality Affirmation Specificity Telicity Durativity Kinesis

IAA 0.65 0.85 0.87 0.53 0.61 0.67

Table 1: Inter-annotator agreement (Fleiss’ kappa) of the ESC annotation.

two houses.” Based on the aforementioned three
attributes, i.e., telicity, durativity, and kinesis, Com-
rie (1976) proposed to divide events into five cat-
egories as shown in Tab. 2. Here we do not dive
deeper into the naming of event classes, since our
focus is how they benefit event understanding and
reasoning in general.

Punctual Durative
Telic Achievement Accomplishment
Atelic Semelfactive Activity
Static State

Table 2: Comrie (1976)’s classification of events based
on three properties: telicity, durativity, and kinesis.

3 Data Annotation

Though there are verbal and nominal events, we be-
lieve the learning of event properties for one class
can be generalized to the other with the help of cur-
rent LLMs. We select 2,416 verbs from the 5,000
most frequent words2 in the Corpus of Contempo-
rary American English (COCA). Regarding these
verbs, there are 5,015 synsets and 7,399 example
sentences in WordNet (Miller, 1992). We treat
the example sentences as contexts of these verbal
events. We translate the English context sentences
into Chinese and extract the spans of verbs using
their synsets’ Chinese names in WordNet.

We employ the Data Collection and Labeling
Services from Tencent Cloud3 for our event prop-
erty annotation, in which each assignment asks
six questions regarding an event and costs ¥2.0
(∼$0.3). Each assignment takes about one minute
to complete and the hourly payment is about $18.
We require that our annotators are “Master Work-
ers,” indicating reliable annotation records. We
identified 15 valid annotators: all of them are na-
tive Chinese speakers who have received higher ed-
ucation and speak fluent English. Before working
on the annotation assignments, they are trained by
experts to fully understand the instructions that pro-
vide definitions and examples of each event prop-

2https://www.wordfrequency.info
3https://cloud.tencent.com/solution/

data-collect-and-label-service

erty (see §2)4. Each annotator is assigned 1,500
events such that each event is annotated by at least
three annotators. The final labels are determined
by majority voting and the IAA’s (Fleiss’ kappa) of
the six tasks are shown in Tab. 1. We also provide
sample annotation results in Tab. 3.

4 Classification Models

In this section, we introduce the models designed
for the proposed classification tasks.

4.1 Multi-label Predictor
Given the context of an event, we first use a pre-
trained language model, XLM-RoBERTa (Conneau
et al., 2020), to produce the contextualized embed-
dings for all tokens. To obtain the representation of
the event he, we concatenate the hidden state of the
last layer that is stacked on top of the event trigger
e and the attention vector of the event. If the event
trigger spans multiple subword pieces, the average
of the subword representations is taken. We then
use a multi-layer perceptron with six output log-
its followed by a sigmoid function to estimate the
value for each property.

4.2 Indirect Supervision from Glosses
A gloss5 provides the sense definition for a lex-
eme. For example, the gloss of “ran” in “He RAN

his eyes over her body” is pass over, across, or
through. With the gloss, the telicity of “ran” can be
easily inferred as telic, since “pass over” has a natu-
ral endpoint. And here is another example in which
gloss knowledge helps us determine the durativity
of an event: the gloss of “touch” in “He could not
TOUCH the meaning of the poem” is “comprehend.”
If we look at the trigger “touch” itself, we might
think that it is somewhat punctual. However, the
comprehension of a poem requires some careful
reading and is actually a durative process that can-
not be completed within seconds.

Given that gloss knowledge provides richer se-
mantic information than the event trigger itself,
we would like to leverage the glosses provided

4The detailed guideline, annotation interface, and dataset
statistics are shown in Appendix §8.

5We obtain the gloss of an event by looking up the defini-
tion of the synset of that event in WordNet.
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Event in context Modality Affirmation Specificity Telicity Durativity Kinesis

He RAN his eyes over her body. 1 1 1 1 1 1
The setting sun THREW long shadows. 1 1 1 0 0 0

The community warmly RECEIVED the refugees. 1 1 1 1 0 1
Please PLUG in the toaster! 0 1 1 1 1 1

He could not TOUCH the meaning of the poem. 1 0 1 1 0 0
Lions only EAT meat. 1 1 0 1 0 1

He DEBUTS next month at the Metropolitan Opera. 0 1 1 1 0 1

Table 3: Sampled events (marked in BLUE) in context along with their annotated semantic properties. 1’s and 0’s
respectively denote (Realis, Irrealis) for Modality, (Affirmative, Negative) for Affirmation, (Specific, Generic) for
Specificity, (Telic, Atelic) for Telicity, (Punctual, Durative) for Durativity, (Action, State) for Kinesis.

by WordNet to enhance the model performances.
Keeping the other components the same as our first
model, we simply append the gloss to the begin-
ning of the input context, e.g., “[CLS] Touch means
comprehend in the following sentence. [SEP] He
could not touch the meaning of the poem.”

4.3 Few-Shot Learning with GPT-3

To evaluate the event understanding ability of GPT-
3 (Brown et al., 2020), we design prompts and
study event semantic classification in a few-shot
fashion. As shown in Fig. 2, for each event prop-
erty, we provide its definition and a few examples in
the prompt, and ask GPT-3 binary questions about
events. To overcome the commonly observed high
variance issue of prompt-based approaches (Zhao
et al., 2021), we set the number of examples even
for each label (two examples each) to mitigate the
majority label bias. We also conduct two sets of
experiments by alternating the label of the last ex-
ample6, so as to mitigate the recency bias (out-
putting answers may be biased towards the end of
the prompt). To make a fair comparison with the
method proposed in §4.2, we also conduct another
set of experiments by incorporating gloss knowl-
edge into the prompt for each event.

4.4 Conversational Solution with ChatGPT

Recently, ChatGPT, which was trained with rein-
forcement learning techniques from human feed-
back, has drawn a huge amount of attention since
it is able to interact with human beings and an-
swer questions in broad domains. To see how well
ChatGPT can perform on our tasks, instead of de-
scribing the event properties and examples in the
prompt every time as what we do for GPT-3 (see
Fig. 2), we exploit the advantage of the dialogue
format of ChatGPT to reduce the excessive over-
head. Specifically, we provide those additional

6Basically we switch the last two examples in Fig. 2.

Prompt: Telicity describes how an event is structured
in relation to time. If an event has a natural endpoint, it
is said to be telic; if the situation an event describes is
not heading for any particular endpoint, it is said to be
atelic. Below are a few examples.

Event: ran
Context: He ran his eyes over her body.
Telicity: telic

Event: threw
Context: The setting sun threw long shadows.
Telicity: atelic

Event: expecting
Context: We were expecting a visit from our relatives.
Telicity: atelic

Event: debuts
Context: This young soprano debuts next month at the
Metropolitan Opera.
Telicity: telic

Please determine the telicity of the following event:

Event: flies
Context: Time flies like an arrow.
Telicity:

Response: atelic

Figure 2: An example prompt for GPT-3 to determine
the telicity of an event in English. The text in apricot
denotes the essential part of the prompt, whereas the
other part contains definitions and examples of telicity
which are excessive overhead information that could be
reduced in the requests to ChatGPT.

information only at the first round of the conversa-
tion and ask binary questions regarding the event
properties as follow-up questions. To mitigate the
biases mentioned in §4.3, as well as to incorpo-
rate gloss knowledge, we conduct additional sets of
experiments as counterparts of GPT-3 experiments.

5 Evaluation

In this section, we describe the experiments on
the ESC dataset. We randomly 80/10/10 split the
data into train/dev/test sets and use F1 score as
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Modality Affirmation Specificity Telicity Durativity Kinesis Avg.

MP 0.95 0.94 0.95 0.81 0.91 0.75 0.89
MP + Gloss 0.94 0.96 0.95 0.84 0.93 0.80 0.90

GPT-3 0.58 0.78 0.87 0.38 0.61 0.34 0.59
GPT-3 + Gloss 0.61 0.76 0.87 0.44 0.62 0.36 0.61

ChatGPT 0.65 0.73 0.92 0.40 0.66 0.35 0.62
ChatGPT + Gloss 0.66 0.79 0.89 0.51 0.69 0.42 0.66

Table 4: Experimental results on the ESC dataset (the numbers are averaged F1 scores on English and Chinese).
MP denotes the multi-label predictor, and MP+Gloss denotes the gloss-appended version of multi-label predictor.
Bold number in each column denote the best result for each property.

the evaluation metric. For the multi-label predic-
tor and its gloss-appended version, we select five
random seeds to train the model and calculate the
averaged F1 scores on the test set. GPT-3 and
ChatGPT-related results are averaged numbers of
two different prompt settings on the test set.

We report the averaged F1 scores on the English
and Chinese test sets in Tab. 4. From the results
we can see that the multi-label predictor with gloss
knowledge offers the best performances in terms
of F1, outperforming the baseline multi-label pre-
dictor by 1% on average. It is notable that there is
a 5% gain in the kinesis classification performance,
given that MP+Gloss leverages both direct supervi-
sion from the labels and indirect supervision from
gloss knowledge. GPT-3 and ChatGPT, with no
direct supervision from the dataset, achieve decent
performances of an average score of 0.59 and 0.62.
With the help of gloss, we observe a 2% and 4%
gain in the average performance across six event
properties respectively for GPT-3 and ChatGPT.

Through the experiments, we find that the
biggest problem of these large language models
(LLMs) lies in that minor changes in the prompt
can make huge differences in the response. For
example, when we ask ChatGPT to determine the
kinesis of “lay out” in the following sentence: “the
nurse lays out the tools for the surgery,” it gives
different answers when the prompt varies from
“Please determine the kinesis of the following event”
to “Please determine the kinesis of the following
event and explain why.” With the first prompt, it
is able to give the correct answer non-static (“lay
out” in this context means to spread the tools out
so that they can be easily accessible, which is obvi-
ously an action). However, when asked to provide
an explanation, it first gives the opposite answer,
static, and then provides the following explanation:
“This is because the event is likely describing the
act of arranging or organizing the tools, rather than
involving any movement or change in the state of

the tools or event participants.” The first part of the
explanation is correct, but from the second part, it
seems that ChatGPT is not completely clear about
the meaning of “change in state.” Hence, how to
improve the robust reasoning ability of LLMs re-
quires further investigation.

6 Enhancing Event-Centric NLP Tasks

In this section, we leverage the event properties to
improve the model performances on event reason-
ing tasks. We study two methods to this end, one is
to incorporate these properties in existing models
as features, and the other is to induce constraints
and incorporate the constraints into the models.
We examine three event-centric NLP tasks, namely
event extraction, event temporal relation extraction,
and subevent relation extraction, which serve as the
media for demonstrating the effectiveness of our
proposed tasks and models.

6.1 Event Extraction

Event extraction includes two subtasks, event trig-
ger identification, and classification. Here we only
focus on the classification part since we need to
know the textual span of events first to determine
their properties. Recent models for event extrac-
tion (Wadden et al., 2019; Lin et al., 2020) are
mostly based on the tokens’ contextual representa-
tions learned by pretrained language models. The
event representations are then fed into neural net-
works to predict the event types in some predefined
ontology. By concatenating the six-dimensional
vector of event properties with event representa-
tions, we can easily add the semantic classification
results as features. As another way of incorporating
event properties, we leverage the semantic mean-
ing of event types to induce constraints. For exam-
ple, if an event has type TRANSPORT (a subtype
of MOVEMENT) in ACE annotations (Doddington
et al., 2004), then its durativity can only be dura-
tive. Similarly, if an event is subsumed under the

1400



Figure 3: Experimental results of incorporating event properties in existing models. Trig-C is short for event trigger
classification. Note that the baseline model for Trig-C is OneIE (Lin et al., 2020) while the baseline for the rest two
is JCL (Wang et al., 2020a). The metric we use for all evaluations is F1 score.

type of MEET (a subtype of CONTACT), then its
kinesis can only be non-static.

Inspired by the expressiveness of Rectifier Net-
work (Pan and Srikumar, 2016), we employ it to
automatically learn constraints using the training
set of ACE. Specifically, the constraints serve as
criteria for whether an event with certain properties
can belong to certain types. Let Xp be the property
vector with six dimensions and Xt be the one-hot
type vector (following Wadden et al. (2019)’s pre-
processing method for ACE05-E and ACE05-CN
dataset). Then the information to be included in
the constraints about an event can be expressed as:

X = Xp ∪Xt. (1)

Let Y denote whether an event with properties Xp

can be classified as event type Xt. We obtain all
the events with their types from the training set
documents, and leverage our MP+Gloss model to
predict the value of Xp for each event. We set
the labels for these events to Y = 1 (which are
treated as positive examples). After we acquire
all the possible X values, we randomly perturb
the bits of positive examples to generate the same
amount of negative examples and set the labels
for those instances as Y = 0. We represent the
constraints for event-type classification as K linear
inequalities where we assume K is the upper bound
for all the rules to be learned. And Y = 1 if X
satisfies constraints ck for all k = 1, · · · ,K. The
kth constraint ck is expressed by a linear inequality:

wk ·X+ bk ≥ 0, (2)

whose weights wk and bias bk are learned. Since a
system of linear inequalities is equivalent to a Rec-
tifier Network (Pan et al., 2020), we adopt a two-

layer Rectifier Network for learning constraints

p = σ
(
1−

K∑

k=1

(wk ·X+ bk)
)
, (3)

where p denotes the possibility of Y = 1 and σ(·)
denotes the sigmoid function. We train the param-
eters wk’s and bk’s of the Rectifier Network in a
supervised fashion. After obtaining the parameters,
we fix them and add the constraints as a regulariza-
tion term in the loss function (i.e., cross-entropy
loss) of the OneIE model (Lin et al., 2020). Specif-
ically, p is converted into the negative log space
which is in the same space as the cross-entropy loss
(Li et al., 2019). In this way, the loss corresponding
to the learned constraints is

Lcons = −log
(
σ(1−

K∑

k=1

ReLU(wk ·X+ bk))
)
.

(4)

6.2 Event-Event Relation Extraction
Event-event relation extraction is another set of
tasks that require reasoning over event semantics.
We study two tasks, namely event temporal relation
extraction and subevent relation extraction in this
work. Similar to how we add event properties into
the event type classification model, we adopt two
approaches here as well. One is to concatenate the
event properties with event representations, and the
other is to induce and integrate constraints into the
learning objectives of the model. We follow the
same process to obtain the positive and negative ex-
amples for constraint learning introduced in (Wang
et al., 2021). We employ the joint constrained learn-
ing (JCL) model proposed by Wang et al. (2020a)
to address the two tasks at the same time. Given
that the training objective of JCL is a combination
of annotation loss, symmetry loss, and transitivity
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loss, we directly add the constraints learned with
Rectifier Network (see Eq. 3) into the loss function.

6.3 Experiments and Analysis

For event trigger classification, we follow the same
training methodology proposed in (Lin et al., 2020)
and evalutate on ACE05-E and ACE05-CN. While
for event-event relation extraction, we adopt the
joint training approach introduced in (Wang et al.,
2020a) and evaluate on the MATRES and HiEve
dataset. F1 scores are used for evaluating the mod-
els’ performances and the results are shown in
Fig. 3. Adding event properties as feature vec-
tors brings about significant improvement in the
task of subevent relation extraction, outperform-
ing the baseline model by relatively 2.5%. They
also enhance the model performance via constraints
learned by Rectifier Network. This is most notable
in the task of event trigger classification, where
the model performance is improved by relatively
1.9%. Overall, incorporating event properties via
constraints works better than adding them directly
to the event representations. This demonstrates that
inducing and enforcing constraints in such ways
better captures the inter-dependencies between dif-
ferent event properties, as well as their connec-
tion with event types and relations. And this also
provides an effective paradigm to integrate useful
semantic information into recent neural models.

7 Related Work

The study of event semantics has been the focus
of both linguistics and philosophy for a long time.
Early effort on this topic dates back to sixty years
ago: Vendler (1957) classified verbal events into
four categories on whether they express “activ-
ity,” “accomplishment,” “achievement” or “state.”
And the criteria for distinguishing “accomplish-
ment” and “achievement” from the other two is
they have certain endpoints, i.e., they are telic.
Later, Comrie (1976) introduced durativity and ki-
nesis to further categorize events into five classes
(see Tab. 2). Though there are further efforts that
classify events in finer ways (Bach, 1986; Moens
and Steedman, 1988), this paper focuses on how
semantic classification of events supports the un-
derstanding of event-centric reasoning tasks. The
most relevant work to our focus are the ten differ-
ent event facets involved in the transitivity property
of a clause (Hopper and Thompson, 1980) and the
seven attributes designed for examining eventive-

ness (Monahan and Brunson, 2014) (i.e., to de-
termine whether a lexeme can be identified as an
event). Annotated on the MASC corpus (Ide et al.,
2008), the SitEnt dataset (Friedrich and Palmer,
2014; Friedrich et al., 2016) captures event vs. state
distinctions. The DIASPORA dataset (Kober et al.,
2020) annotates phone conversations for stativity
and telicity. Nevertheless, these previous works
have mainly established theoretical frameworks for
event study and left building tools for machine rea-
soning as the future endeavor.

Recent efforts in event annotations have been
made in event detection (Walker et al., 2006; Wang
et al., 2020b), and event-event coreferential, tem-
poral, hierarchical, and causal relations (Bejan and
Harabagiu, 2010; Pustejovsky et al., 2003; Glavaš
and Šnajder, 2014; Mirza and Tonelli, 2014). These
corpora have enabled data-driven models to gain
understanding of event semantics and how they in-
teract with other events. However, models learned
from these corpora often rely on dataset statistics
(Wang et al., 2022b,a) and thus are biased towards
prior knowledge and have limited interpretability.

8 Conclusion

In this work, we first study six event properties that
help machines gain a deep understanding of events
and then introduce a novel dataset we collect for
event semantic classification7. Various semantic
information can be inferred from these properties
in that they provide the occurrence and grounding
of events and their connection with time as well.
We design six methods for event semantic clas-
sification, four of which involve recent large lan-
guage models. Experimental results demonstrate
that ChatGPT performs better than GPT-3 even
though its response is still subject to minor per-
turbation of the prompt formats. On average, the
model MP+Gloss performs best in the proposed
tasks and it is employed to predict event properties
in three downstream tasks. To enhance the perfor-
mances of neural models proposed for these tasks,
we discuss two methodologies for incorporating
useful event properties. Results show that the pre-
dicted event properties are effective in enhancing
the performances of existing models across three
different tasks. Therefore, we claim that the funda-
mental task of event semantic classification benefits
both event understanding and reasoning.

7http://cogcomp.org/page/publication_
view/1027
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Limitations

This work builds on human annotations and the ap-
plication of state-of-the-art language models. The
models might be biased towards the corpus used
for training. And we only use XLM-RoBERTa to
acquire the representations of events in MP and
MP+Gloss; there might be more powerful archi-
tectures. The training of our models requires GPU
resources which might produce environmental im-
pacts, though the inference stage does not take up
much computational resources.
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Modality Affirmation Specificity Telicity Durativity Kinesis

Realis:Irrealis Affirmative:Negative Specific:Generic Telic:Atelic Durative:Punctual Action:State
# of cases 6327:1072 6732:667 4445:2954 1298:6101 6773:626 4278:3121

Table 5: Dataset statistics.

Figure 4: The event property annotation of “acknowledge” in the annotation interface.

Figure 5: The event property annotation of “display” in the annotation interface.

Figure 6: Annotation guideline for durativity and telicity.
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Figure 7: Annotation guideline for modality and genericity.

Figure 8: Annotation guideline for kinesis and affirmation.
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